Cogent-ai commited on
Commit
bfe637c
·
verified ·
1 Parent(s): beb74b4

Upload integrated_model_design.py

Browse files
Files changed (1) hide show
  1. integrated_model_design.py +341 -0
integrated_model_design.py ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn as nn
4
+ from safetensors.torch import save_file as safetensors_save_file
5
+ from torchvision import models, transforms
6
+ from PIL import Image
7
+ import safetensors
8
+ import os
9
+
10
+ # --- 1. 原始模型架構 (從 reconstruct_original_model.py 複製) ---
11
+ class OriginalMoETransformerBlock(nn.Module):
12
+ def __init__(self, input_dim, hidden_dim, output_dim, num_experts):
13
+ super().__init__()
14
+ self.num_experts = num_experts
15
+ self.input_dim = input_dim
16
+ self.hidden_dim = hidden_dim
17
+ self.output_dim = output_dim
18
+
19
+ self.experts_w1 = nn.ModuleList([nn.Linear(input_dim, hidden_dim, bias=False) for _ in range(num_experts)])
20
+ self.experts_w2 = nn.ModuleList([nn.Linear(hidden_dim, output_dim, bias=False) for _ in range(num_experts)])
21
+ self.gate = nn.Linear(input_dim, num_experts, bias=False)
22
+
23
+ def forward(self, x):
24
+ gate_logits = self.gate(x)
25
+ weights = torch.softmax(gate_logits, dim=-1)
26
+
27
+ expert_outputs = torch.empty(x.shape[0], self.num_experts, self.output_dim, device=x.device)
28
+ for i in range(self.num_experts):
29
+ expert_outputs[:, i, :] = self.experts_w2[i](self.experts_w1[i](x))
30
+
31
+ output = torch.sum(expert_outputs * weights.unsqueeze(-1), dim=1)
32
+
33
+ return output
34
+
35
+ class OriginalModelReconstructed(nn.Module):
36
+ def __init__(self, vocab_size, embedding_dim, moe_hidden_dim, num_experts):
37
+ super().__init__()
38
+ self.embeddings = nn.Embedding(vocab_size, embedding_dim)
39
+ self.transformer_block_0 = OriginalMoETransformerBlock(embedding_dim, moe_hidden_dim, embedding_dim, num_experts)
40
+ self.norm = nn.LayerNorm(embedding_dim)
41
+ self.output_layer = nn.Linear(embedding_dim, vocab_size)
42
+
43
+ def forward(self, x):
44
+ x = self.embeddings(x).squeeze(1)
45
+ x = self.transformer_block_0(x)
46
+ x = self.norm(x)
47
+ x = self.output_layer(x)
48
+ return x
49
+
50
+ # --- 2. 記憶共生引擎模組 (Person X Memory Symbiosis Engine) ---
51
+ # 這個模組將負責存儲、檢索和整合用戶的歷史記憶。
52
+ # 這裡我們使用一個簡化的記憶網絡作為示例,實際實現會更複雜。
53
+ class MemorySymbiosisEngine(nn.Module):
54
+ def __init__(self, embedding_dim, memory_slots=10, memory_dim=256):
55
+ super().__init__()
56
+ self.memory_slots = memory_slots
57
+ self.memory_dim = memory_dim
58
+
59
+ # 記憶存儲:簡單的鍵值對記憶,這裡用可學習的張量模擬
60
+ self.memory_keys = nn.Parameter(torch.randn(memory_slots, memory_dim))
61
+ self.memory_values = nn.Parameter(torch.randn(memory_slots, embedding_dim)) # 存儲與 embedding_dim 兼容的記憶
62
+
63
+ # 記憶讀取機制:使用注意力機制從記憶中檢索相關信息
64
