upload demo notebook
Browse files
Gliese-OCR-7B-Post2.0-final(4bit)/Gliese_OCR_7B_Post2_0_final.ipynb
ADDED
|
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": [],
|
| 7 |
+
"gpuType": "T4"
|
| 8 |
+
},
|
| 9 |
+
"kernelspec": {
|
| 10 |
+
"name": "python3",
|
| 11 |
+
"display_name": "Python 3"
|
| 12 |
+
},
|
| 13 |
+
"language_info": {
|
| 14 |
+
"name": "python"
|
| 15 |
+
},
|
| 16 |
+
"accelerator": "GPU"
|
| 17 |
+
},
|
| 18 |
+
"cells": [
|
| 19 |
+
{
|
| 20 |
+
"cell_type": "markdown",
|
| 21 |
+
"source": [
|
| 22 |
+
"# **Gliese-OCR-7B-Post2.0-final**"
|
| 23 |
+
],
|
| 24 |
+
"metadata": {
|
| 25 |
+
"id": "zeCQura_Ri5N"
|
| 26 |
+
}
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "markdown",
|
| 30 |
+
"source": [
|
| 31 |
+
"\n",
|
| 32 |
+
"The [Gliese-OCR-7B-Post2.0-final](https://huggingface.co/prithivMLmods/Gliese-OCR-7B-Post2.0-final) model is a refined and optimized version of Gliese-OCR-7B-Post1.0, built upon the Qwen2.5-VL architecture. It represents the final iteration in the Gliese-OCR series, offering enhanced efficiency, precision, and visualization capabilities for document OCR, visual analysis, and information extraction.\n",
|
| 33 |
+
"\n",
|
| 34 |
+
"Fine-tuned with extended document visualization data and OCR-focused objectives, this model delivers superior accuracy across a wide range of document types, including scanned PDFs, handwritten pages, structured forms, and analytical reports."
|
| 35 |
+
],
|
| 36 |
+
"metadata": {
|
| 37 |
+
"id": "pTrk5nv-HAMV"
|
| 38 |
+
}
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": null,
|
| 43 |
+
"metadata": {
|
| 44 |
+
"id": "oXHcxUMZGah0"
|
| 45 |
+
},
|
| 46 |
+
"outputs": [],
|
| 47 |
+
"source": [
|
| 48 |
+
"%%capture\n",
|
| 49 |
+
"!pip install git+https://github.com/huggingface/accelerate.git \\\n",
|
| 50 |
+
" git+https://github.com/huggingface/peft.git \\\n",
|
| 51 |
+
" transformers-stream-generator huggingface_hub albumentations \\\n",
|
| 52 |
+
" pyvips-binary qwen-vl-utils sentencepiece opencv-python docling-core \\\n",
|
| 53 |
+
" python-docx torchvision safetensors matplotlib num2words \\\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"!pip install transformers requests pymupdf hf_xet spaces pyvips pillow gradio \\\n",
|
| 56 |
+
" einops torch fpdf timm av decord bitsandbytes\n",
|
| 57 |
+
"#Hold tight, this will take around 1-2 minutes."
