Commit
·
4fff0fb
1
Parent(s):
9a6c586
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (#9)
Browse files- Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator (65e5f44f8f255ad97728729e93c6863ed1fde416)
Co-authored-by: Evaluation Bot <[email protected]>
README.md
CHANGED
|
@@ -1,4 +1,7 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
- summarization
|
| 4 |
- led
|
|
@@ -7,9 +10,6 @@ tags:
|
|
| 7 |
- booksum
|
| 8 |
- long-document
|
| 9 |
- long-form
|
| 10 |
-
license:
|
| 11 |
-
- apache-2.0
|
| 12 |
-
- bsd-3-clause
|
| 13 |
datasets:
|
| 14 |
- kmfoda/booksum
|
| 15 |
metrics:
|
|
@@ -28,39 +28,38 @@ widget:
|
|
| 28 |
deviation of the average recurrence interval, the more specific could be the long
|
| 29 |
term prediction of a future mainshock.
|
| 30 |
example_title: earthquakes
|
| 31 |
-
- text:
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
\ this function space (Section 5)."
|
| 64 |
example_title: scientific paper
|
| 65 |
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
| 66 |
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
|
@@ -105,50 +104,62 @@ widget:
|
|
| 105 |
in their business An important area of data analytics on the edge of corporate
|
| 106 |
IT and the Internet is Web Analytics.'
|
| 107 |
example_title: data science textbook
|
| 108 |
-
- text:
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
example_title: bigbird blog intro
|
| 153 |
- text: 'The majority of available text summarization datasets include short-form
|
| 154 |
source documents that lack long-range causal and temporal dependencies, and often
|
|
@@ -186,30 +197,36 @@ model-index:
|
|
| 186 |
config: kmfoda--booksum
|
| 187 |
split: test
|
| 188 |
metrics:
|
| 189 |
-
-
|
| 190 |
-
type: rouge
|
| 191 |
value: 33.4536
|
|
|
|
| 192 |
verified: true
|
| 193 |
-
|
| 194 |
-
|
| 195 |
value: 5.2232
|
|
|
|
| 196 |
verified: true
|
| 197 |
-
|
| 198 |
-
|
| 199 |
value: 16.2044
|
|
|
|
| 200 |
verified: true
|
| 201 |
-
|
| 202 |
-
|
| 203 |
value: 29.9765
|
|
|
|
| 204 |
verified: true
|
| 205 |
-
|
| 206 |
-
|
| 207 |
value: 3.1985862255096436
|
|
|
|
| 208 |
verified: true
|
| 209 |
-
|
| 210 |
-
|
| 211 |
value: 191.9783
|
|
|
|
| 212 |
verified: true
|
|
|
|
| 213 |
- task:
|
| 214 |
type: summarization
|
| 215 |
name: Summarization
|
|
@@ -219,30 +236,36 @@ model-index:
|
|
| 219 |
config: samsum
|
| 220 |
split: test
|
| 221 |
metrics:
|
| 222 |
-
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
verified: true
|
| 226 |
-
|
| 227 |
-
|
| 228 |
value: 10.0781
|
|
|
|
| 229 |
verified: true
|
| 230 |
-
|
| 231 |
-
|
| 232 |
value: 23.6331
|
|
|
|
| 233 |
verified: true
|
| 234 |
-
|
| 235 |
-
|
| 236 |
value: 28.7831
|
|
|
|
| 237 |
verified: true
|
| 238 |
-
|
| 239 |
-
|
| 240 |
value: 2.903024673461914
|
|
|
|
| 241 |
verified: true
|
| 242 |
-
|
| 243 |
-
|
| 244 |
value: 60.7411
|
|
|
|
| 245 |
verified: true
|
|
|
|
| 246 |
- task:
|
| 247 |
type: summarization
|
| 248 |
name: Summarization
|
|
@@ -252,30 +275,36 @@ model-index:
|
|
| 252 |
config: 3.0.0
|
| 253 |
split: test
|
| 254 |
metrics:
|
| 255 |
-
-
|
| 256 |
-
type: rouge
|
| 257 |
value: 30.5046
|
|
|
|
| 258 |
verified: true
|
| 259 |
-
|
| 260 |
