psitama commited on
Commit
0cb46c0
·
1 Parent(s): 572325f

first_commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1339.88 +/- 1647.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19cf78e790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19cf78e820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19cf78e8b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19cf78e940>", "_build": "<function ActorCriticPolicy._build at 0x7f19cf78e9d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f19cf78ea60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19cf78eaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f19cf78eb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19cf78ec10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19cf78eca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19cf78ed30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f19cf790060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 10240, "_total_timesteps": 10000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671181215024930306, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJrQbD7orJo/cKwWPxQlCL/Wp1A+UwrtPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeAyP/ax2bcCUhpRSlIwBbJRLYowBdJRHQDbgW43FUAF1fZQoaAZoCWgPQwg/V1uxv6JkwJSGlFKUaBVLXGgWR0A2/S6UaAFxdX2UKGgGaAloD0MIou9uZYlYWMCUhpRSlGgVS1xoFkdANxsBMi8nNXV9lChoBmgJaA9DCEDa/wBrgnTAlIaUUpRoFUuBaBZHQDdGE8JUo8Z1fZQoaAZoCWgPQwifW+hKBIxiwJSGlFKUaBVLTWgWR0A3XwljVhCudX2UKGgGaAloD0MIWpwxzAlZWcCUhpRSlGgVS0RoFkdAN3eAuqWC3HV9lChoBmgJaA9DCDkpzHvcwXbAlIaUUpRoFUt9aBZHQDeji83++/R1fZQoaAZoCWgPQwh6qG3DqC13wJSGlFKUaBVLcWgWR0A3y1He7+UAdX2UKGgGaAloD0MI3SQGgZXQVsCUhpRSlGgVS21oFkdAN+11KXfIjnV9lChoBmgJaA9DCEonEkw1sFfAlIaUUpRoFUtJaBZHQDgEo2GZeAx1fZQoaAZoCWgPQwgbE2IuqStTwJSGlFKUaBVLQWgWR0A4GPmPo3aSdX2UKGgGaAloD0MI/1vJjo1dccCUhpRSlGgVS2ZoFkdAODkzGgi/wnV9lChoBmgJaA9DCBssnKT5dFfAlIaUUpRoFUtCaBZHQDhOl+EytV91fZQoaAZoCWgPQwgdq5SeabxuwJSGlFKUaBVLQ2gWR0A4ZCq6vq1PdX2UKGgGaAloD0MIqd4a2OpOd8CUhpRSlGgVS