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "markdown",
|
| 62 |
+
"source": [
|
| 63 |
+
"### **Load Gliese-OCR-7B-Post2.0 with 4-bit quantization**"
|
| 64 |
+
],
|
| 65 |
+
"metadata": {
|
| 66 |
+
"id": "5vGwuV-4HaJv"
|
| 67 |
+
}
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"source": [
|
| 72 |
+
"import os\n",
|
| 73 |
+
"import sys\n",
|
| 74 |
+
"import random\n",
|
| 75 |
+
"import uuid\n",
|
| 76 |
+
"import json\n",
|
| 77 |
+
"import time\n",
|
| 78 |
+
"from threading import Thread\n",
|
| 79 |
+
"from typing import Iterable\n",
|
| 80 |
+
"from huggingface_hub import snapshot_download\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"import gradio as gr\n",
|
| 83 |
+
"import spaces\n",
|
| 84 |
+
"import torch\n",
|
| 85 |
+
"import numpy as np\n",
|
| 86 |
+
"from PIL import Image\n",
|
| 87 |
+
"import cv2\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"from transformers import (\n",
|
| 90 |
+
" Qwen2_5_VLForConditionalGeneration,\n",
|
| 91 |
+
" AutoProcessor,\n",
|
| 92 |
+
" TextIteratorStreamer,\n",
|
| 93 |
+
" BitsAndBytesConfig,\n",
|
| 94 |
+
")\n",
|
| 95 |
+
"\n",
|
| 96 |
+
"from transformers.image_utils import load_image\n",
|
| 97 |
+
"from gradio.themes import Soft\n",
|
| 98 |
+
"from gradio.themes.utils import colors, fonts, sizes\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"# --- Theme and CSS Setup ---\n",
|
| 101 |
+
"colors.steel_blue = colors.Color(\n",
|
| 102 |
+
" name=\"steel_blue\",\n",
|
| 103 |
+
" c50=\"#EBF3F8\",\n",
|
| 104 |
+
" c100=\"#D3E5F0\",\n",
|
| 105 |
+
" c200=\"#A8CCE1\",\n",
|
| 106 |
+
" c300=\"#7DB3D2\",\n",
|
| 107 |
+
" c400=\"#529AC3\",\n",
|
| 108 |
+
" c500=\"#4682B4\",\n",
|
| 109 |
+
" c600=\"#3E72A0\",\n",
|
| 110 |
+
" c700=\"#36638C\",\n",
|
| 111 |
+
" c800=\"#2E5378\",\n",
|
| 112 |
+
" c900=\"#264364\",\n",
|
| 113 |
+
" c950=\"#1E3450\",\n",
|
| 114 |
+
")\n",
|
| 115 |
+
"\n",
|
| 116 |
+
"class SteelBlueTheme(Soft):\n",
|
| 117 |
+
" def __init__(\n",
|
| 118 |
+
" self,\n",
|
| 119 |
+
" *,\n",
|
| 120 |
+
" primary_hue: colors.Color | str = colors.gray,\n",
|
| 121 |
+
" secondary_hue: colors.Color | str = colors.steel_blue,\n",
|
| 122 |
+
" neutral_hue: colors.Color | str = colors.slate,\n",
|
| 123 |
+
" text_size: sizes.Size | str = sizes.text_lg,\n",
|
| 124 |
+
" font: fonts.Font | str | Iterable[fonts.Font | str] = (\n",
|
| 125 |
+
" fonts.GoogleFont(\"Outfit\"), \"Arial\", \"sans-serif\",\n",
|
| 126 |
+
" ),\n",
|
| 127 |
+
" font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (\n",
|
| 128 |
+
" fonts.GoogleFont(\"IBM Plex Mono\"), \"ui-monospace\", \"monospace\",\n",
|
| 129 |
+
" ),\n",
|
| 130 |
+
" ):\n",
|
| 131 |
+
" super().__init__(\n",
|
| 132 |
+
" primary_hue=primary_hue,\n",
|
| 133 |
+
" secondary_hue=secondary_hue,\n",
|
| 134 |
+
" neutral_hue=neutral_hue,\n",
|
| 135 |
+
