Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- zh
|
| 6 |
+
library_name: transformers
|
| 7 |
+
base_model:
|
| 8 |
+
- Qwen/Qwen2.5-VL-7B-Instruct
|
| 9 |
+
pipeline_tag: image-text-to-text
|
| 10 |
+
tags:
|
| 11 |
+
- trl
|
| 12 |
+
- VisionLanguageAttribution
|
| 13 |
+
- VisualUnderstanding
|
| 14 |
+
- text-generation-inference
|
| 15 |
+
- AttributeCaptioning
|
| 16 |
+
- VLA
|
| 17 |
+
datasets:
|
| 18 |
+
- prithivMLmods/blip3o-caption-mini-arrow
|
| 19 |
+
- prithivMLmods/Caption3o-Opt-v3
|
| 20 |
+
- prithivMLmods/Caption3o-Opt-v2
|
| 21 |
+
- >-
|
| 22 |
+
Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_2.7b_Attributes_Caption_ns_5647
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+

|
| 26 |
+
|
| 27 |
+
# **DeepCaption-VLA-7B**
|
| 28 |
+
|
| 29 |
+
> The **DeepCaption-VLA-7B** model is a fine-tuned version of **Qwen2.5-VL-7B-Instruct**, tailored for **Image Captioning** and **Vision Language Attribution**. This variant is designed to generate precise, highly descriptive captions with a focus on **defining visual properties, object attributes, and scene details** across a wide spectrum of images and aspect ratios.
|
| 30 |
+
|
| 31 |
+
# Key Highlights
|
| 32 |
+
|
| 33 |
+
1. **Vision Language Attribution (VLA):** Specially fine-tuned to attribute and define visual properties of objects, scenes, and environments.
|
| 34 |
+
2. **Detailed Object Definitions:** Generates captions with rich attribute descriptions, making outputs more precise than generic captioners.
|
| 35 |
+
3. **High-Fidelity Descriptions:** Handles general, artistic, technical, abstract, and low-context images with descriptive depth.
|
| 36 |
+
4. **Robust Across Aspect Ratios:** Accurately captions images regardless of format—wide, tall, square, or irregular.
|
| 37 |
+
5. **Variational Detail Control:** Supports both concise summaries and fine-grained attributions depending on prompt structure.
|
| 38 |
+
6. **Foundation on Qwen2.5-VL Architecture:** Leverages Qwen2.5-VL-7B’s multimodal reasoning for visual comprehension and instruction-following.
|
| 39 |
+
7. **Multilingual Capability:** Default in English, but adaptable for multilingual captioning through prompt engineering.
|
| 40 |
+
|
| 41 |
+
> model type: experimental
|
| 42 |
+
|
| 43 |
+
# Training Details
|
| 44 |
+
|
| 45 |
+
This model was fine-tuned with a curated mix of datasets focused on **caption richness and object-attribute alignment**:
|
| 46 |
+
|
| 47 |
+
* [prithivMLmods/blip3o-caption-mini-arrow](https://huggingface.co/datasets/prithivMLmods/blip3o-caption-mini-arrow)
|
| 48 |
+
* [prithivMLmods/Caption3o-Opt-v3](https://huggingface.co/datasets/prithivMLmods/Caption3o-Opt-v3)
|
| 49 |
+
* [prithivMLmods/Caption3o-Opt-v2](https://huggingface.co/datasets/prithivMLmods/Caption3o-Opt-v2)
|
| 50 |
+
* [Multimodal-Fatima/Caltech101\_not\_background\_test\_facebook\_opt\_2.7b\_Attributes\_Caption\_ns\_5647](https://huggingface.co/datasets/Multimodal-Fatima/Caltech101_not_background_test_facebook_opt_2.7b_Attributes_Caption_ns_5647)
|
| 51 |
+
|
| 52 |
+
The training objective emphasized **Vision Language Attribution**: defining image properties, attributes, and objects with clarity, while preserving descriptive fluency.
