Upload integrated_model_design.py
Browse files- integrated_model_design.py +341 -0
integrated_model_design.py
ADDED
|
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from safetensors.torch import save_file as safetensors_save_file
|
| 5 |
+
from torchvision import models, transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import safetensors
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
# --- 1. 原始模型架構 (從 reconstruct_original_model.py 複製) ---
|
| 11 |
+
class OriginalMoETransformerBlock(nn.Module):
|
| 12 |
+
def __init__(self, input_dim, hidden_dim, output_dim, num_experts):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.num_experts = num_experts
|
| 15 |
+
self.input_dim = input_dim
|
| 16 |
+
self.hidden_dim = hidden_dim
|
| 17 |
+
self.output_dim = output_dim
|
| 18 |
+
|
| 19 |
+
self.experts_w1 = nn.ModuleList([nn.Linear(input_dim, hidden_dim, bias=False) for _ in range(num_experts)])
|
| 20 |
+
self.experts_w2 = nn.ModuleList([nn.Linear(hidden_dim, output_dim, bias=False) for _ in range(num_experts)])
|
| 21 |
+
self.gate = nn.Linear(input_dim, num_experts, bias=False)
|
| 22 |
+
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
gate_logits = self.gate(x)
|
| 25 |
+
weights = torch.softmax(gate_logits, dim=-1)
|
| 26 |
+
|
| 27 |
+
expert_outputs = torch.empty(x.shape[0], self.num_experts, self.output_dim, device=x.device)
|
| 28 |
+
for i in range(self.num_experts):
|
| 29 |
+
expert_outputs[:, i, :] = self.experts_w2[i](self.experts_w1[i](x))
|
| 30 |
+
|
| 31 |
+
output = torch.sum(expert_outputs * weights.unsqueeze(-1), dim=1)
|
| 32 |
+
|
| 33 |
+
return output
|
| 34 |
+
|
| 35 |
+
class OriginalModelReconstructed(nn.Module):
|
| 36 |
+
def __init__(self, vocab_size, embedding_dim, moe_hidden_dim, num_experts):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
|
| 39 |
+
self.transformer_block_0 = OriginalMoETransformerBlock(embedding_dim, moe_hidden_dim, embedding_dim, num_experts)
|
| 40 |
+
self.norm = nn.LayerNorm(embedding_dim)
|
| 41 |
+
self.output_layer = nn.Linear(embedding_dim, vocab_size)
|
| 42 |
+
|
| 43 |
+
def forward(self, x):
|
| 44 |
+
x = self.embeddings(x).squeeze(1)
|
| 45 |
+
x = self.transformer_block_0(x)
|
| 46 |
+
x = self.norm(x)
|
| 47 |
+
x = self.output_layer(x)
|
| 48 |
+
return x
|
| 49 |
+
|
| 50 |
+
# --- 2. 記憶共生引擎模組 (Person X Memory Symbiosis Engine) ---
|
| 51 |
+
# 這個模組將負責存儲、檢索和整合用戶的歷史記憶。
|
| 52 |
+
# 這裡我們使用一個簡化的記憶網絡作為示例,實際實現會更複雜。
|
| 53 |
+
class MemorySymbiosisEngine(nn.Module):
|
| 54 |
+
def __init__(self, embedding_dim, memory_slots=10, memory_dim=256):
|
| 55 |
+
super().__init__()
|
| 56 |
+
self.memory_slots = memory_slots
|
| 57 |
+
self.memory_dim = memory_dim
|
| 58 |
+
|
| 59 |
+
# 記憶存儲:簡單的鍵值對記憶,這裡用可學習的張量模擬
|
| 60 |
+
self.memory_keys = nn.Parameter(torch.randn(memory_slots, memory_dim))
|
| 61 |
+
self.memory_values = nn.Parameter(torch.randn(memory_slots, embedding_dim)) # 存儲與 embedding_dim 兼容的記憶
|
| 62 |
+
|
| 63 |
+
# 記憶讀取機制:使用注意力機制從記憶中檢索相關信息
|
| 64 |
+
self.query_projection = nn.Linear(embedding_dim, memory_dim)