" text_size=text_size,\n",
|
| 136 |
+
" font=font,\n",
|
| 137 |
+
" font_mono=font_mono,\n",
|
| 138 |
+
" )\n",
|
| 139 |
+
" super().set(\n",
|
| 140 |
+
" background_fill_primary=\"*primary_50\",\n",
|
| 141 |
+
" background_fill_primary_dark=\"*primary_900\",\n",
|
| 142 |
+
" body_background_fill=\"linear-gradient(135deg, *primary_200, *primary_100)\",\n",
|
| 143 |
+
" body_background_fill_dark=\"linear-gradient(135deg, *primary_900, *primary_800)\",\n",
|
| 144 |
+
" button_primary_text_color=\"white\",\n",
|
| 145 |
+
" button_primary_text_color_hover=\"white\",\n",
|
| 146 |
+
" button_primary_background_fill=\"linear-gradient(90deg, *secondary_500, *secondary_600)\",\n",
|
| 147 |
+
" button_primary_background_fill_hover=\"linear-gradient(90deg, *secondary_600, *secondary_700)\",\n",
|
| 148 |
+
" button_primary_background_fill_dark=\"linear-gradient(90deg, *secondary_600, *secondary_800)\",\n",
|
| 149 |
+
" button_primary_background_fill_hover_dark=\"linear-gradient(90deg, *secondary_500, *secondary_500)\",\n",
|
| 150 |
+
" button_secondary_text_color=\"black\",\n",
|
| 151 |
+
" button_secondary_text_color_hover=\"white\",\n",
|
| 152 |
+
" button_secondary_background_fill=\"linear-gradient(90deg, *primary_300, *primary_300)\",\n",
|
| 153 |
+
" button_secondary_background_fill_hover=\"linear-gradient(90deg, *primary_400, *primary_400)\",\n",
|
| 154 |
+
" button_secondary_background_fill_dark=\"linear-gradient(90deg, *primary_500, *primary_600)\",\n",
|
| 155 |
+
" button_secondary_background_fill_hover_dark=\"linear-gradient(90deg, *primary_500, *primary_500)\",\n",
|
| 156 |
+
" slider_color=\"*secondary_500\",\n",
|
| 157 |
+
" slider_color_dark=\"*secondary_600\",\n",
|
| 158 |
+
" block_title_text_weight=\"600\",\n",
|
| 159 |
+
" block_border_width=\"3px\",\n",
|
| 160 |
+
" block_shadow=\"*shadow_drop_lg\",\n",
|
| 161 |
+
" button_primary_shadow=\"*shadow_drop_lg\",\n",
|
| 162 |
+
" button_large_padding=\"11px\",\n",
|
| 163 |
+
" color_accent_soft=\"*primary_100\",\n",
|
| 164 |
+
" block_label_background_fill=\"*primary_200\",\n",
|
| 165 |
+
" )\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"steel_blue_theme = SteelBlueTheme()\n",
|
| 168 |
+
"\n",
|
| 169 |
+
"css = \"\"\"\n",
|
| 170 |
+
"#main-title h1 {\n",
|
| 171 |
+
" font-size: 2.3em !important;\n",
|
| 172 |
+
"}\n",
|
| 173 |
+
"#output-title h2 {\n",
|
| 174 |
+
" font-size: 2.1em !important;\n",
|
| 175 |
+
"}\n",
|
| 176 |
+
"\"\"\"\n",
|
| 177 |
+
"\n",
|
| 178 |
+
"# --- Model Configuration ---\n",
|
| 179 |
+
"MAX_MAX_NEW_TOKENS = 4096\n",
|
| 180 |
+
"DEFAULT_MAX_NEW_TOKENS = 1024\n",
|
| 181 |
+
"MAX_INPUT_TOKEN_LENGTH = int(os.getenv(\"MAX_INPUT_TOKEN_LENGTH\", \"4096\"))\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"print(\"CUDA_VISIBLE_DEVICES=\", os.environ.get(\"CUDA_VISIBLE_DEVICES\"))\n",
|
| 184 |
+