+ self.query_projection = nn.Linear(embedding_dim, memory_dim)
65
+ self.memory_read_fusion = nn.Linear(embedding_dim + embedding_dim, embedding_dim) # 融合查詢和讀取到的記憶
66
+
67
+ def forward(self, current_features, user_profile_embedding=None):
68
+ # current_features: 當前輸入的融合特徵 (batch_size, embedding_dim)
69
+
70
+ # 生成查詢向量
71
+ query = self.query_projection(current_features) # (batch_size, memory_dim)
72
+
73
+ # 計算查詢與記憶鍵的相似度 (點積注意力)
74
+ attention_scores = torch.matmul(query, self.memory_keys.T) # (batch_size, memory_slots)
75
+ attention_weights = torch.softmax(attention_scores, dim=-1) # (batch_size, memory_slots)
76
+
77
+ # 根據權重讀取記憶值
78
+ read_memory = torch.matmul(attention_weights, self.memory_values) # (batch_size, embedding_dim)
79
+
80
+ # 將讀取到的記憶與當前特徵融合
81
+ fused_with_memory = torch.cat((current_features, read_memory), dim=-1)
82
+ output_features = self.memory_read_fusion(fused_with_memory)
83
+
84
+ # 記憶更新機制 (簡化:這裡不實作複雜的記憶寫入,假定記憶是預訓練或緩慢更新的)
85
+ return output_features
86
+
87
+ # --- 3. 智能體生態框架接口 (Agent Matrix Intelligent Agent Ecosystem Framework) ---
88
+ # 這個模組將作為模型與外部 Agent Matrix 框架交互的接口。
89
+ # 模型本身作為一個智能體,接收指令,輸出結果。
90
+ # 這裡我們用一個簡單的接口類來模擬,實際的框架交互會通過 RPC 或消息隊列實現。
91
+ class AgentMatrixInterface(nn.Module):
92
+ def __init__(self, model_core):
93
+ super().__init__()
94
+ self.model_core = model_core # 核心模型,負責處理多模態輸入和記憶
95
+
96
+ # 假設 Agent Matrix 框架會通過一個 "command" 來指示模型執行什麼任務
97
+ # 這裡我們模擬一個簡單的任務映射
98
+ self.task_mapping = {
99
+ "analyze_image_text": self._analyze_image_text,
100
+ "retrieve_memory": self._retrieve_memory,
101
+ "generate_response": self._generate_response
102
+ }
103
+
104
+ def _analyze_image_text(self, text_input, image_input):
105
+ # 這裡調用核心模型的前向傳播,獲取輸出
106
+ return self.model_core(text_input, image_input, return_fused_features=True) # 返回融合後的特徵
107
+
108
+ def _retrieve_memory(self, query_text_input, query_image_input=None):
109
+ # 模擬記憶檢索,可能需要一個單獨的記憶查詢模組
110
+ # 暫時直接調用核心模型,讓記憶模組自行處理
111
+ # 這裡我們假設模型能夠在 forward 內部處理記憶檢索
112
+ dummy_image = torch.randn(1, 3, 224, 224) # 假設一個 dummy image
113
+ dummy_text = torch.tensor([0]) # 假設一個 dummy text token
114
+ # 為了演示,直接從記憶引擎讀取
115
+ text_features = self.model_core.embeddings(query_text_input)
116
+ if text_features.dim() == 3:
117
+ text_features = text_features.squeeze(1)
118
+
119
+ if query_image_input is not None:
120
+ image_features = self.model_core.vision_encoder(query_image_input)
121
+ image_features = image_features.view(image_features.size(0), -1)
122
+ image_features = self.model_core.vision_projection(image_features)
123
+ current_features = self.model_core.initial_fusion_layer(torch.cat((text_features, image_features), dim=1))
124
+ else:
125
+ current_features = text_features # 如果沒有圖像輸入,則只使用文本特徵
126
+
127
+ return self.model_core.memory_engine(current_features)
128
+
129