2VoFkdAOIX2IwdsBXV9lChoBmgJaA9DCIV6+gi8b3vAlIaUUpRoFUuOaBZHQDi0IomXw9d1fZQoaAZoCWgPQwgAxF29CopwwJSGlFKUaBVLZ2gWR0A41EovzvqkdX2UKGgGaAloD0MIc0f/y7Ucc8CUhpRSlGgVS3BoFkdAOPjBZZB9kXV9lChoBmgJaA9DCF7b2y3JtFrAlIaUUpRoFUtJaBZHQDkPgzguRLd1fZQoaAZoCWgPQwgxKNNo8itwwJSGlFKUaBVLWmgWR0A5KyvcJtzkdX2UKGgGaAloD0MIUOEIUqm0aMCUhpRSlGgVS3hoFkdAOtnR1HOKO3V9lChoBmgJaA9DCLXf2omSlmzAlIaUUpRoFUt5aBZHQDsAuBczImx1fZQoaAZoCWgPQwjKGvUQTbB1wJSGlFKUaBVLWWgWR0A7G6kIomXxdX2UKGgGaAloD0MINLkYA+soX8CUhpRSlGgVS0loFkdAOzJUkv9LpXV9lChoBmgJaA9DCGEXRQ98+lvAlIaUUpRoFUtBaBZHQDtGuieumrN1fZQoaAZoCWgPQwhHyECe3dFmwJSGlFKUaBVLZGgWR0A7aEroW56MdX2UKGgGaAloD0MIRML3/gYCU8CUhpRSlGgVS2VoFkdAO4m4iHIp6XV9lChoBmgJaA9DCCNqos8Hk3LAlIaUUpRoFUuCaBZHQDu1NoJzDGd1fZQoaAZoCWgPQwj4U+OlmxdywJSGlFKUaBVLeGgWR0A73aVlf7aadX2UKGgGaAloD0MIJPCHn3+UfcCUhpRSlGgVS29oFkdAPACDM/yGz3V9lChoBmgJaA9DCBCtFW0O0GrAlIaUUpRoFUtmaBZHQDwf/dZaFEl1fZQoaAZoCWgPQwjUCz7NyRNQwJSGlFKUaBVLRGgWR0A8NTmGM4tIdX2UKGgGaAloD0MI/RUyVwZuW8CUhpRSlGgVS0xoFkdAPE2Rq46OpHV9lChoBmgJaA9DCF01zxF5QWTAlIaUUpRoFUtdaBZHQDxrzOHFglZ1fZQoaAZoCWgPQwim1vuNdnpzwJSGlFKUaBVLi2gWR0A8mz7uUliSdX2UKGgGaAloD0MISUkPQ6vHZsCUhpRSlGgVS1hoFkdAPLdGd7OVxHV9lChoBmgJaA9DCM/abReaOybAlIaUUpRoFUuOaBZHQDzmZKFqSHN1fZQoaAZoCWgPQwh0mC8vwONdwJSGlFKUaBVLQGgWR0A8+p++dsi0dX2UKGgGaAloD0MIZJEm3gHxWMCUhpRSlGgVS0JoFkdAPQ7AUL2HtXV9lChoBmgJaA9DCBam7zWE9XPAlIaUUpRoFUtkaBZHQD0uapgkTpR1fZQoaAZoCWgPQwjPMSB7PQxhwJSGlFKUaBVLamgWR0A9USJj2BatdX2UKGgGaAloD0MIBvLs8q1UU8CUhpRSlGgVS0RoFkdAPvLdnCfpU3V9lChoBmgJaA9DCF/rUiN0uHjAlIaUUpRoFUtfaBZHQD8RCTlkpZx1fZQoaAZoCWgPQwjk2lAxzkJcwJSGlFKUaBVLm2gWR0A/RHYHxBmgdX2UKGgGaAloD0MIRDF5A0zvYsCUhpRSlGgVS0toFkdAP1whStNi6XV9lChoBmgJaA9DCB7BjZQthmDAlIaUUpRoFUthaBZHQD98Kpkwvg51fZQoaAZoCWgPQwjYfjLGh95jwJSGlFKUaBVLf2gWR0A/pqu8scyWdX2UKGgGaAloD0MIb/QxH5CuYMCUhpRSlGgVS3toFkdAP82912aDw3V9lChoBmgJaA9DCNf4TPZPRmbAlIaUUpRoFUt8aBZHQD/1r433pOh1fZQoaAZoCWgPQwjYmxiSk59YwJSGlFKUaBVLTGgWR0BAB+HBUJfIdX2UKGgGaAloD0MIJ/kRv2KtGsCUhpRSlGgVS5FoFkdAQB+0iQkonnV9lChoBmgJaA9DCHmxMEROR0zAlIaUUpRoFUtVaBZHQEAt4iX6ZYx1fZQoaAZoCWgPQwgCoIobt5ttwJSGlFKUaBVLkWgWR0BARg8r7O3VdX2UKGgGaAloD0MIBitOtRYNZMCUhpRSlGgVS0JoFkdAQFDyYoiLVHV9lChoBmgJaA9DCMmTpGsmS1vAlIaUUpRoFUtUaBZHQEBeGt6ol2N1fZQoaAZoCWgPQwh8nj9t1K5gwJSGlFKUaBVLOmgWR0BAZtA1NxlydX2UKGgGaAloD0MIaw2l9qJFZsCUhpRSlGgVS09oFkdAQHMIVuaWonV9lChoBmgJaA9DCE1Ngjek3TDAlIaUUpRoFUtraBZHQECFrKvFFUh1fZQoaAZoCWgPQwjFILByaBJawJSGlFKUaBVLjmgWR0BAnRxDLKV6dX2UKGgGaAloD0MIAwZJn1acW8CUhpRSlGgVS0hoFkdAQKh5X2dupHV9lChoBmgJaA9DCBVxOslWX1vAlIaUUpRoFUtWaBZHQEC2Cjk+5e91fZQoaAZoCWgPQwhTWRR2UbNSwJSGlFKUaBVLPWgWR0BBh5ftx+8XdX2UKGgGaAloD0MI5Nwm3CvfQMCUhpRSlGgVS1poFkdAQZafxtpEhXV9lChoBmgJaA9DCDI4Sl6dF0zAlIaUUpRoFUtiaBZHQEGnFnZkCmx1fZQoaAZoCWgPQwi1UgjkElZRwJSGlFKUaBVLZWgWR0BBt+Jxeb/fdX2UKGgGaAloD0MIOGvwvqoDY8CUhpRSlGgVS1loFkdAQcbrmhdt23V9lChoBmgJaA9DCKNAn8iTRG/AlIaUUpRoFUt5aBZHQEHba+N96Tp1fZQoaAZoCWgPQwi/Khcq/wh6wJSGlFKUaBVLjGgWR0BB8nzg/C66dX2UKGgGaAloD0MI8SvWcJGgZMCUhpRSlGgVS29oFkdAQgQ4MnZ00XV9lChoBmgJaA9DCE30+SgjnlvAlIaUUpRoFUtWaBZHQEIR+vQnhKl1fZQoaAZoCWgPQwiQTfIjfjh+wJSGlFKUaBVLoGgWR0BCLP2Xb/OudX2UKGgGaAloD0MIE5z6QPILaMCUhpRSlGgVS1JoFkdAQjoWJrLyMHV9lChoBmgJaA9DCI4EGmzqIHDAlIaUUpRoFUtpaBZHQEJK0iQkond1fZQoaAZoCWgPQwgurYbEPZBTwJSGlFKUaBVLeWgWR0BCX9Mj/uLKdX2UKGgGaAloD0MI7rWg98ZrZsCUhpRSlGgVS4FoFkdAQnXeDWbw0HV9lChoBmgJaA9DCF/Rrdd0cHjAlIaUUpRoFUt2aBZHQEKJEMLF4s51fZQoaAZoCWgPQwgmcOtuXlxywJSGlFKUaBVLcWgWR0BCm3O4XoC/dX2UKGgGaAloD0MIWfrQBfXHUsCUhpRSlGgVS11oFkdAQqqFh5PdmHV9lChoBmgJaA9DCDIEAMeeeWDAlIaUUpRoFUtSaBZHQEK3XMhX8wZ1fZQoaAZoCWgPQwgYIxKFFgptwJSGlFKUaBVLk2gWR0BC0ch1Tzd2dX2UKGgGaAloD0MIEtkHWRZuZcCUhpRSlGgVS3BoFkdAQ6f5SFXaJ3V9lChoBmgJaA9DCI0OSMK+kFjAlIaUUpRoFUtXaBZHQEO2/qxC6Yp1fZQoaAZoCWgPQwiSO2wis/RnwJSGlFKUaBVLRWgWR0BDwjdP+GXYdX2UKGgGaAloD0MIk/3zNGBLYMCUhpRSlGgVS2FoFkdAQ9GsDGLk0nV9lChoBmgJaA9DCI84ZANpCHjAlIaUUpRoFUt8aBZHQEPoY51eSjh1fZQoaAZoCWgPQwhqNLkYgxNjwJSGlFKUaBVLkGgWR0BD/7btZ3cIdX2UKGgGaAloD0MIRtEDH4OgU8CUhpRSlGgVS5hoFkdARBmfqX4TK3V9lChoBmgJaA9DCF4sDJHTjF7AlIaUUpRoFUtUaBZHQEQnd2Pkq+d1fZQoaAZoCWgPQwjVPEfku7VWwJSGlFKUaBVLZWgWR0BEOMabWmP6dX2UKGgGaAloD0MIatrFNNMJPMCUhpRSlGgVS6BoFkdARFN4u9OARXV9lChoBmgJaA9DCNegL739f1zAlIaUUpRoFUtQaBZHQERhAN5MURF1fZQoaAZoCWgPQwicGJKTiRZSwJSGlFKUaBVLbWgWR0BEcnAh0QsgdX2UKGgGaAloD0MIPnlYqDXDUsCUhpRSlGgVS0VoFkdARH5CngpBonV9lChoBmgJaA9DCE59IHnn2lbAlIaUUpRoFUtLaBZHQESJ8Q7LdN51fZQoaAZoCWgPQwih1jTvOMpawJSGlFKUaBVLXmgWR0BEmTiCJ40NdX2UKGgGaAloD0MIxca8jjgsU8CUhpRSlGgVS1RoFkdARKaWqtHQQnV9lChoBmgJaA9DCHYaaam8h0nAlIaUUpRoFUtWaBZHQES0AQQL/jt1fZQoaAZoCWgPQwh2wHXFjExnwJSGlFKUaBVLj2gWR0BEzEt29tdidX2UKGgGaAloD0MIV9C0xEqCYcCUhpRSlGgVS11oFkdARNsv24/eL3V9lChoBmgJaA9DCDxO0ZFcAkrAlIaUUpRoFUtbaBZHQETqpgCwKSh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo_LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84d51cedebb2010bace2ab0b6b5ce23a676915372b3f49293511c533fbf84ecf
3
+ size 146420
ppo_LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f19cf78e790>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f19cf78e820>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f19cf78e8b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f19cf78e940>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f19cf78e9d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f19cf78ea60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f19cf78eaf0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f19cf78eb80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f19cf78ec10>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f19cf78eca0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f19cf78ed30>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f19cf790060>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 10240,
46
+ "_total_timesteps": 