--- license: apache-2.0 base_model: pradanaadn/vit-emotional-classifier tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-emotional-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.63125 --- # vit-emotional-classifier This model is a fine-tuned version of [pradanaadn/vit-emotional-classifier](https://huggingface.co/pradanaadn/vit-emotional-classifier) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1830 - Accuracy: 0.6312 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9412 | 0.5 | 20 | 1.3606 | 0.575 | | 0.8621 | 1.0 | 40 | 1.3134 | 0.6125 | | 0.8025 | 1.5 | 60 | 1.2917 | 0.6062 | | 0.7077 | 2.0 | 80 | 1.2553 | 0.6062 | | 0.7259 | 2.5 | 100 | 1.2128 | 0.625 | | 0.5685 | 3.0 | 120 | 1.2036 | 0.625 | | 0.5604 | 3.5 | 140 | 1.2057 | 0.6062 | | 0.4817 | 4.0 | 160 | 1.1830 | 0.6312 | | 0.4421 | 4.5 | 180 | 1.2004 | 0.5875 | | 0.4692 | 5.0 | 200 | 1.1568 | 0.6188 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1