-
|
| 261 |
value: 13.2577
|
|
|
|
| 262 |
verified: true
|
| 263 |
-
|
| 264 |
-
|
| 265 |
value: 19.0306
|
|
|
|
| 266 |
verified: true
|
| 267 |
-
|
| 268 |
-
|
| 269 |
value: 28.3421
|
|
|
|
| 270 |
verified: true
|
| 271 |
-
|
| 272 |
-
|
| 273 |
value: 3.9484164714813232
|
|
|
|
| 274 |
verified: true
|
| 275 |
-
|
| 276 |
-
|
| 277 |
value: 231.0762
|
|
|
|
| 278 |
verified: true
|
|
|
|
| 279 |
- task:
|
| 280 |
type: summarization
|
| 281 |
name: Summarization
|
|
@@ -285,30 +314,36 @@ model-index:
|
|
| 285 |
config: default
|
| 286 |
split: test
|
| 287 |
metrics:
|
| 288 |
-
-
|
| 289 |
-
type: rouge
|
| 290 |
value: 36.8502
|
|
|
|
| 291 |
verified: true
|
| 292 |
-
|
| 293 |
-
|
| 294 |
value: 15.9147
|
|
|
|
| 295 |
verified: true
|
| 296 |
-
|
| 297 |
-
|
| 298 |
value: 23.4762
|
|
|
|
| 299 |
verified: true
|
| 300 |
-
|
| 301 |
-
|
| 302 |
value: 30.9597
|
|
|
|
| 303 |
verified: true
|
| 304 |
-
|
| 305 |
-
|
| 306 |
value: 3.878790855407715
|
|
|
|
| 307 |
verified: true
|
| 308 |
-
|
| 309 |
-
|
| 310 |
value: 131.3622
|
|
|
|
| 311 |
verified: true
|
|
|
|
| 312 |
- task:
|
| 313 |
type: summarization
|
| 314 |
name: Summarization
|
|
@@ -318,30 +353,36 @@ model-index:
|
|
| 318 |
config: y
|
| 319 |
split: test
|
| 320 |
metrics:
|
| 321 |
-
-
|
| 322 |
-
type: rouge
|
| 323 |
value: 33.7585
|
|
|
|
| 324 |
verified: true
|
| 325 |
-
|
| 326 |
-
|
| 327 |
value: 9.4101
|
|
|
|
| 328 |
verified: true
|
| 329 |
-
|
| 330 |
-
|
| 331 |
value: 18.8927
|
|
|
|
| 332 |
verified: true
|
| 333 |
-
|
| 334 |
-
|
| 335 |
value: 28.5051
|
|
|
|
| 336 |
verified: true
|
| 337 |
-
|
| 338 |
-
|
| 339 |
value: 5.162865161895752
|
|
|
|
| 340 |
verified: true
|
| 341 |
-
|
| 342 |
-
|
| 343 |
value: 222.6626
|
|
|
|
| 344 |
verified: true
|
|
|
|
| 345 |
- task:
|
| 346 |
type: summarization
|
| 347 |
name: Summarization
|
|
@@ -351,30 +392,36 @@ model-index:
|
|
| 351 |
config: default
|
| 352 |
split: test
|
| 353 |
metrics:
|
| 354 |
-
-
|
| 355 |
-
type: rouge
|
| 356 |
value: 38.7332
|
|
|
|
| 357 |
verified: true
|
| 358 |
-
|
| 359 |
-
|
| 360 |
value: 11.0072
|
|
|
|
| 361 |
verified: true
|
| 362 |
-
|
| 363 |
-
|
| 364 |
value: 18.6018
|
|
|
|
| 365 |
verified: true
|
| 366 |
-
|
| 367 |
-
|
| 368 |
value: 34.5911
|
|
|
|
| 369 |
verified: true
|
| 370 |
-
|
| 371 |
-
|
| 372 |
value: 3.5744354724884033
|
|
|
|
| 373 |
verified: true
|
| 374 |
-
|
| 375 |
-
|
| 376 |
value: 192.0014
|
|
|
|
| 377 |
verified: true
|
|
|
|
| 378 |
---
|
| 379 |
|
| 380 |
# Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization
|
|
|
|
| 1 |
---
|
| 2 |
+
license:
|
| 3 |
+
- apache-2.0
|
| 4 |
+
- bsd-3-clause
|
| 5 |
tags:
|
| 6 |
- summarization
|
| 7 |
- led
|
|
|
|
| 10 |
- booksum
|
| 11 |
- long-document
|
| 12 |
- long-form
|
|
|
|
|
|
|
|
|
|
| 13 |
datasets:
|
| 14 |
- kmfoda/booksum
|
| 15 |
metrics:
|
|
|
|
| 28 |
deviation of the average recurrence interval, the more specific could be the long
|
| 29 |
term prediction of a future mainshock.
|
| 30 |
example_title: earthquakes
|
| 31 |
+
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates
|
| 32 |
+
are fed into a neural network that predicts values in the reconstructed domain.