10000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671181215024930306,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJrQbD7orJo/cKwWPxQlCL/Wp1A+UwrtPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.02400000000000002,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeAyP/ax2bcCUhpRSlIwBbJRLYowBdJRHQDbgW43FUAF1fZQoaAZoCWgPQwg/V1uxv6JkwJSGlFKUaBVLXGgWR0A2/S6UaAFxdX2UKGgGaAloD0MIou9uZYlYWMCUhpRSlGgVS1xoFkdANxsBMi8nNXV9lChoBmgJaA9DCEDa/wBrgnTAlIaUUpRoFUuBaBZHQDdGE8JUo8Z1fZQoaAZoCWgPQwifW+hKBIxiwJSGlFKUaBVLTWgWR0A3XwljVhCudX2UKGgGaAloD0MIWpwxzAlZWcCUhpRSlGgVS0RoFkdAN3eAuqWC3HV9lChoBmgJaA9DCDkpzHvcwXbAlIaUUpRoFUt9aBZHQDeji83++/R1fZQoaAZoCWgPQwh6qG3DqC13wJSGlFKUaBVLcWgWR0A3y1He7+UAdX2UKGgGaAloD0MI3SQGgZXQVsCUhpRSlGgVS21oFkdAN+11KXfIjnV9lChoBmgJaA9DCEonEkw1sFfAlIaUUpRoFUtJaBZHQDgEo2GZeAx1fZQoaAZoCWgPQwgbE2IuqStTwJSGlFKUaBVLQWgWR0A4GPmPo3aSdX2UKGgGaAloD0MI/1vJjo1dccCUhpRSlGgVS2ZoFkdAODkzGgi/wnV9lChoBmgJaA9DCBssnKT5dFfAlIaUUpRoFUtCaBZHQDhOl+EytV91fZQoaAZoCWgPQwgdq5SeabxuwJSGlFKUaBVLQ2gWR0A4ZCq6vq1PdX2UKGgGaAloD0MIqd4a2OpOd8CUhpRSlGgVS2VoFkdAOIX2IwdsBXV9lChoBmgJaA9DCIV6+gi8b3vAlIaUUpRoFUuOaBZHQDi0IomXw9d1fZQoaAZoCWgPQwgAxF29CopwwJSGlFKUaBVLZ2gWR0A41EovzvqkdX2UKGgGaAloD0MIc0f/y7Ucc8CUhpRSlGgVS3BoFkdAOPjBZZB9kXV9lChoBmgJaA9DCF7b2y3JtFrAlIaUUpRoFUtJaBZHQDkPgzguRLd1fZQoaAZoCWgPQwgxKNNo8itwwJSGlFKUaBVLWmgWR0A5KyvcJtzkdX2UKGgGaAloD0MIUOEIUqm0aMCUhpRSlGgVS3hoFkdAOtnR1HOKO3V9lChoBmgJaA9DCLXf2omSlmzAlIaUUpRoFUt5aBZHQDsAuBczImx1fZQoaAZoCWgPQwjKGvUQTbB1wJSGlFKUaBVLWWgWR0A7G6kIomXxdX2UKGgGaAloD0MINLkYA+soX8CUhpRSlGgVS0loFkdAOzJUkv9LpXV9lChoBmgJaA9DCGEXRQ98+lvAlIaUUpRoFUtBaBZHQDtGuieumrN1fZQoaAZoCWgPQwhHyECe3dFmwJSGlFKUaBVLZGgWR0A7aEroW56MdX2UKGgGaAloD0MIRML3/gYCU8CUhpRSlGgVS2VoFkdAO4m4iHIp6XV9lChoBmgJaA9DCCNqos8Hk3LAlIaUUpRoFUuCaBZHQDu1NoJzDGd1fZQoaAZoCWgPQwj4U+OlmxdywJSGlFKUaBVLeGgWR0A73aVlf7aadX2UKGgGaAloD0MIJPCHn3+UfcCUhpRSlGgVS29oFkdAPACDM/yGz3V9lChoBmgJaA9DCBCtFW0O0GrAlIaUUpRoFUtmaBZHQDwf/dZaFEl1fZQoaAZoCWgPQwjUCz7NyRNQwJSGlFKUaBVLRGgWR0A8NTmGM4tIdX2UKGgGaAloD0MI/RUyVwZuW8CUhpRSlGgVS0xoFkdAPE2Rq46OpHV9lChoBmgJaA9DCF01zxF5QWTAlIaUUpRoFUtdaBZHQDxrzOHFglZ1fZQoaAZoCWgPQwim1vuNdnpzwJSGlFKUaBVLi2gWR0A8mz7uUliSdX2UKGgGaAloD0MISUkPQ6vHZsCUhpRSlGgVS1hoFkdAPLdGd7OVxHV9lChoBmgJaA9DCM/abReaOybAlIaUUpRoFUuOaBZHQDzmZKFqSHN1fZQoaAZoCWgPQwh0mC8vwONdwJSGlFKUaBVLQGgWR0A8+p++dsi0dX2UKGgGaAloD0MIZJEm3gHxWMCUhpRSlGgVS0JoFkdAPQ7AUL2HtXV9lChoBmgJaA9DCBam7zWE9XPAlIaUUpRoFUtkaBZHQD0uapgkTpR1fZQoaAZoCWgPQwjPMSB7PQxhwJSGlFKUaBVLamgWR0A9USJj2BatdX2UKGgGaAloD0MIBvLs8q1UU8CUhpRSlGgVS0RoFkdAPvLdnCfpU3V9lChoBmgJaA9DCF/rUiN0uHjAlIaUUpRoFUtfaBZHQD8RCTlkpZx1fZQoaAZoCWgPQwjk2lAxzkJcwJSGlFKUaBVLm2gWR0A/RHYHxBmgdX2UKGgGaAloD0MIRDF5A0zvYsCUhpRSlGgVS0toFkdAP1whStNi6XV9lChoBmgJaA9DCB7BjZQthmDAlIaUUpRoFUthaBZHQD98Kpkwvg51fZQoaAZoCWgPQwjYfjLGh95jwJSGlFKUaBVLf2gWR0A/pqu8scyWdX2UKGgGaAloD0MIb/QxH5CuYMCUhpRSlGgVS3toFkdAP82912aDw3V9lChoBmgJaA9DCNf4TPZPRmbAlIaUUpRoFUt8aBZHQD/1r433pOh1fZQoaAZoCWgPQwjYmxiSk59YwJSGlFKUaBVLTGgWR0BAB+HBUJfIdX2UKGgGaAloD0MIJ/kRv2KtGsCUhpRSlGgVS5FoFkdAQB+0iQkonnV9lChoBmgJaA9DCHmxMEROR0zAlIaUUpRoFUtVaBZHQEAt4iX6ZYx1fZQoaAZoCWgPQwgCoIobt5ttwJSGlFKUaBVLkWgWR0BARg8r7O3VdX2UKGgGaAloD0MIBitOtRYNZMCUhpRSlGgVS0JoFkdAQFDyYoiLVHV9lChoBmgJaA9DCMmTpGsmS1vAlIaUUpRoFUtUaBZHQEBeGt6ol2N1fZQoaAZoCWgPQwh8nj9t1K5gwJSGlFKUaBVLOmgWR0BAZtA1NxlydX2UKGgGaAloD0MIaw2l9qJFZsCUhpRSlGgVS09oFkdAQHMIVuaWonV9lChoBmgJaA9DCE1Ngjek3TDAlIaUUpRoFUtraBZHQECFrKvFFUh1fZQoaAZoCWgPQwjFILByaBJawJSGlFKUaBVLjmgWR0BAnRxDLKV6dX2UKGgGaAloD0MIAwZJn1acW8CUhpRSlGgVS0hoFkdAQKh5X2dupHV9lChoBmgJaA9DCBVxOslWX1vAlIaUUpRoFUtWaBZHQEC2Cjk+5e91fZQoaAZoCWgPQwhTWRR2UbNSwJSGlFKUaBVLPWgWR0BBh5ftx+8XdX2UKGgGaAloD0MI5Nwm3CvfQMCUhpRSlGgVS1poFkdAQZafxtpEhXV9lChoBmgJaA9DCDI4Sl6dF0zAlIaUUpRoFUtiaBZHQEGnFnZkCmx1fZQoaAZoCWgPQwi1UgjkElZRwJSGlFKUaBVLZWgWR0BBt+Jxeb/fdX2UKGgGaAloD0MIOGvwvqoDY8CUhpRSlGgVS1loFkdAQcbrmhdt23V9lChoBmgJaA9DCKNAn8iTRG/AlIaUUpRoFUt5aBZHQEHba+N96Tp1fZQoaAZoCWgPQwi/Khcq/wh6wJSGlFKUaBVLjGgWR0BB8nzg/C66dX2UKGgGaAloD0MI8SvWcJGgZMCUhpRSlGgVS29oFkdAQgQ4MnZ00XV9lChoBmgJaA9DCE30+SgjnlvAlIaUUpRoFUtWaBZHQEIR+vQnhKl1fZQoaAZoCWgPQwiQTfIjfjh+wJSGlFKUaBVLoGgWR0BCLP2Xb/OudX2UKGgGaAloD0MIE5z6QPILaMCUhpRSlGgVS1JoFkdAQjoWJrLyMHV9lChoBmgJaA9DCI4EGmzqIHDAlIaUUpRoFUtpaBZHQEJK0iQkond1fZQoaAZoCWgPQwgurYbEPZBTwJSGlFKUaBVLeWgWR0BCX9