|
| 65 |
+
self.memory_read_fusion = nn.Linear(embedding_dim + embedding_dim, embedding_dim) # 融合查詢和讀取到的記憶
|
| 66 |
+
|
| 67 |
+
def forward(self, current_features, user_profile_embedding=None):
|
| 68 |
+
# current_features: 當前輸入的融合特徵 (batch_size, embedding_dim)
|
| 69 |
+
|
| 70 |
+
# 生成查詢向量
|
| 71 |
+
query = self.query_projection(current_features) # (batch_size, memory_dim)
|
| 72 |
+
|
| 73 |
+
# 計算查詢與記憶鍵的相似度 (點積注意力)
|
| 74 |
+
attention_scores = torch.matmul(query, self.memory_keys.T) # (batch_size, memory_slots)
|
| 75 |
+
attention_weights = torch.softmax(attention_scores, dim=-1) # (batch_size, memory_slots)
|
| 76 |
+
|
| 77 |
+
# 根據權重讀取記憶值
|
| 78 |
+
read_memory = torch.matmul(attention_weights, self.memory_values) # (batch_size, embedding_dim)
|
| 79 |
+
|
| 80 |
+
# 將讀取到的記憶與當前特徵融合
|
| 81 |
+
fused_with_memory = torch.cat((current_features, read_memory), dim=-1)
|
| 82 |
+
output_features = self.memory_read_fusion(fused_with_memory)
|
| 83 |
+
|
| 84 |
+
# 記憶更新機制 (簡化:這裡不實作複雜的記憶寫入,假定記憶是預訓練或緩慢更新的)
|
| 85 |
+
return output_features
|
| 86 |
+
|
| 87 |
+
# --- 3. 智能體生態框架接口 (Agent Matrix Intelligent Agent Ecosystem Framework) ---
|
| 88 |
+
# 這個模組將作為模型與外部 Agent Matrix 框架交互的接口。
|
| 89 |
+
# 模型本身作為一個智能體,接收指令,輸出結果。
|
| 90 |
+
# 這裡我們用一個簡單的接口類來模擬,實際的框架交互會通過 RPC 或消息隊列實現。
|
| 91 |
+
class AgentMatrixInterface(nn.Module):
|
| 92 |
+
def __init__(self, model_core):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.model_core = model_core # 核心模型,負責處理多模態輸入和記憶
|
| 95 |
+
|
| 96 |
+
# 假設 Agent Matrix 框架會通過一個 "command" 來指示模型執行什麼任務
|
| 97 |
+
# 這裡我們模擬一個簡單的任務映射
|
| 98 |
+
self.task_mapping = {
|
| 99 |
+
"analyze_image_text": self._analyze_image_text,
|
| 100 |
+
"retrieve_memory": self._retrieve_memory,
|
| 101 |
+
"generate_response": self._generate_response
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
def _analyze_image_text(self, text_input, image_input):
|
| 105 |
+
# 這裡調用核心模型的前向傳播,獲取輸出
|
| 106 |
+
return self.model_core(text_input, image_input, return_fused_features=True) # 返回融合後的特徵
|
| 107 |
+
|
| 108 |
+
def _retrieve_memory(self, query_text_input, query_image_input=None):
|
| 109 |
+
# 模擬記憶檢索,可能需要一個單獨的記憶查詢模組
|
| 110 |
+
# 暫時直接調用核心模型,讓記憶模組自行處理
|
| 111 |
+
# 這裡我們假設模型能夠在 forward 內部處理記憶檢索
|
| 112 |
+
dummy_image = torch.randn(1, 3, 224, 224) # 假設一個 dummy image
|
| 113 |
+
dummy_text = torch.tensor([0]) # 假設一個 dummy text token
|
| 114 |
+
# 為了演示,直接從記憶引擎讀取
|
| 115 |
+
text_features = self.model_core.embeddings(query_text_input)
|
| 116 |
+
if text_features.dim() == 3:
|
| 117 |
+
text_features = text_features.squeeze(1)
|
| 118 |
+
|
| 119 |
+
if query_image_input is not None:
|
| 120 |
+
image_features = self.model_core.vision_encoder(query_image_input)
|
| 121 |
+
image_features = image_features.view(image_features.size(0), -1)
|
| 122 |
+
image_features = self.model_core.vision_projection(image_features)
|
| 123 |
+
current_features = self.model_core.initial_fusion_layer(torch.cat((text_features, image_features), dim=1))
|
| 124 |
+
else:
|
| 125 |
+