|
| 33 |
+
Then, this domain is mapped to the sensor domain where sensor measurements are
|
| 34 |
+
available as supervision. Class and Section Problems Addressed Generalization
|
| 35 |
+
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid
|
| 36 |
+
Representations (Section 3) Computation & memory efficiency, representation capacity,
|
| 37 |
+
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section
|
| 38 |
+
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section
|
| 39 |
+
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques
|
| 40 |
+
in the neural field toolbox each addresses problems that arise in learning, inference,
|
| 41 |
+
and control. (Section 3). We can supervise reconstruction via differentiable forward
|
| 42 |
+
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images;
|
| 43 |
+
Section 4) With appropriate network architecture choices, we can overcome neural
|
| 44 |
+
network spectral biases (blurriness) and efficiently compute derivatives and integrals
|
| 45 |
+
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations,
|
| 46 |
+
and to achieve editable representations (Section 6). Collectively, these classes
|
| 47 |
+
constitute a ''toolbox'' of techniques to help solve problems with neural fields
|
| 48 |
+
There are three components in a conditional neural field: (1) An encoder or inference
|
| 49 |
+
function € that outputs the conditioning latent variable 2 given an observation
|
| 50 |
+
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS
|
| 51 |
+
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field
|
| 52 |
+
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the
|
| 53 |
+
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes
|
| 54 |
+
the inverse conditional probability to find the most probable 0 given Z: arg-
|
| 55 |
+
max P(Olz). We discuss different encoding schemes with different optimality guarantees
|
| 56 |
+
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different
|
| 57 |
+
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate
|
| 58 |
+
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable
|
| 59 |
+
prior over the sur- face in its reconstruction domain to generalize to the partial
|
| 60 |
+
observations. A neural network expresses a prior via the function space of its
|
| 61 |
+
architecture and parameters 0, and generalization is influenced by the inductive
|
| 62 |
+
bias of this function space (Section 5).'
|
|
|
|
| 63 |
example_title: scientific paper
|
| 64 |
- text: ' the big variety of data coming from diverse sources is one of the key properties
|
| 65 |
of the big data phenomenon. It is, therefore, beneficial to understand how data
|
|
|
|
| 104 |
in their business An important area of data analytics on the edge of corporate
|
| 105 |
IT and the Internet is Web Analytics.'
|
| 106 |
example_title: data science textbook
|
| 107 |
+
- text: 'Transformer-based models have shown to be very useful for many NLP tasks.
|
| 108 |
+
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time
|
| 109 |
+
& memory complexity (where nn is sequence length). Hence, it''s computationally
|
| 110 |
+
very expensive to apply transformer-based models on long sequences n > 512n>512.
|
| 111 |
+
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention
|
| 112 |
+
try to remedy this problem by approximating the full attention matrix. You can
|
| 113 |
+
checkout 🤗''s recent blog post in case you are unfamiliar with these models.
|
| 114 |
+
|
| 115 |
+
BigBird (introduced in paper) is one of such recent models to address this issue.
|
| 116 |
+
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s
|
| 117 |
+
attention) and can handle sequences up to a length of 4096 at a much lower computational
|
| 118 |
+
cost compared to BERT. It has achieved SOTA on various tasks involving very long
|
| 119 |
+
sequences such as long documents summarization, question-answering with long contexts.
|
| 120 |
+
|
| 121 |
+
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this
|
| 122 |
+
post is to give the reader an in-depth understanding of big bird implementation
|
| 123 |
+
& ease one''s life in using BigBird with 🤗Transformers. But, before going into
|
| 124 |
+
more depth, it is important to remember that the BigBird''s attention is an approximation
|
| 125 |
+
of BERT''s full attention and therefore does not strive to be better than BERT''s
|
| 126 |
+
full attention, but rather to be more efficient. It simply allows to apply transformer-based
|
| 127 |
+
models to much longer sequences since BERT''s quadratic memory requirement quickly
|
| 128 |
+
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention
|
| 129 |
+
would be preferred over block sparse attention (which we are going to discuss
|
| 130 |
+
in this post).
|
| 131 |
+
|
| 132 |
+
If you wonder why we need more compute when working with longer sequences, this
|
| 133 |
+
blog post is just right for you!
|
| 134 |
+
|
| 135 |
+
Some of the main questions one might have when working with standard BERT-like
|
| 136 |
+
attention include:
|
| 137 |
+
|
| 138 |
+
Do all tokens really have to attend to all other tokens? Why not compute attention
|
| 139 |
+
only over important tokens? How to decide what tokens are important? How to attend
|
| 140 |
+
to just a few tokens in a very efficient way? In this blog post, we will try to
|
| 141 |
+
answer those questions.
|
| 142 |
+
|
| 143 |
+
What tokens should be attended to? We will give a practical example of how attention
|
| 144 |
+
works by considering the sentence ''BigBird is now available in HuggingFace for
|
| 145 |
+
extractive question answering''. In BERT-like attention, every word would simply
|
| 146 |
+
attend to all other tokens.
|
| 147 |
+
|
| 148 |
+
Let''s think about a sensible choice of key tokens that a queried token actually
|
| 149 |
+
only should attend to by writing some pseudo-code. Will will assume that the token
|
| 150 |
+
available is queried and build a sensible list of key tokens to attend to.
|
| 151 |
+
|
| 152 |
+
>>> # let''s consider following sentence as an example >>> example = [''BigBird'',
|
| 153 |
+
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'',
|
| 154 |
+
''question'', ''answering'']
|
| 155 |
+
|
| 156 |
+
>>> # further let''s assume, we''re trying to understand the representation of
|
| 157 |
+
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an
|
| 158 |
+
empty `set` and fill up the tokens of our interest as we proceed in this section.
|
| 159 |
+
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything
|
| 160 |
+
to attend Nearby tokens should be important because, in a sentence (sequence of
|
| 161 |
+
words), the current word is highly dependent on neighboring past & future tokens.