Mj/uLKdX2UKGgGaAloD0MI7rWg98ZrZsCUhpRSlGgVS4FoFkdAQnXeDWbw0HV9lChoBmgJaA9DCF/Rrdd0cHjAlIaUUpRoFUt2aBZHQEKJEMLF4s51fZQoaAZoCWgPQwgmcOtuXlxywJSGlFKUaBVLcWgWR0BCm3O4XoC/dX2UKGgGaAloD0MIWfrQBfXHUsCUhpRSlGgVS11oFkdAQqqFh5PdmHV9lChoBmgJaA9DCDIEAMeeeWDAlIaUUpRoFUtSaBZHQEK3XMhX8wZ1fZQoaAZoCWgPQwgYIxKFFgptwJSGlFKUaBVLk2gWR0BC0ch1Tzd2dX2UKGgGaAloD0MIEtkHWRZuZcCUhpRSlGgVS3BoFkdAQ6f5SFXaJ3V9lChoBmgJaA9DCI0OSMK+kFjAlIaUUpRoFUtXaBZHQEO2/qxC6Yp1fZQoaAZoCWgPQwiSO2wis/RnwJSGlFKUaBVLRWgWR0BDwjdP+GXYdX2UKGgGaAloD0MIk/3zNGBLYMCUhpRSlGgVS2FoFkdAQ9GsDGLk0nV9lChoBmgJaA9DCI84ZANpCHjAlIaUUpRoFUt8aBZHQEPoY51eSjh1fZQoaAZoCWgPQwhqNLkYgxNjwJSGlFKUaBVLkGgWR0BD/7btZ3cIdX2UKGgGaAloD0MIRtEDH4OgU8CUhpRSlGgVS5hoFkdARBmfqX4TK3V9lChoBmgJaA9DCF4sDJHTjF7AlIaUUpRoFUtUaBZHQEQnd2Pkq+d1fZQoaAZoCWgPQwjVPEfku7VWwJSGlFKUaBVLZWgWR0BEOMabWmP6dX2UKGgGaAloD0MIatrFNNMJPMCUhpRSlGgVS6BoFkdARFN4u9OARXV9lChoBmgJaA9DCNegL739f1zAlIaUUpRoFUtQaBZHQERhAN5MURF1fZQoaAZoCWgPQwicGJKTiRZSwJSGlFKUaBVLbWgWR0BEcnAh0QsgdX2UKGgGaAloD0MIPnlYqDXDUsCUhpRSlGgVS0VoFkdARH5CngpBonV9lChoBmgJaA9DCE59IHnn2lbAlIaUUpRoFUtLaBZHQESJ8Q7LdN51fZQoaAZoCWgPQwih1jTvOMpawJSGlFKUaBVLXmgWR0BEmTiCJ40NdX2UKGgGaAloD0MIxca8jjgsU8CUhpRSlGgVS1RoFkdARKaWqtHQQnV9lChoBmgJaA9DCHYaaam8h0nAlIaUUpRoFUtWaBZHQES0AQQL/jt1fZQoaAZoCWgPQwh2wHXFjExnwJSGlFKUaBVLj2gWR0BEzEt29tdidX2UKGgGaAloD0MIV9C0xEqCYcCUhpRSlGgVS11oFkdARNsv24/eL3V9lChoBmgJaA9DCDxO0ZFcAkrAlIaUUpRoFUtbaBZHQETqpgCwKSh1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 50,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d97edfce5d114eef07a44bb6b17adc40f629970cd0ef4b91ca22fceb9b432c27
3
+ size 87929
ppo_LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb9435381d51185325fbaea251035638733283ae25ca560517e66293fc2e9863
3
+ size 43201
ppo_LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (127 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1339.8777635268402, "std_reward": 1647.8182759184251, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-16T09:01:58.162077"}