"print(\"torch.__version__ =\", torch.__version__)\n",
|
| 185 |
+
"print(\"torch.version.cuda =\", torch.version.cuda)\n",
|
| 186 |
+
"print(\"cuda available:\", torch.cuda.is_available())\n",
|
| 187 |
+
"print(\"cuda device count:\", torch.cuda.device_count())\n",
|
| 188 |
+
"if torch.cuda.is_available():\n",
|
| 189 |
+
" print(\"current device:\", torch.cuda.current_device())\n",
|
| 190 |
+
" print(\"device name:\", torch.cuda.get_device_name(torch.cuda.current_device()))\n",
|
| 191 |
+
"\n",
|
| 192 |
+
"# Define 4-bit quantization configuration\n",
|
| 193 |
+
"# This config will load the model in 4-bit to save VRAM.\n",
|
| 194 |
+
"quantization_config = BitsAndBytesConfig(\n",
|
| 195 |
+
" load_in_4bit=True,\n",
|
| 196 |
+
" bnb_4bit_compute_dtype=torch.float16,\n",
|
| 197 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
| 198 |
+
" bnb_4bit_use_double_quant=True,\n",
|
| 199 |
+
")\n",
|
| 200 |
+
"\n",
|
| 201 |
+
"# Load Gliese-OCR-7B-Post2.0 with 4-bit quantization\n",
|
| 202 |
+
"MODEL_ID_X = \"prithivMLmods/Gliese-OCR-7B-Post2.0-final\"\n",
|
| 203 |
+
"print(f\"Loading {MODEL_ID_X}🤗. This will use 4-bit quantization to save VRAM.\")\n",
|
| 204 |
+
"\n",
|
| 205 |
+
"processor = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)\n",
|
| 206 |
+
"model = Qwen2_5_VLForConditionalGeneration.from_pretrained(\n",
|
| 207 |
+
" MODEL_ID_X,\n",
|
| 208 |
+
" trust_remote_code=True,\n",
|
| 209 |
+
" quantization_config=quantization_config,\n",
|
| 210 |
+
" device_map=\"auto\"\n",
|
| 211 |
+
").eval()\n",
|
| 212 |
+
"\n",
|
| 213 |
+
"\n",
|
| 214 |
+
"@spaces.GPU\n",
|
| 215 |
+
"def generate_image(text: str, image: Image.Image,\n",
|
| 216 |
+
" max_new_tokens: int, temperature: float, top_p: float,\n",
|
| 217 |
+
" top_k: int, repetition_penalty: float):\n",
|
| 218 |
+
" \"\"\"\n",
|
| 219 |
+
" Generates responses using the Nanonets model for image input.\n",
|
| 220 |
+
" Yields raw text and Markdown-formatted text.\n",
|
| 221 |
+
" \"\"\"\n",
|
| 222 |
+
" if image is None:\n",
|
| 223 |
+
" yield \"Please upload an image.\", \"Please upload an image.\"\n",
|
| 224 |
+
" return\n",
|
| 225 |
+
"\n",
|
| 226 |
+
" messages = [{\n",
|
| 227 |
+
" \"role\": \"user\",\n",
|
| 228 |
+
" \"content\": [\n",
|
| 229 |
+
" {\"type\": \"image\"},\n",
|
| 230 |
+
" {\"type\": \"text\", \"text\": text},\n",
|
| 231 |
+
" ]\n",
|
| 232 |
+
" }]\n",
|
| 233 |
+
" prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
|
| 234 |
+
"\n",
|
| 235 |
+
" inputs = processor(\n",
|
| 236 |
+
" text=[prompt_full],\n",
|
| 237 |
+
" images=[image],\n",
|
| 238 |
+
" return_tensors=\"pt\",\n",
|
| 239 |
+
" padding=True).to(model.device)\n",
|
| 240 |
+
"\n",
|
| 241 |
+
" streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)\n",
|
| 242 |
+
" generation_kwargs = {\n",
|
| 243 |
+
" **inputs,\n",
|
| 244 |
+
" \"streamer\": streamer,\n",