|
| 162 |
+
This intuition is the idea behind the concept of sliding attention.'
|
| 163 |
example_title: bigbird blog intro
|
| 164 |
- text: 'The majority of available text summarization datasets include short-form
|
| 165 |
source documents that lack long-range causal and temporal dependencies, and often
|
|
|
|
| 197 |
config: kmfoda--booksum
|
| 198 |
split: test
|
| 199 |
metrics:
|
| 200 |
+
- type: rouge
|
|
|
|
| 201 |
value: 33.4536
|
| 202 |
+
name: ROUGE-1
|
| 203 |
verified: true
|
| 204 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmEzYjNkZTUxZjA0YTdmNTJkMjVkMTg2NDRjNTkzN2ZlNDlhNTBhMWQ5MTNiYWE4Mzg5YTMyMTM5YmZjNDI3OSIsInZlcnNpb24iOjF9.OWjM_HCQLQHK4AV4em70QGT3lrVk25WyZdcXA8ywest_XSx9KehJbsIMDKtXxOOMwxvkogKnScy4tbskYMQqDg
|
| 205 |
+
- type: rouge
|
| 206 |
value: 5.2232
|
| 207 |
+
name: ROUGE-2
|
| 208 |
verified: true
|
| 209 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTVhOTdjZjc5YTdhMmVjZGE1NTA5MmJkYmM3Y2U3OGVlMjZmOGVlMTUzYTdiZGRhM2NmZjAzMjFkZjlkMzJmOCIsInZlcnNpb24iOjF9.qOlwWEe8dfBunmwImhbkcxzUW3ml-ESsuxjWN1fjn_o36zaUlDqlrXovMcL9GX9mVdvZDhx9W82rAR8h6410AQ
|
| 210 |
+
- type: rouge
|
| 211 |
value: 16.2044
|
| 212 |
+
name: ROUGE-L
|
| 213 |
verified: true
|
| 214 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzkwOTEwYjkxYzlhMWE4ZjhlZDVjZWEwMWY2YzgwY2Q2YzJkYWFhMTQ4ODFlZmVkY2I1OWVhMTFmZThlOGY4NCIsInZlcnNpb24iOjF9.fJSr9wRQ07YIPMpb2_xv14EkHRz3gsPdZH-4LzpdviLOjVhlK1Y4gSZjp3PTEbu4Hua0umvNTMrhii8hp3DFBA
|
| 215 |
+
- type: rouge
|
| 216 |
value: 29.9765
|
| 217 |
+
name: ROUGE-LSUM
|
| 218 |
verified: true
|
| 219 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWRkYjcwMTYwODRjN2E4MDliZWQyNjczNDU1NGZkMDRkNDlhNDA1YzZiOTk1MWJjZDkyMDg3MGMxYmVhOTA5MyIsInZlcnNpb24iOjF9.tUkVmhT0bl9eY_BzAzdzEI1lo3Iyfv6HBrrsVsRHqPFh4C0Q9Zk3IXbR-F_gMDx9vDiZIkpfG7SfsIZXwhDkBw
|
| 220 |
+
- type: loss
|
| 221 |
value: 3.1985862255096436
|
| 222 |
+
name: loss
|
| 223 |
verified: true
|
| 224 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2RmYzQ1NTFiYjk3YTZjMTI3NDJlMDY0MTgyZDZlZDRmZDcwOWE1YjU0OGYyZTJlY2RkZTEzZDFlNDk2ZjgyNSIsInZlcnNpb24iOjF9.Pc5Tfu8IXYeB5ETK2JMIL4gpRIvvYXVS6w1AZdfq9dD1dm9Te2xaNhzGBHviqgEfFI9APNSJB28wna1OpYP0Dg
|
| 225 |
+
- type: gen_len
|
| 226 |
value: 191.9783
|
| 227 |
+
name: gen_len
|
| 228 |
verified: true
|
| 229 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmMyMDI5MzFlNzNjODNmOWQ0ZTM3MzVkNTNkYzIxNTIwZDQzMTU2MTM0YjYzNjJiMGRhOTQ0OWFhN2U4N2NjYyIsInZlcnNpb24iOjF9.AfsX-O1YwfbPxUwAD7rd1Ub7SXth7FFpTo2iNSOUWFhYmDUECkf6qtJ5pVHXXZwnpidAlfPTPg-5y3dx_BBGCA
|
| 230 |
- task:
|
| 231 |
type: summarization
|
| 232 |
name: Summarization
|
|
|
|
| 236 |
config: samsum
|
| 237 |
split: test
|
| 238 |
metrics:
|
| 239 |
+
- type: rouge
|
| 240 |
+
value: 32
|
| 241 |
+
name: ROUGE-1
|
| 242 |
verified: true
|
