Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
```py
|
| 6 |
Classification Report:
|
|
@@ -18,4 +21,84 @@ Smart Casual 0.0000 0.0000 0.0000 67
|
|
| 18 |
accuracy 0.8458 44072
|
| 19 |
macro avg 0.3912 0.2762 0.3024 44072
|
| 20 |
weighted avg 0.8300 0.8458 0.8159 44072
|
| 21 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
---
|
| 4 |
+
# **Fashion-Product-Usage**
|
| 5 |
+
|
| 6 |
+
> **Fashion-Product-Usage** is a vision-language model fine-tuned from **google/siglip2-base-patch16-224** using the **SiglipForImageClassification** architecture. It classifies fashion product images based on their intended usage context.
|
| 7 |
|
| 8 |
```py
|
| 9 |
Classification Report:
|
|
|
|
| 21 |
accuracy 0.8458 44072
|
| 22 |
macro avg 0.3912 0.2762 0.3024 44072
|
| 23 |
weighted avg 0.8300 0.8458 0.8159 44072
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
The model predicts one of the following usage categories:
|
| 27 |
+
|
| 28 |
+
- **0:** Casual
|
| 29 |
+
- **1:** Ethnic
|
| 30 |
+
- **2:** Formal
|
| 31 |
+
- **3:** Home
|
| 32 |
+
- **4:** Party
|
| 33 |
+
- **5:** Smart Casual
|
| 34 |
+
- **6:** Sports
|
| 35 |
+
- **7:** Travel
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
# **Run with Transformers 🤗**
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
!pip install -q transformers torch pillow gradio
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
import gradio as gr
|
| 47 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 48 |
+
from PIL import Image
|
| 49 |
+
import torch
|
| 50 |
+
|
| 51 |
+
# Load model and processor
|
| 52 |
+
model_name = "prithivMLmods/Fashion-Product-Usage" # Replace with your actual model path
|
| 53 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 54 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 55 |
+
|
| 56 |
+
# Label mapping
|
| 57 |
+
id2label = {
|
| 58 |
+
0: "Casual",
|
| 59 |
+
1: "Ethnic",
|
| 60 |
+
2: "Formal",
|
| 61 |
+
3: "Home",
|
| 62 |
+
4: "Party",
|
| 63 |
+
5: "Smart Casual",
|
| 64 |
+
6: "Sports",
|
| 65 |
+
7: "Travel"
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
def classify_usage(image):
|
| 69 |
+
"""Predicts the usage type of a fashion product."""
|
| 70 |
+
image = Image.fromarray(image).convert("RGB")
|
| 71 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 72 |
+
|
| 73 |
+
with torch.no_grad():
|
| 74 |
+
outputs = model(**inputs)
|
| 75 |
+
logits = outputs.logits
|
| 76 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 77 |
+
|
| 78 |
+
predictions = {id2label[i]: round(probs[i], 3) for i in range(len(probs))}
|
| 79 |
+
return predictions
|
| 80 |
+
|
| 81 |
+
# Gradio interface
|
| 82 |
+
iface = gr.Interface(
|
| 83 |
+
fn=classify_usage,
|
| 84 |
+
inputs=gr.Image(type="numpy"),
|
| 85 |
+
outputs=gr.Label(label="Usage Prediction Scores"),
|
| 86 |
+
title="Fashion-Product-Usage",
|
| 87 |
+
description="Upload a fashion product image to predict its intended usage (Casual, Formal, Party, etc.)."
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Launch the app
|
| 91 |
+
if __name__ == "__main__":
|
| 92 |
+
iface.launch()
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
---
|
| 96 |
+
|
| 97 |
+
# **Intended Use**
|
| 98 |
+
|
| 99 |
+
This model can be used for:
|
| 100 |
+
|
| 101 |
+
- **Product tagging in e-commerce catalogs**
|
| 102 |
+
- **Context-aware product recommendations**
|
| 103 |
+
- **Fashion search optimization**
|
| 104 |
+
- **Data annotation for training recommendation engines**
|