+ def _generate_response(self, text_input, image_input):
130
+ return self.model_core(text_input, image_input)
131
+
132
+ def forward(self, command, **kwargs):
133
+ if command in self.task_mapping:
134
+ return self.task_mapping[command](**kwargs)
135
+ else:
136
+ raise ValueError(f"Unknown command: {command}")
137
+
138
+ # --- 4. 整合後的完整模型架構 ---
139
+ # 整合 On-Device Compute 的考慮:
140
+ # 這裡的架構設計本身就是輕量化的,embedding_dim 較小。
141
+ # 為了實現 On-Device Compute,我們在訓練後會對模型進行量化、剪枝等優化。
142
+ # 這部分不會直接體現在 PyTorch 模型定義中,而是在部署時進行。
143
+
144
+ class FullyIntegratedModel(nn.Module):
145
+ def __init__(self, original_model_path, vocab_size, embedding_dim, moe_hidden_dim, num_experts, visual_feature_dim=256,
146
+ memory_slots=10, memory_dim=256):
147
+ super().__init__()
148
+
149
+ state_dict = {}
150
+ if original_model_path:
151
+ with safetensors.safe_open(original_model_path, framework="pt", device="cpu") as f:
152
+ for key in f.keys():
153
+ state_dict[key] = f.get_tensor(key)
154
+
155
+ # 原始模型的核心部分,詞彙量和嵌入維度保持與原始模型兼容
156
+ # 這裡我們使用原始的 vocab_size 和 embedding_dim 來載入原始模型的 MoE 權重
157
+ # 之後我們會替換 embeddings 和 output_layer 以支持新的 vocab_size
158
+ original_vocab_size = 5000 # 假設原始模型的詞彙量
159
+ original_embedding_dim = 64 # 假設原始模型的 embedding_dim
160
+
161
+ self.original_model_core = OriginalModelReconstructed(original_vocab_size, original_embedding_dim, moe_hidden_dim, num_experts)
162
+
163
+ # 載入原始權重到核心模型
164
+ self.original_model_core.norm.weight.data = state_dict["gamma"]
165
+ self.original_model_core.norm.bias.data = state_dict["beta"]
166
+ for i in range(num_experts):
167
+ self.original_model_core.transformer_block_0.experts_w1[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w1.weight"][i].T
168
+ self.original_model_core.transformer_block_0.experts_w2[i].weight.data = state_dict[f"transformer_block.0.moe.experts.w2.weight"][i].T
169
+ self.original_model_core.transformer_block_0.gate.weight.data = state_dict["transformer_block.0.moe.gate.weight"].T
170
+
171
+ # 凍結原始模型的 Transformer Block 和 LayerNorm 權重
172
+ for param in self.original_model_core.transformer_block_0.parameters():
173
+ param.requires_grad = False
174
+ for param in self.original_model_core.norm.parameters():
175
+ param.requires_grad = False
176
+
177
+ # 重新定義 embeddings 和 output_layer 以支持新的 vocab_size
178
+ self.embeddings = nn.Embedding(vocab_size, embedding_dim)
179
+ self.output_layer = nn.Linear(embedding_dim, vocab_size)
180
+
181
+ # 視覺前端:使用預訓練的 ResNet18 作為圖像編碼器
182
+ print("Initializing vision encoder (ResNet18). This may take some time to download weights...")
183
+ self.vision_encoder = models.resnet18(weights=models.ResNet18_Weights.IMAGENET1K_V1)
184
+ self.vision_encoder = nn.Sequential(*list(self.vision_encoder.children())[:-1])
185
+ print("Vision encoder initialized.")