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## SYSTEM_PROMPT
|
| 57 |
+
|
| 58 |
+
```py
|
| 59 |
+
CAPTION_SYSTEM_PROMPT = """
|
| 60 |
+
You are an AI assistant that rigorously follows this response protocol:
|
| 61 |
+
|
| 62 |
+
1. For every input image, your primary task is to write a **precise caption**. The caption must capture the **essence of the image** in clear, concise, and contextually accurate language.
|
| 63 |
+
|
| 64 |
+
2. Along with the caption, provide a structured set of **attributes** that describe the visual elements. Attributes should include details such as objects, people, actions, colors, environment, mood, and other notable characteristics.
|
| 65 |
+
|
| 66 |
+
3. Always include a **class_name** field. This must represent the **core theme or main subject** of the image in a compact format.
|
| 67 |
+
- Use the syntax: `{class_name==write_the_core_theme}`
|
| 68 |
+
- Example: `{class_name==dog_playing}` or `{class_name==city_sunset}`
|
| 69 |
+
|
| 70 |
+
4. Maintain the following strict format in your output:
|
| 71 |
+
- **Caption:** <one-sentence description>
|
| 72 |
+
- **Attributes:** <comma-separated list of visual attributes>
|
| 73 |
+
- **{class_name==core_theme}**
|
| 74 |
+
|
| 75 |
+
5. Ensure captions are **precise, neutral, and descriptive**, avoiding unnecessary elaboration or subjective interpretation unless explicitly required.
|
| 76 |
+
|
| 77 |
+
6. Do not reference the rules or instructions in the output. Only return the formatted caption, attributes, and class_name.
|
| 78 |
+
|
| 79 |
+
""".strip()
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
---
|
| 83 |
+
|
| 84 |
+
# Quick Start with Transformers
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 88 |
+
from qwen_vl_utils import process_vision_info
|
| 89 |
+
|
| 90 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 91 |
+
"prithivMLmods/DeepCaption-VLA-7B", torch_dtype="auto", device_map="auto"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
processor = AutoProcessor.from_pretrained("prithivMLmods/DeepCaption-VLA-7B")
|
| 95 |
+
|
| 96 |
+
messages = [
|
| 97 |
+
{
|
| 98 |
+
"role": "user",
|
| 99 |
+
"content": [
|
| 100 |
+
{
|
| 101 |
+
"type": "image",
|
| 102 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
| 103 |
+
},
|
| 104 |
+
{"type": "text", "text": "Describe this image with detailed attributes and properties."},
|
| 105 |
+
],
|
| 106 |
+
}
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
text = processor.apply_chat_template(
|
| 110 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 111 |
+
)
|
| 112 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 113 |
+
inputs = processor(
|
| 114 |
+
text=[text],
|
| 115 |
+
images=image_inputs,
|
| 116 |
+
videos=video_inputs,
|
| 117 |
+
padding=True,
|
| 118 |
+
return_tensors="pt",
|
| 119 |
+
)
|
| 120 |
+
inputs = inputs.to("cuda")
|
| 121 |
+
|
| 122 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 123 |
+
generated_ids_trimmed = [
|
| 124 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 125 |
+
]
|
| 126 |
+
output_text = processor.batch_decode(
|
| 127 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 128 |
+
)
|
| 129 |
+
print(output_text)
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
# Intended Use
|
| 133 |
+
|
| 134 |
+
* Generating attribute-rich image captions for research, dataset creation, and AI training.
|
| 135 |
+
* Vision-language attribution for object detection, scene understanding, and dataset annotation.
|
| 136 |
+
* Supporting creative, artistic, and technical applications requiring detailed descriptions.
|
| 137 |
+
* Captioning across varied aspect ratios, unusual visual styles, and non-standard datasets.
|
| 138 |
+
|
| 139 |
+
# Limitations
|
| 140 |
+
|
| 141 |
+
* May over-attribute or infer properties not explicitly visible in ambiguous images.
|
| 142 |
+
* Outputs can vary in tone depending on prompt phrasing.
|
| 143 |
+
* Not intended for filtered captioning tasks (explicit or sensitive content may appear).
|
| 144 |
+
* Accuracy may degrade on synthetic or highly abstract visual domains.
|