| 243 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmNhZjk3NjFlZDBhZjU2YzgzOTdhZTNkZjBkYjNjZDk2YjE2NDBmMDhiY2Y5M2EwNGI5Njk1NWU3ZDYyMzk2ZSIsInZlcnNpb24iOjF9.htkMQQLjIeFFjnpAJOwwxAdgzGZX10Und6RONubeeydXqQqb562EHqAw0K1ZlqltC4GBGKK3xslGOWXQ5AV6CA
|
| 244 |
+
- type: rouge
|
| 245 |
value: 10.0781
|
| 246 |
+
name: ROUGE-2
|
| 247 |
verified: true
|
| 248 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWYzZDA1YmU5YTkzMjEwN2IzMTNhZmZmOTU2ZGUyNzdlNWQ0OGQ1Y2UxOGQ0NWUyOWVmZmZkYzFkODE3OTliNiIsInZlcnNpb24iOjF9.WVE3fmYLkOW32_neYYj4TNJ5lhrG-27DnoJd4YDUzpHYvGWGoFU9CUuIFraQFnojRr02f3KqVY7T33DG5mpzBg
|
| 249 |
+
- type: rouge
|
| 250 |
value: 23.6331
|
| 251 |
+
name: ROUGE-L
|
| 252 |
verified: true
|
| 253 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTYyOTE0ODY2Mjk0YTk5ZTY5NTZkM2JkOGZhNjQ3NjNiMjVhNTc4ZmMwYzg1ZGIxOTA2MDQxNmU3Yjc5YWY0MSIsInZlcnNpb24iOjF9.yQ8WpdsyGKSuTG8MxHXqujEAYOIrt_hoUbuHc8HnS-GjS9xJ-rKO6pP6HYbi0LC9Xqh2_QPveCpNqr9ZQMGRCg
|
| 254 |
+
- type: rouge
|
| 255 |
value: 28.7831
|
| 256 |
+
name: ROUGE-LSUM
|
| 257 |
verified: true
|
| 258 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVkMDNlODA4NWI3OGI1OGFlNjFlNWE4YzY5ZDE1NDdhMjIwYjlkNDIxNDZjOGRiNTI1MGJkMmE0YWZiMDNhMiIsInZlcnNpb24iOjF9.qoxn2g70rbbX6sVCvm_cXzvYZf1UdTDU44vvEVdZL-4h36cJRCOx5--O1tZEVdyvlMVi-tYz1RSxLRwQd72FAw
|
| 259 |
+
- type: loss
|
| 260 |
value: 2.903024673461914
|
| 261 |
+
name: loss
|
| 262 |
verified: true
|
| 263 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGM2M2NlY2Q3NjYxY2EyM2FkYmM5OGVhYzcyNjA3ZTFlYzc3M2M2ODNmNWVjNjZmMGNiODc4MWY5NWE2ZDMyNyIsInZlcnNpb24iOjF9.pC4UK75LbyVFFm0-fcStMtdQhbuHE37wkZHoVbSQOYSyxjI8yA46bQkPmgg5znby9FK_wIgGxC_4KOdEeN4jBw
|
| 264 |
+
- type: gen_len
|
| 265 |
value: 60.7411
|
| 266 |
+
name: gen_len
|
| 267 |
verified: true
|
| 268 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWEwMDFiYjgyNzRhZDVmOWIzYzZlZWU5OTFkYmU4YzI2Mjk2OTg1ZDVlNzU0YzNhOWI1MmU2NTAxZWUzZmFlOCIsInZlcnNpb24iOjF9.Zepow4AFj1sQ6zyJGoy_Dl4ICKRtzZI2nVYWlTsDnGrBDT42ak9mFUuw-BjHR8dEVHJKmOZlLk6GJ09bL7tGAA
|
| 269 |
- task:
|
| 270 |
type: summarization
|
| 271 |
name: Summarization
|
|
|
|
| 275 |
config: 3.0.0
|
| 276 |
split: test
|
| 277 |
metrics:
|
| 278 |
+
- type: rouge
|
|
|
|
| 279 |
value: 30.5046
|
| 280 |
+
name: ROUGE-1
|
| 281 |
verified: true
|
| 282 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmVmN2NkZDE1ZDAzZjhiYWJkNWJjZDIwNGNkY2EzOTVlNzA3OTZlYmEyNDE5NzQwNmI4NTdmM2M3YzlmMGJiYSIsInZlcnNpb24iOjF9.UbgnlgTUEd2yhULHeNKHQaVtAYwE3CijYGZc5mZSZkwXGIwJxwkDimhyo6XxMr8iCsu_hQLEsEtN9CWTn0SrDw
|
| 283 |
+
- type: rouge
|
| 284 |
value: 13.2577
|
| 285 |
+
name: ROUGE-2
|
| 286 |
verified: true
|
| 287 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzU5MTg1OGJkYzAwNmUwMDdmYTBhODBhYjkyOTdjODRjMDJiNjU0ZjkzYzYyYWJhZTA1YjQ2NTliNWUyYmY3YiIsInZlcnNpb24iOjF9.fuvr3vrY8CSYpSluLeMz9VnxysWSlFFRMnnR3ZKZOxlh7_UNwtlMMHWCH6Yfy65LzglLNsRSnWNrwn5OXP4vAw