186
+ self.vision_projection = nn.Linear(512, visual_feature_dim)
187
+
188
+ # 凍結視覺編碼器權重
189
+ for param in self.vision_encoder.parameters():
190
+ param.requires_grad = False
191
+
192
+ # 特徵融合層:將視覺特徵與文本特徵融合
193
+ # 這��的 embedding_dim 是新的 embedding_dim
194
+ self.initial_fusion_layer = nn.Linear(visual_feature_dim + embedding_dim, embedding_dim)
195
+
196
+ # 記憶共生引擎
197
+ self.memory_engine = MemorySymbiosisEngine(embedding_dim, memory_slots, memory_dim)
198
+
199
+ # 最終融合層:融合記憶引擎的輸出
200
+ self.final_fusion_layer = nn.Linear(embedding_dim, embedding_dim) # 記憶引擎輸出也是 embedding_dim
201
+
202
+ def forward(self, text_input, image_input, user_profile_embedding=None, return_fused_features=False):
203
+ # 1. 處理文本輸入
204
+ text_features = self.embeddings(text_input)
205
+ if text_features.dim() == 3:
206
+ text_features = text_features.squeeze(1)
207
+
208
+ # 2. 處理圖像輸入
209
+ image_features = self.vision_encoder(image_input)
210
+ image_features = image_features.view(image_features.size(0), -1)
211
+ image_features = self.vision_projection(image_features)
212
+
213
+ # 3. 初始特徵融合 (文本 + 視覺)
214
+ fused_initial_features = torch.cat((text_features, image_features), dim=1)
215
+ fused_initial_features = self.initial_fusion_layer(fused_initial_features)
216
+
217
+ if return_fused_features:
218
+ return fused_initial_features
219
+
220
+ # 4. 記憶共生引擎處理
221
+ # 將融合後的特徵傳遞給記憶引擎,獲取記憶增強後的特徵
222
+ memory_enhanced_features = self.memory_engine(fused_initial_features, user_profile_embedding)
223
+
224
+ # 5. 最終融合層 (可選,這裡直接使用記憶引擎的輸出)
225
+ # memory_enhanced_features = self.final_fusion_layer(memory_enhanced_features)
226
+
227
+ # 6. 傳遞給原始模型的 MoE Transformer Block
228
+ # 這裡使用 self.original_model_core 的 transformer_block_0 和 norm
229
+ x = self.original_model_core.transformer_block_0(memory_enhanced_features)
230
+ x = self.original_model_core.norm(x)
231
+
232
+ # 7. 輸出層
233
+ output = self.output_layer(x)
234
+ return output
235
+
236
+
237
+ # 範例使用
238
+ if __name__ == "__main__":
239
+ original_model_path = "/home/ubuntu/upload/moe_model.safetensors"
240
+
241
+ # 模型參數
242
+ # 這裡的 vocab_size 和 embedding_dim 應該與您在 integrate_vision_retained.py 中使用的兼容
243
+ # 為了演示,我們使用一個較小的 vocab_size 和 embedding_dim
244
+ vocab_size = 10000 # 示例詞彙量
245
+ embedding_dim = 64 # 嵌入維度,與原始 MoE Block 兼容
246
+ moe_hidden_dim = 192
247
+ num_experts = 16
248
+ visual_feature_dim = 256
249
+ memory_slots = 10
250
+ memory_dim = 256
251
+
252
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
253
+
254
+ # 初始化整合模型
255
+ integrated_model = FullyIntegratedModel(
256
+ original_model_path=original_model_path,
257
+ vocab_size=vocab_size,
258
+ embedding_dim=embedding_dim,
259
+ moe_hidden_dim=moe_hidden_dim,
260
+ num_experts=num_experts,
261
+ visual_feature_dim=visual_feature_dim,
262
+ memory_slots=memory_slots,
263
+ memory_dim=memory_dim
264
+ ).to(device)
265
+ integrated_model.eval() # 設置為評估模式
266
+
267
+ print("Fully Integrated Model initialized successfully.")
268
+
269
+ # 檢查 ResNet18 是否已下載
270
+ resnet_cache_dir = torch.hub.get_dir()
271
+ print(f"PyTorch Hub cache directory: {resnet_cache_dir}")
272
+ resnet_weights_path = os.path.join(resnet_cache_dir, "checkpoints", "resnet18-f37072fd.pth")
273
+ if os.path.exists(resnet_weights_path):
274
+ print(f"ResNet18 weights found at: {resnet_weights_path}")
275
+ else:
276
+ print("ResNet18 weights not found in cache. They might be downloaded during initialization.")
