--- license: apache-2.0 language: - en base_model: - google/siglip2-base-patch16-224 pipeline_tag: image-classification library_name: transformers tags: - traffic - dense - classification --- ![dsfsdef.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/bpucqawIvBlE7i0YCG6ba.png) # **Traffic-Density-Classification** > **Traffic-Density-Classification** is an image classification vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for a single-label classification task. It is designed to classify images into **traffic density** categories using the **SiglipForImageClassification** architecture. ```py Classification Report: precision recall f1-score support high-traffic 0.8647 0.8410 0.8527 585 low-traffic 0.8778 0.9485 0.9118 3803 medium-traffic 0.7785 0.6453 0.7057 1187 no-traffic 0.8730 0.7292 0.7946 528 accuracy 0.8602 6103 macro avg 0.8485 0.7910 0.8162 6103 weighted avg 0.8568 0.8602 0.8559 6103 ``` ![download.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/xatFDNCVZo5jGHW8njTmz.png) The model categorizes images into the following 4 classes: - **Class 0:** "high-traffic" - **Class 1:** "low-traffic" - **Class 2:** "medium-traffic" - **Class 3:** "no-traffic" # **Run with Transformers🤗** ```python !pip install -q transformers torch pillow gradio ``` ```python import gradio as gr from transformers import AutoImageProcessor from transformers import SiglipForImageClassification from transformers.image_utils import load_image from PIL import Image import torch # Load model and processor model_name = "prithivMLmods/Traffic-Density-Classification" model = SiglipForImageClassification.from_pretrained(model_name) processor = AutoImageProcessor.from_pretrained(model_name) def traffic_density_classification(image): """Predicts traffic density category for an image.""" image = Image.fromarray(image).convert("RGB") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() labels = { "0": "high-traffic", "1": "low-traffic", "2": "medium-traffic", "3": "no-traffic" } predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} return predictions # Create Gradio interface iface = gr.Interface( fn=traffic_density_classification, inputs=gr.Image(type="numpy"), outputs=gr.Label(label="Prediction Scores"), title="Traffic Density Classification", description="Upload an image to classify it into one of the 4 traffic density categories." ) # Launch the app if __name__ == "__main__": iface.launch() ``` # **Intended Use:** The **Traffic-Density-Classification** model is designed for traffic image classification. It helps categorize traffic density levels into predefined categories. Potential use cases include: - **Traffic Monitoring:** Classifying images from traffic cameras to assess congestion levels. - **Smart City Applications:** Assisting in traffic flow management and congestion reduction strategies. - **Automated Traffic Analysis:** Helping transportation authorities analyze and optimize road usage. - **AI Research:** Supporting computer vision-based traffic density classification models.