current_features = text_features # 如果沒有圖像輸入,則只使用文本特徵
|
| 126 |
+
|
| 127 |
+
return self.model_core.memory_engine(current_features)
|
| 128 |
+
|
| 129 |
+
def _generate_response(self, text_input, image_input):
|
| 130 |
+
return self.model_core(text_input, image_input)
|
| 131 |
+
|
| 132 |
+
def forward(self, command, **kwargs):
|
| 133 |
+
if command in self.task_mapping:
|
| 134 |
+
return self.task_mapping[command](**kwargs)
|
| 135 |
+
else:
|
| 136 |
+
raise ValueError(f"Unknown command: {command}")
|
| 137 |
+
|
| 138 |
+
# --- 4. 整合後的完整模型架構 ---
|
| 139 |
+
# 整合 On-Device Compute 的考慮:
|
| 140 |
+
# 這裡的架構設計本身就是輕量化的,embedding_dim 較小。
|
| 141 |
+
# 為了實現 On-Device Compute,我們在訓練後會對模型進行量化、剪枝等優化。
|
| 142 |
+
# 這部分不會直接體現在 PyTorch 模型定義中,而是在部署時進行。
|
| 143 |
+
|
| 144 |
+
class FullyIntegratedModel(nn.Module):
|
| 145 |
+
def __init__(self, original_model_path, vocab_size, embedding_dim, moe_hidden_dim, num_experts, visual_feature_dim=256,
|
| 146 |
+
memory_slots=10, memory_dim=256):
|
| 147 |
+
super().__init__()
|
| 148 |
+
|
| 149 |
+
state_dict = {}
|
| 150 |
+
if original_model_path:
|
| 151 |
+
with safetensors.safe_open(original_model_path, framework="pt", device="cpu") as f:
|
| 152 |
+
for key in f.keys():
|
| 153 |
+
state_dict[key] = f.get_tensor(key)
|
| 154 |
+
|
| 155 |
+
# 原始模型的核心部分,詞彙量和嵌入維度保持與原始模型兼容
|
| 156 |
+
# 這裡我們使用原始的 vocab_size 和 embedding_dim 來載入原始模型的 MoE 權重
|
| 157 |
+
# 之後我們會替換 embeddings 和 output_layer 以支持新的 vocab_size
|
| 158 |
+
original_vocab_size = 5000 # 假設原始模型的詞彙量
|
| 159 |
+
original_embedding_dim = 64 # 假設原始模型的 embedding_dim
|
| 160 |
+
|
| 161 |
+
self.original_model_core = OriginalModelReconstructed(original_vocab_size, original_embedding_dim, moe_hidden_dim, num_experts)
|
| 162 |
+
|
| 163 |
+
# 載入原始權重到核心模型
|
| 164 |
+
self.original_model_core.norm.weight.data = state_dict["gamma"]
|
| 165 |
+
self.original_model_core.norm.bias.data = state_dict["beta"]
|
| 166 |
+
for i in range(num_experts):
|
| 167 |
+
self.original_model_core.transformer_block_0.experts_w1[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w1.weight"][i].T
|
| 168 |
+
self.original_model_core.transformer_block_0.experts_w2[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w2.weight"][i].T
|
| 169 |
+
self.original_model_core.transformer_block_0.gate.weight.data = state_dict["transformer_block.0.moe.gate.weight"].T
|
| 170 |
+
|
| 171 |
+
# 凍結原始模型的 Transformer Block 和 LayerNorm 權重
|
| 172 |
+
for param in self.original_model_core.transformer_block_0.parameters():
|
| 173 |
+
param.requires_grad = False
|
| 174 |
+
for param in self.original_model_core.norm.parameters():
|
| 175 |
+
param.requires_grad = False
|
| 176 |
+
|
| 177 |
+
# 重新定義 embeddings 和 output_layer 以支持新的 vocab_size
|
| 178 |
+
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
|
| 179 |
+
self.output_layer = nn.Linear(embedding_dim, vocab_size)
|
| 180 |
+
|
| 181 |
+
# 視覺前端:使用預訓練的 ResNet18 作為圖像編碼器
|
| 182 |
+
print("Initializing vision encoder (ResNet18). This may take some time to download weights...")
|
| 183 |
+
self.vision_encoder = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)
|
| 184 |
+
self.vision_encoder = nn.Sequential(*list(self.vision_encoder.children())[:-1])
|
| 185 |
+
print("Vision encoder initialized.")
|
| 186 |
+
self.vision_projection = nn.Linear(512, visual_feature_dim)
|
| 187 |
+
|
| 188 |
+
# 凍結視覺編碼器權重
|
| 189 |
+
for param in self.vision_encoder.parameters():
|
| 190 |
+
param.requires_grad = False
|
| 191 |
+
|
| 192 |
+
# 特徵融合層:將視覺特徵與文本特徵融合
|
| 193 |
+
# 這��的 embedding_dim 是新的 embedding_dim
|
| 194 |
+
self.initial_fusion_layer = nn.Linear(visual_feature_dim + embedding_dim, embedding_dim)
|
| 195 |
+
|
| 196 |
+
# 記憶共生引擎
|
| 197 |
+
self.memory_engine = MemorySymbiosisEngine(embedding_dim, memory_slots, memory_dim)
|
| 198 |
+
|
| 199 |
+
# 最終融合層:融合記憶引擎的輸出
|
| 200 |
+
self.final_fusion_layer = nn.Linear(embedding_dim, embedding_dim) # 記憶引擎輸出也是 embedding_dim
|
| 201 |
+
|
| 202 |
+
def forward(self, text_input, image_input, user_profile_embedding=None, return_fused_features=False):
|
| 203 |
+
# 1. 處理文本輸入
|
| 204 |
+
text_features = self.embeddings(text_input)
|
| 205 |
+
if text_features.dim() == 3:
|
| 206 |
+
text_features = text_features.squeeze(1)
|
| 207 |
+
|
| 208 |
+
# 2. 處理圖像輸入
|
| 209 |
+
image_features = self.vision_encoder(image_input)
|
| 210 |
+
image_features = image_features.view(image_features.size(0), -1)
|
| 211 |
+
image_features = self.vision_projection(image_features)
|
| 212 |
+
|
| 213 |
+
# 3. 初始特徵融合 (文本 + 視覺)
|
| 214 |
+
fused_initial_features = torch.cat((text_features, image_features), dim=1)
|
| 215 |
+
fused_initial_features = self.initial_fusion_layer(fused_initial_features)
|
| 216 |
+
|
| 217 |
+
if return_fused_features:
|
| 218 |
+
return fused_initial_features
|
| 219 |
+
|
| 220 |
+
# 4. 記憶共生引擎處理
|
| 221 |
+
# 將融合後的特徵傳遞給記憶引擎,獲取記憶增強後的特徵
|
| 222 |
+
memory_enhanced_features = self.memory_engine(fused_initial_features, user_profile_embedding)
|
| 223 |
+
|
| 224 |
+
# 5. 最終融合層 (可選,這裡直接使用記憶引擎的輸出)
|
| 225 |
+
# memory_enhanced_features = self.final_fusion_layer(memory_enhanced_features)
|
| 226 |
+
|
| 227 |
+
# 6. 傳遞給原始模型的 MoE Transformer Block
|
| 228 |
+
# 這裡使用 self.original_model_core 的 transformer_block_0 和 norm
|
| 229 |
+
x = self.original_model_core.transformer_block_0(memory_enhanced_features)
|
| 230 |
+
x = self.original_model_core.norm(x)
|
| 231 |
+
|
| 232 |
+
# 7. 輸出層
|
| 233 |