277
+
278
+ # 計算總參數數量
279
+ total_params = sum(p.numel() for p in integrated_model.parameters() if p.requires_grad)
280
+ print(f"Total trainable parameters: {total_params / 1_000_000:.2f}M")
281
+ total_all_params = sum(p.numel() for p in integrated_model.parameters())
282
+ print(f"Total all parameters (including frozen): {total_all_params / 1_000_000:.2f}M")
283
+
284
+ # --- 模擬 Agent Matrix 框架交互 ---
285
+ agent_interface = AgentMatrixInterface(integrated_model)
286
+ print("Agent Matrix Interface initialized.")
287
+
288
+ # 模擬輸入
289
+ dummy_text_input = torch.tensor([[100]], dtype=torch.long).to(device) # Batch size 1, 1 token
290
+ dummy_image_input = torch.randn(1, 3, 224, 224).to(device) # Batch size 1, 3 channels, 224x224
291
+
292
+ print("\n--- Simulating Agent Matrix Commands ---")
293
+
294
+ # 模擬 'analyze_image_text' 命令
295
+ try:
296
+ print("Executing command: analyze_image_text")
297
+ fused_features = agent_interface(command="analyze_image_text", text_input=dummy_text_input, image_input=dummy_image_input)
298
+ print(f"Analyzed features shape: {fused_features.shape}")
299
+ except Exception as e:
300
+ print(f"Error executing analyze_image_text: {e}")
301
+
302
+ # 模擬 'generate_response' 命令
303
+ try:
304
+ print("Executing command: generate_response")
305
+ output_logits = agent_interface(command="generate_response", text_input=dummy_text_input, image_input=dummy_image_input)
306
+ print(f"Generated response logits shape: {output_logits.shape}")
307
+ except Exception as e:
308
+ print(f"Error executing generate_response: {e}")
309
+
310
+ # 模擬 'retrieve_memory' 命令
311
+ try:
312
+ print("Executing command: retrieve_memory")
313
+ retrieved_memory = agent_interface(command="retrieve_memory", query_text_input=dummy_text_input, query_image_input=dummy_image_input)
314
+ print(f"Retrieved memory shape: {retrieved_memory.shape}")
315
+ except Exception as e:
316
+ print(f"Error executing retrieve_memory: {e}")
317
+
318
+ # 保存整合後的模型 (只保存可訓練的參數)
319
+ state_dict_to_save = integrated_model.state_dict()
320
+ # 移除凍結的 vision_encoder 權重,因為它們是預訓練的,不需要保存到 safetensors
321
+ keys_to_remove = [key for key in state_dict_to_save.keys() if 'vision_encoder' in key]
322
+ for key in keys_to_remove:
323
+ del state_dict_to_save[key]
324
+
325
+ # 確保所有張量都是連續的
326
+ for key in state_dict_to_save:
327
+ if isinstance(state_dict_to_save[key], torch.Tensor):
328
+ state_dict_to_save[key] = state_dict_to_save[key].contiguous()
329
+
330
+ safetensors_save_file(state_dict_to_save, "fully_integrated_model.safetensors")
331
+ print("Fully integrated model saved to fully_integrated_model.safetensors")
332
+
333
+ # --- On-Device Compute 部署考慮 (此處僅為說明,不實作) ---
334
+ print("\n--- On-Device Compute Considerations ---")
335
+ print("To enable On-Device Compute, this model would typically undergo further optimization steps after training:")
336
+ print("1. Quantization: Convert model weights and activations to lower precision (e.g., INT8) to reduce size and speed up inference.")
337
+ print("2. Pruning: Remove redundant connections/neurons to make the model sparse.")
338
+ print("3. Export to optimized formats: Convert to formats like ONNX, TensorFlow Lite, or Core ML for efficient deployment on edge devices.")
339
+ print("4. Hardware-specific optimization: Utilize dedicated AI accelerators (NPUs) on target devices.")
340
+ print("These steps are part of the deployment pipeline and are not directly implemented in the PyTorch model definition.")
341
+