|
| 288 |
+
- type: rouge
|
| 289 |
value: 19.0306
|
| 290 |
+
name: ROUGE-L
|
| 291 |
verified: true
|
| 292 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzMxYmY1ZmRlYzA4NzNkZDAzZjc0MzhkY2E4YTRiMmI0M2IwNDIwNzdiOWIzYTM1YTBmNWJkOWE3ODA3ZDM5NyIsInZlcnNpb24iOjF9.y-vzjHeER3iqyvSrjHUvy6Z_hom6aV0SRNV5CiB2efPmS7cL9nifoqpF2MJtip9RVn5nuuavlm-e3e2K0S5yDw
|
| 293 |
+
- type: rouge
|
| 294 |
value: 28.3421
|
| 295 |
+
name: ROUGE-LSUM
|
| 296 |
verified: true
|
| 297 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGJjYTdhMDIxYWVhYzM0MDRkYTM4MTI4YmRhOGEwYjE5OGU1NWNiYjIzOTdkM2FlNTUxNTJiNzBmNWQ1NDgyOSIsInZlcnNpb24iOjF9.32seuR1CHAtUR_UCCx1nTiv-u88ETqypzWt5iItexmFTlVkZjPw7whgM7KXtgJsPdWfdcClYif5Qpnbq-NycDA
|
| 298 |
+
- type: loss
|
| 299 |
value: 3.9484164714813232
|
| 300 |
+
name: loss
|
| 301 |
verified: true
|
| 302 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgyMzJhNjY1OTU4YmVmMzVlYmI1N2IzZTdiNzYwMTA4YzRlZjY1ZjRhN2IxNTE5NjhkYjA1ZmMzMzVhNDk5NyIsInZlcnNpb24iOjF9.Cn8b20pksnlZF8LaJPxKrmrPMDIJ4CAPfjGifB86RaA6pLSTyY_wYsqEb2JfAczViquk4HtV8MvLnv0cioLODQ
|
| 303 |
+
- type: gen_len
|
| 304 |
value: 231.0762
|
| 305 |
+
name: gen_len
|
| 306 |
verified: true
|
| 307 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTIxOTMyZDlhNjYwOTY5M2Q0ZTZiNWQ5YzAxMjE1OTllOGNhNWU4MjQ0OTBhZTE5NDZjNmEzZTZlOWRiMGY5NyIsInZlcnNpb24iOjF9.QK29Zwhj8jN3hWae54-qaF7vHdh1ijSa6Mq_4LdGcG8xHLCerVGg45H9B1XClCksMadp7auOzPa8CEjxYVpyBA
|
| 308 |
- task:
|
| 309 |
type: summarization
|
| 310 |
name: Summarization
|
|
|
|
| 314 |
config: default
|
| 315 |
split: test
|
| 316 |
metrics:
|
| 317 |
+
- type: rouge
|
|
|
|
| 318 |
value: 36.8502
|
| 319 |
+
name: ROUGE-1
|
| 320 |
verified: true
|
| 321 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE2ZjI4YmJkZGVjZDkzNzU5ZmI2MDYzNGZkNjE2OGM0Y2Y0Nzk1NTc1ZmUyZmFhYjIwY2RhMDVkMzQ1MWIxYyIsInZlcnNpb24iOjF9.SZjhhFkKwvRrI-Yl29psn17u1RCISsmmLVXxo2kxCjkhtMOma-EzC5YidjPDGQLb-J2nvqUworaC2pL_oeHxDQ
|
| 322 |
+
- type: rouge
|
| 323 |
value: 15.9147
|
| 324 |
+
name: ROUGE-2
|
| 325 |
verified: true
|
| 326 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODgwOTJhOWIyZDQ4ZDA5YWMzYTJkZWFmMzlkNWYxNTg5OGFiNzY0MTExNTgyMTdlMTQ1N2EwYWY4OGZkNWY5YyIsInZlcnNpb24iOjF9.DS-X3eA1tGhVSuUL8uSPtJMNijODF3ugaKEtBglmPqF1OQZwIwQs-NExNYP4d6Y4Pa9d-DujD5yfyl9C8HBGCw
|
| 327 |
+
- type: rouge
|
| 328 |
value: 23.4762
|
| 329 |
+
name: ROUGE-L
|
| 330 |
verified: true
|
| 331 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTYxNTA4YzhmYTQ0YmRjMWU5ZDliZWFhMjM4ZmUyNGUyOWJhNzA1MDBhZDliYmYyYzY3NjBmZTZlYWY3YTY3ZCIsInZlcnNpb24iOjF9.o0W7dqdz0sqMPKtJbXSRpyVNsREEUypW-bGv7TW5lfJFkijfDKhVITEClFLWu5n2tIV-sXAYxgQHDf5_hpY-Dw
|
| 332 |
+
- type: rouge
|
| 333 |
value: 30.9597
|
| 334 |
+
name: ROUGE-LSUM
|
| 335 |
verified: true
|
