Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,73 +1,51 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
base_model: meta-llama/Llama-3.2-1B-Instruct
|
| 3 |
-
library_name: peft
|
| 4 |
-
model_name: dpo_llm_judge_model
|
| 5 |
tags:
|
| 6 |
-
- base_model:adapter:meta-llama/Llama-3.2-1B-Instruct
|
| 7 |
- dpo
|
| 8 |
-
-
|
| 9 |
-
-
|
| 10 |
-
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 13 |
---
|
| 14 |
|
| 15 |
-
#
|
| 16 |
|
| 17 |
-
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct).
|
| 18 |
-
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 19 |
|
| 20 |
-
##
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
## Training procedure
|
| 32 |
|
| 33 |
-
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
### Framework versions
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
- Transformers: 4.55.0
|
| 43 |
-
- Pytorch: 2.5.1+cu121
|
| 44 |
-
- Datasets: 4.0.0
|
| 45 |
-
- Tokenizers: 0.21.4
|
| 46 |
|
| 47 |
-
##
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
@inproceedings{rafailov2023direct,
|
| 53 |
-
title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
|
| 54 |
-
author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
|
| 55 |
-
year = 2023,
|
| 56 |
-
booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
|
| 57 |
-
url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
|
| 58 |
-
editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
|
| 59 |
-
}
|
| 60 |
-
```
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
```bibtex
|
| 65 |
-
@misc{vonwerra2022trl,
|
| 66 |
-
title = {{TRL: Transformer Reinforcement Learning}},
|
| 67 |
-
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
|
| 68 |
-
year = 2020,
|
| 69 |
-
journal = {GitHub repository},
|
| 70 |
-
publisher = {GitHub},
|
| 71 |
-
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 72 |
-
}
|
| 73 |
-
```
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
base_model: meta-llama/Llama-3.2-1B-Instruct
|
|
|
|
|
|
|
| 4 |
tags:
|
|
|
|
| 5 |
- dpo
|
| 6 |
+
- peft
|
| 7 |
+
- llama
|
| 8 |
+
- preference-learning
|
| 9 |
+
model-index:
|
| 10 |
+
- name: llama3-dpo-llm judge
|
| 11 |
+
results: []
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# Llama-3.2-1B DPO LLM Judge
|
| 15 |
|
| 16 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) using Direct Preference Optimization (DPO).
|
|
|
|
| 17 |
|
| 18 |
+
## Model Details
|
| 19 |
|
| 20 |
+
- **Base Model**: meta-llama/Llama-3.2-1B-Instruct
|
| 21 |
+
- **Training Method**: Direct Preference Optimization (DPO)
|
| 22 |
+
- **Preference Source**: LLM Judge
|
| 23 |
+
- **LoRA Configuration**:
|
| 24 |
+
- r: 8
|
| 25 |
+
- alpha: 16
|
| 26 |
+
- target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']
|
| 27 |
+
- **Training Steps**: 250
|
| 28 |
+
- **Learning Rate**: 0.0002
|
|
|
|
| 29 |
|
| 30 |
+
## Usage
|
| 31 |
|
| 32 |
+
```python
|
| 33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 34 |
+
from peft import PeftModel
|
| 35 |
|
| 36 |
+
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
|
| 37 |
+
model = PeftModel.from_pretrained(base_model, "pyamy/llama3-dpo-llm judge")
|
|
|
|
| 38 |
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct")
|
| 40 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
## Training Details
|
| 43 |
|
| 44 |
+
- Dataset: 50 instructions from LIMA
|
| 45 |
+
- Responses per instruction: 5
|
| 46 |
+
- Preference judgment: LLM Judge
|
| 47 |
+
- Training framework: TRL DPOTrainer
|
| 48 |
|
| 49 |
+
## Performance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
See evaluation results in the repository for detailed performance metrics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|