+
output = self.output_layer(x)
|
| 234 |
+
return output
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
# 範例使用
|
| 238 |
+
if __name__ == "__main__":
|
| 239 |
+
original_model_path = "/home/ubuntu/upload/moe_model.safetensors"
|
| 240 |
+
|
| 241 |
+
# 模型參數
|
| 242 |
+
# 這裡的 vocab_size 和 embedding_dim 應該與您在 integrate_vision_retained.py 中使用的兼容
|
| 243 |
+
# 為了演示,我們使用一個較小的 vocab_size 和 embedding_dim
|
| 244 |
+
vocab_size = 10000 # 示例詞彙量
|
| 245 |
+
embedding_dim = 64 # 嵌入維度,與原始 MoE Block 兼容
|
| 246 |
+
moe_hidden_dim = 192
|
| 247 |
+
num_experts = 16
|
| 248 |
+
visual_feature_dim = 256
|
| 249 |
+
memory_slots = 10
|
| 250 |
+
memory_dim = 256
|
| 251 |
+
|
| 252 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 253 |
+
|
| 254 |
+
# 初始化整合模型
|
| 255 |
+
integrated_model = FullyIntegratedModel(
|
| 256 |
+
original_model_path=original_model_path,
|
| 257 |
+
vocab_size=vocab_size,
|
| 258 |
+
embedding_dim=embedding_dim,
|
| 259 |
+
moe_hidden_dim=moe_hidden_dim,
|
| 260 |
+
num_experts=num_experts,
|
| 261 |
+
visual_feature_dim=visual_feature_dim,
|
| 262 |
+
memory_slots=memory_slots,
|
| 263 |
+
memory_dim=memory_dim
|
| 264 |
+
).to(device)
|
| 265 |
+
integrated_model.eval() # 設置為評估模式
|
| 266 |
+
|
| 267 |
+
print("Fully Integrated Model initialized successfully.")
|
| 268 |
+
|
| 269 |
+
# 檢查 ResNet18 是否已下載
|
| 270 |
+
resnet_cache_dir = torch.hub.get_dir()
|
| 271 |
+
print(f"PyTorch Hub cache directory: {resnet_cache_dir}")
|
| 272 |
+
resnet_weights_path = os.path.join(resnet_cache_dir, "checkpoints", "resnet18-f37072fd.pth")
|
| 273 |
+
if os.path.exists(resnet_weights_path):
|
| 274 |
+
print(f"ResNet18 weights found at: {resnet_weights_path}")
|
| 275 |
+
else:
|
| 276 |
+
print("ResNet18 weights not found in cache. They might be downloaded during initialization.")
|
| 277 |
+
|
| 278 |
+
# 計算總參數數量
|
| 279 |
+
total_params = sum(p.numel() for p in integrated_model.parameters() if p.requires_grad)
|
| 280 |
+
print(f"Total trainable parameters: {total_params / 1_000_000:.2f}M")
|
| 281 |
+
total_all_params = sum(p.numel() for p in integrated_model.parameters())
|
| 282 |
+
print(f"Total all parameters (including frozen): {total_all_params / 1_000_000:.2f}M")
|
| 283 |
+
|
| 284 |
+
# --- 模擬 Agent Matrix 框架交互 ---
|
| 285 |
+
agent_interface = AgentMatrixInterface(integrated_model)
|
| 286 |
+
print("Agent Matrix Interface initialized.")