| 336 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzEzOGNiYjk4NDkxNTFmMjA5YjM1YTQzZTk2N2JiZDgxNzAxYzFlYjliZjA3NmRjMzZlNGYyODBkNTI1NzVjNiIsInZlcnNpb24iOjF9.C_hobTR0ZY958oUZcGEKj2RoPOkyfMCTznwi4mUx-bfGRRAecMyn45bWVwwRq12glk1vThDetCjOMHA6jgSDCw
|
| 337 |
+
- type: loss
|
| 338 |
value: 3.878790855407715
|
| 339 |
+
name: loss
|
| 340 |
verified: true
|
| 341 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNmYyOWM0YWQ0MjAxZDg5ZWQyNDk3MGUwNzdkOWIwZDc0OGJjYTU3YjZmOWY0YTljNDI0OWRlNTI0ZDMwZWEzOCIsInZlcnNpb24iOjF9.P01Jzfa-5jyMeoEqEsEluKOydNmtRtNy8YhwfJuYHVJTVDzCIfzY8b7iNfqTfKFKwKkZ4eTwmA6vmsPZeASDAw
|
| 342 |
+
- type: gen_len
|
| 343 |
value: 131.3622
|
| 344 |
+
name: gen_len
|
| 345 |
verified: true
|
| 346 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmJjN2Q5ZGNlZjQ2ODJiYTZlMzZmNWVmMzRlMGQ0ZTkxZWM3ZDQ4ZmQ1NmUyZjY4MTVhZGE5NDFiZTBhNDZiYSIsInZlcnNpb24iOjF9.DqYNc0ZCX_EqRi4zbSBAtb-js_JBHSWZkeGR9gSwEkJletKYFxPGZWd-B1ez88aj6PO775-qHd98xx3IWCHECQ
|
| 347 |
- task:
|
| 348 |
type: summarization
|
| 349 |
name: Summarization
|
|
|
|
| 353 |
config: y
|
| 354 |
split: test
|
| 355 |
metrics:
|
| 356 |
+
- type: rouge
|
|
|
|
| 357 |
value: 33.7585
|
| 358 |
+
name: ROUGE-1
|
| 359 |
verified: true
|
| 360 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2VmMGU5YWJlZWFlNjA3MDY2NTBmZWU3YWQxYTk3OGYzZmU5NmFmMTQ1NTVmNDQyZTJkNDMwY2E5NGRjMGU3MSIsInZlcnNpb24iOjF9.P6Rt9c3Xi_B-u8B1ug4paeZDoAO4ErGeNM0gELHGeOMj4XMjeSvyAW_-30cA9Wf23-0jGPOSZbN5pME4JpxfDA
|
| 361 |
+
- type: rouge
|
| 362 |
value: 9.4101
|
| 363 |
+
name: ROUGE-2
|
| 364 |
verified: true
|
| 365 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDA0NzUxMjIwYTFjNGQ5YTA4YjE1NGU5YWMzYjhiOTk2NWE3ZGQxNDY4YTI3ZmI0ODBjYmJkZjcwYTM2OTg2MCIsInZlcnNpb24iOjF9.23hd2SuLoX3_Rygj2ykcSQccPeFsf4yLDAgvS189jx6JNln0MVR6YI2-3Yzo5g8LJk0MCbgkOp0my-nf7nMaDw
|
| 366 |
+
- type: rouge
|
| 367 |
value: 18.8927
|
| 368 |
+
name: ROUGE-L
|
| 369 |
verified: true
|
| 370 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODhhMGZiZWFlNmZkYmYxZjJmODE1NWRiZjI2OGU1MTc4MDkyYjk1Mzk5ODFkYWVhY2ExNTViYjJmYzkzNWJhYiIsInZlcnNpb24iOjF9.SkKhf-l2cl2KcuC17oPrBtkBlZJaj2ujCgzRlfZy76rU9JtlW7N9bcy1ugnw-vRVUVVR6wUK08T45YorfuxqBg
|
| 371 |
+
- type: rouge
|
| 372 |
value: 28.5051
|
| 373 |
+
name: ROUGE-LSUM
|
| 374 |
verified: true
|
| 375 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTgzYzA0NmQ0OTZmNzJkNGZiNTdmMzFmOTljMWE3YzM0NDg2MDY1ZDY5ZTE4MmQ5YzU1ZDFiNmE2ZjkwMjRjMiIsInZlcnNpb24iOjF9.p1TQINRxMatNe77_BMnusSg1K5FOD9f1_N4TBJDjJHNhYnyQDE4pKHfK8j6fsHGg58DHVQjmm8g96SK4uMF6DA
|
| 376 |
+
- type: loss
|
| 377 |
value: 5.162865161895752
|
| 378 |
+
name: loss
|
| 379 |
verified: true
|
| 380 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWM1YTQ4MjVmMDkyZDI3OWJmODhmOWE2MDYyMDA4OGRmYzhiY2YzZjVmMTZkMTI4NjBlY2MwMDY3ZDE5ZjlmMyIsInZlcnNpb24iOjF9.Czh4TOG-QIqyc_-GJ3wc1TLuxc-KLwPelV5tiwEjNhZFyUZkjLH__ccOxBk9TYy2vunvh2AwdY3Mt6Fr8LhaDA