|
| 245 |
+
" \"max_new_tokens\": max_new_tokens,\n",
|
| 246 |
+
" \"do_sample\": True,\n",
|
| 247 |
+
" \"temperature\": temperature,\n",
|
| 248 |
+
" \"top_p\": top_p,\n",
|
| 249 |
+
" \"top_k\": top_k,\n",
|
| 250 |
+
" \"repetition_penalty\": repetition_penalty,\n",
|
| 251 |
+
" }\n",
|
| 252 |
+
" thread = Thread(target=model.generate, kwargs=generation_kwargs)\n",
|
| 253 |
+
" thread.start()\n",
|
| 254 |
+
" buffer = \"\"\n",
|
| 255 |
+
" for new_text in streamer:\n",
|
| 256 |
+
" buffer += new_text\n",
|
| 257 |
+
" buffer = buffer.replace(\"<|im_end|>\", \"\")\n",
|
| 258 |
+
" time.sleep(0.01)\n",
|
| 259 |
+
" yield buffer, buffer\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"with gr.Blocks(css=css, theme=steel_blue_theme) as demo:\n",
|
| 262 |
+
" gr.Markdown(\"# **Gliese-OCR-7B-Post2.0 (4-bit)**\", elem_id=\"main-title\")\n",
|
| 263 |
+
" with gr.Row():\n",
|
| 264 |
+
" with gr.Column(scale=2):\n",
|
| 265 |
+
" image_query = gr.Textbox(label=\"Query Input\", placeholder=\"Enter your query here...\")\n",
|
| 266 |
+
" image_upload = gr.Image(type=\"pil\", label=\"Upload Image\", height=290)\n",
|
| 267 |
+
"\n",
|
| 268 |
+
" image_submit = gr.Button(\"Submit\", variant=\"primary\")\n",
|
| 269 |
+
"\n",
|
| 270 |
+
" with gr.Accordion(\"Advanced options\", open=False):\n",
|
| 271 |
+
" max_new_tokens = gr.Slider(label=\"Max new tokens\", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)\n",
|
| 272 |
+
" temperature = gr.Slider(label=\"Temperature\", minimum=0.1, maximum=4.0, step=0.1, value=0.7)\n",
|
| 273 |
+
" top_p = gr.Slider(label=\"Top-p (nucleus sampling)\", minimum=0.05, maximum=1.0, step=0.05, value=0.9)\n",
|
| 274 |
+
" top_k = gr.Slider(label=\"Top-k\", minimum=1, maximum=1000, step=1, value=50)\n",
|
| 275 |
+
" repetition_penalty = gr.Slider(label=\"Repetition penalty\", minimum=1.0, maximum=2.0, step=0.05, value=1.1)\n",
|
| 276 |
+
"\n",
|
| 277 |
+
" with gr.Column(scale=3):\n",
|
| 278 |
+
" gr.Markdown(\"## Output\", elem_id=\"output-title\")\n",
|
| 279 |
+
" output = gr.Textbox(label=\"Raw Output Stream\", interactive=False, lines=11, show_copy_button=True)\n",
|
| 280 |
+
" with gr.Accordion(\"(Result.md)\", open=False):\n",
|
| 281 |
+
" markdown_output = gr.Markdown(label=\"(Result.Md)\")\n",
|
| 282 |
+
"\n",
|
| 283 |
+
" image_submit.click(\n",
|
| 284 |
+
" fn=generate_image,\n",
|
| 285 |
+
" inputs=[image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],\n",
|
| 286 |
+
" outputs=[output, markdown_output]\n",
|
| 287 |
+
" )\n",
|
| 288 |
+
"\n",
|
| 289 |
+
"if __name__ == \"__main__\":\n",
|
| 290 |
+
" demo.queue(max_size=50).launch(show_error=True)"
|
| 291 |
+
],
|
| 292 |
+
"metadata": {
|
| 293 |
+
"id": "cbREUHUJGrzT"
|
| 294 |
+
},
|
| 295 |
+
"execution_count": null,
|
| 296 |
+
"outputs": []
|
| 297 |
+
}
|
| 298 |
+
]
|
| 299 |
+
}
|