|
| 287 |
+
|
| 288 |
+
# 模擬輸入
|
| 289 |
+
dummy_text_input = torch.tensor([[100]], dtype=torch.long).to(device) # Batch size 1, 1 token
|
| 290 |
+
dummy_image_input = torch.randn(1, 3, 224, 224).to(device) # Batch size 1, 3 channels, 224x224
|
| 291 |
+
|
| 292 |
+
print("\n--- Simulating Agent Matrix Commands ---")
|
| 293 |
+
|
| 294 |
+
# 模擬 'analyze_image_text' 命令
|
| 295 |
+
try:
|
| 296 |
+
print("Executing command: analyze_image_text")
|
| 297 |
+
fused_features = agent_interface(command="analyze_image_text", text_input=dummy_text_input, image_input=dummy_image_input)
|
| 298 |
+
print(f"Analyzed features shape: {fused_features.shape}")
|
| 299 |
+
except Exception as e:
|
| 300 |
+
print(f"Error executing analyze_image_text: {e}")
|
| 301 |
+
|
| 302 |
+
# 模擬 'generate_response' 命令
|
| 303 |
+
try:
|
| 304 |
+
print("Executing command: generate_response")
|
| 305 |
+
output_logits = agent_interface(command="generate_response", text_input=dummy_text_input, image_input=dummy_image_input)
|
| 306 |
+
print(f"Generated response logits shape: {output_logits.shape}")
|
| 307 |
+
except Exception as e:
|
| 308 |
+
print(f"Error executing generate_response: {e}")
|
| 309 |
+
|
| 310 |
+
# 模擬 'retrieve_memory' 命令
|
| 311 |
+
try:
|
| 312 |
+
print("Executing command: retrieve_memory")
|
| 313 |
+
retrieved_memory = agent_interface(command="retrieve_memory", query_text_input=dummy_text_input, query_image_input=dummy_image_input)
|
| 314 |
+
print(f"Retrieved memory shape: {retrieved_memory.shape}")
|
| 315 |
+
except Exception as e:
|
| 316 |
+
print(f"Error executing retrieve_memory: {e}")
|
| 317 |
+
|
| 318 |
+
# 保存整合後的模型 (只保存可訓練的參數)
|
| 319 |
+
state_dict_to_save = integrated_model.state_dict()
|
| 320 |
+
# 移除凍結的 vision_encoder 權重,因為它們是預訓練的,不需要保存到 safetensors
|
| 321 |
+
keys_to_remove = [key for key in state_dict_to_save.keys() if 'vision_encoder' in key]
|
| 322 |
+
for key in keys_to_remove:
|
| 323 |
+
del state_dict_to_save[key]
|
| 324 |
+
|
| 325 |
+
# 確保所有張量都是連續的
|
| 326 |
+
for key in state_dict_to_save:
|
| 327 |
+
if isinstance(state_dict_to_save[key], torch.Tensor):
|
| 328 |
+
state_dict_to_save[key] = state_dict_to_save[key].contiguous()
|
| 329 |
+
|
| 330 |
+
safetensors_save_file(state_dict_to_save, "fully_integrated_model.safetensors")
|
| 331 |
+
print("Fully integrated model saved to fully_integrated_model.safetensors")
|
| 332 |
+
|
| 333 |
+
# --- On-Device Compute 部署考慮 (此處僅為說明,不實作) ---
|
| 334 |
+
print("\n--- On-Device Compute Considerations ---")
|
| 335 |
+
print("To enable On-Device Compute, this model would typically undergo further optimization steps after training:")
|
| 336 |
+
print("1. Quantization: Convert model weights and activations to lower precision (e.g., INT8) to reduce size and speed up inference.")
|
| 337 |
+
print("2. Pruning: Remove redundant connections/neurons to make the model sparse.")
|
| 338 |
+
print("3. Export to optimized formats: Convert to formats like ONNX, TensorFlow Lite, or Core ML for efficient deployment on edge devices.")
|
| 339 |
+
print("4. Hardware-specific optimization: Utilize dedicated AI accelerators (NPUs) on target devices.")
|
| 340 |
+
print("These steps are part of the deployment pipeline and are not directly implemented in the PyTorch model definition.")
|
| 341 |
+
|