|
| 381 |
+
- type: gen_len
|
| 382 |
value: 222.6626
|
| 383 |
+
name: gen_len
|
| 384 |
verified: true
|
| 385 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2JjNzVkODhmOWQ5NWMwNDdlNzhkYjE5NjY3NTgwNWVmZDZlMzc4NDdmZjdlN2M2ODBkZGU5NGU0ZjMzM2Q5OCIsInZlcnNpb24iOjF9.z4hZ-uXg8PPn-THRHFrsWZpS3jgE8URk5yoLenwWtev5toTrZ2Y-DP8O30nPnzMkzA4yzo_NUKIACxoUdMqfCQ
|
| 386 |
- task:
|
| 387 |
type: summarization
|
| 388 |
name: Summarization
|
|
|
|
| 392 |
config: default
|
| 393 |
split: test
|
| 394 |
metrics:
|
| 395 |
+
- type: rouge
|
|
|
|
| 396 |
value: 38.7332
|
| 397 |
+
name: ROUGE-1
|
| 398 |
verified: true
|
| 399 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGViMThhNTdlZDRiMTg5NTZjNGVmOThiMjI5NDEyZDMxYjU4MTU2ZTliZjZmMzAzMmRhNDIxYjViYjZmNWYwNSIsInZlcnNpb24iOjF9.SK_1Q9WlkNhu3mfsyir1l72pddjURZvJV3mcJ4jhBxS2k2q1NAR8JT_iT8v1thLiv8NUDmDr2o9Dig4A8svDBw
|
| 400 |
+
- type: rouge
|
| 401 |
value: 11.0072
|
| 402 |
+
name: ROUGE-2
|
| 403 |
verified: true
|
| 404 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzkzMDU1ZGZlOWUwOGQyY2UwMWFjZTY1MDBmNzcyZGYzZTliNGVkNDZjZDVjZjA4NmE3OWVhMGIyZmE3NGE0NSIsInZlcnNpb24iOjF9.j0wvR0NPw0lqxW3ASbmBvxAbFHGikXw-Y7FjutojhzTfSs3BIs5Z8s5_h6eesvSGT5fS_qUrbnl9EEBwjrXqDg
|
| 405 |
+
- type: rouge
|
| 406 |
value: 18.6018
|
| 407 |
+
name: ROUGE-L
|
| 408 |
verified: true
|
| 409 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjIwNTUzN2ZhZjU5OGFhYzRmZmEwY2NkZWVjYmYzZjRjMGIxNzNjZDY5YzIyMTg2NDJkMGYxYmViNTcwOTc5NCIsInZlcnNpb24iOjF9.rD_tFYRyb-o6VX7Z52fULvP_HQjqqshqnvbjAxWjuCM9hCn1J6oh0zAASPw0k1lWiURbiMCiaxIHxe_5BN_rAQ
|
| 410 |
+
- type: rouge
|
| 411 |
value: 34.5911
|
| 412 |
+
name: ROUGE-LSUM
|
| 413 |
verified: true
|
| 414 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2Q4MWY3NGFhNjE5YjE5NzIyODVhNTYxNWFmZDE5NjNiZTM1M2M3ZmIwNTZiOWEyMTc2MzQ0MWQ5YTdjYThlNyIsInZlcnNpb24iOjF9.R789HgYsv_k6OrjocVi0ywx0aCRlgOKpEWUiSUDca-AfoDS8ADJBtLYoEKg1wnRlR9yWoD4vtEWdKbyOOln1CA
|
| 415 |
+
- type: loss
|
| 416 |
value: 3.5744354724884033
|
| 417 |
+
name: loss
|
| 418 |
verified: true
|
| 419 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzBjZTk0YWMwMzQxNDRlY2UxZDc4NTE1MmEzNDkwM2M3ZGZhNGMzNmI4ZDU2ZTVhZDkwMjNhYTkxZTIwN2E4MyIsInZlcnNpb24iOjF9.bDQ_3-CumosWKroMwBEMwKnDAj4ENQbUnbS387hU0zAY1K5g1NOy7fKBohxYZnRVolEfiuhszifUMW9zcLjqCA
|
| 420 |
+
- type: gen_len
|
| 421 |
value: 192.0014
|
| 422 |
+
name: gen_len
|
| 423 |
verified: true
|
| 424 |
+
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDQxZmEwYmU5MGI1ZWE5NTIyMmM1MTVlMjVjNTg4MDQyMjJhNGE5NDJhNmZiN2Y4ZDc4ZmExNjBkMjQzMjQxMyIsInZlcnNpb24iOjF9.o3WblPY-iL1vT66xPwyyi1VMPhI53qs9GJ5HsHGbglOALwZT4n2-6IRxRNcL2lLj9qUehWUKkhruUyDM5-4RBg
|
| 425 |
---
|
| 426 |
|
| 427 |
# Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization
|