zhaicunqi commited on
Commit
ee2226b
·
verified ·
1 Parent(s): 5d445c4

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ZhinaoForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_zhinao.ZhinaoConfig",
8
+ "AutoModelForCausalLM": "modeling_zhinao.ZhinaoForCausalLM"
9
+ },
10
+ "flah-attn_version": "2.5.5",
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.01,
14
+ "intermediate_size": 13056,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 28,
17
+ "model_type": "zhinao",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 8,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.51.0",
27
+ "use_cache": true,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 158464
30
+ }
configuration_zhinao.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+
5
+ logger = logging.get_logger(__name__)
6
+
7
+
8
+ class ZhinaoConfig(PretrainedConfig):
9
+ r"""
10
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
11
+ documentation from [`PretrainedConfig`] for more information.
12
+
13
+
14
+ Args:
15
+ vocab_size (`int`, *optional*, defaults to 158464):
16
+ Vocabulary size of the Zhinao model. Defines the number of different tokens that can be represented by the
17
+ `inputs_ids` passed when calling [`ZhinaoModel`]
18
+ hidden_size (`int`, *optional*, defaults to 4096):
19
+ Dimension of the hidden representations.
20
+ intermediate_size (`int`, *optional*, defaults to 13056):
21
+ Dimension of the MLP representations.
22
+ num_hidden_layers (`int`, *optional*, defaults to 32):
23
+ Number of hidden layers in the Transformer encoder.
24
+ num_attention_heads (`int`, *optional*, defaults to 32):
25
+ Number of attention heads for each attention layer in the Transformer encoder.
26
+ num_key_value_heads (`int`, *optional*, defaults to 32):
27
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
28
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
29
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
30
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
31
+ by meanpooling all the original heads within that group. For more details checkout [this
32
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
33
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
34
+ The non-linear activation function (function or string) in the decoder.
35
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
36
+ The maximum sequence length that this model might ever be used with.
37
+ initializer_range (`float`, *optional*, defaults to 0.02):
38
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
39
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
40
+ The epsilon used by the rms normalization layers.
41
+ use_cache (`bool`, *optional*, defaults to `True`):
42
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
43
+ relevant if `config.is_decoder=True`.
44
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
45
+ Whether the model's input and output word embeddings should be tied.
46
+ rope_theta (`float`, *optional*, defaults to 10000.0):
47
+ The base period of the RoPE embeddings.
48
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
49
+ Whether to use sliding window attention.
50
+ sliding_window (`int`, *optional*, defaults to 4096):
51
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
52
+ max_window_layers (`int`, *optional*, defaults to 28):
53
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+
57
+ ```python
58
+ >>> from transformers import ZhinaoModel, ZhinaoConfig
59
+
60
+ >>> # Initializing a Zhinao style configuration
61
+ >>> configuration = ZhinaoConfig()
62
+
63
+ >>> # Initializing a model from the Zhinao-7B style configuration
64
+ >>> model = Zhinao2Model(configuration)
65
+
66
+ >>> # Accessing the model configuration
67
+ >>> configuration = model.config
68
+ ```"""
69
+
70
+ model_type = "zhinao"
71
+ keys_to_ignore_at_inference = ["past_key_values"]
72
+
73
+ def __init__(
74
+ self,
75
+ vocab_size=158464,
76
+ hidden_size=4096,
77
+ intermediate_size=13056,
78
+ num_hidden_layers=32,
79
+ num_attention_heads=32,
80
+ num_key_value_heads=32,
81
+ hidden_act="silu",
82
+ max_position_embeddings=4096,
83
+ initializer_range=0.01,
84
+ rms_norm_eps=1e-5,
85
+ use_cache=True,
86
+ tie_word_embeddings=False,
87
+ rope_theta=10000.0,
88
+ use_sliding_window=False,
89
+ sliding_window=4096,
90
+ max_window_layers=28,
91
+ attention_dropout=0.0,
92
+ **kwargs,
93
+ ):
94
+ self.vocab_size = vocab_size
95
+ self.max_position_embeddings = max_position_embeddings
96
+ self.hidden_size = hidden_size
97
+ self.intermediate_size = intermediate_size
98
+ self.num_hidden_layers = num_hidden_layers
99
+ self.num_attention_heads = num_attention_heads
100
+ self.use_sliding_window = use_sliding_window
101
+ self.sliding_window = sliding_window if use_sliding_window else None
102
+ self.max_window_layers = max_window_layers
103
+
104
+ # for backward compatibility
105
+ if num_key_value_heads is None:
106
+ num_key_value_heads = num_attention_heads
107
+
108
+ self.num_key_value_heads = num_key_value_heads
109
+ self.hidden_act = hidden_act
110
+ self.initializer_range = initializer_range
111
+ self.rms_norm_eps = rms_norm_eps
112
+ self.use_cache = use_cache
113
+ self.rope_theta = rope_theta
114
+ self.attention_dropout = attention_dropout
115
+
116
+ super().__init__(
117
+ tie_word_embeddings=tie_word_embeddings,
118
+ **kwargs,
119
+ )
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 158326,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 158326,
6
+ 158332,
7
+ 158333
8
+ ],
9
+ "pad_token_id": 158326,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.7,
12
+ "top_k": 20,
13
+ "top_p": 0.8,
14
+ "transformers_version": "4.51.0"
15
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4346b1c2e07ce69df62a60f7f8e05e89bfba8e1ec5b102422b0a64fd2547859e
3
+ size 4991500768
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53721c92a51c8282e6b600899012711ced0aa48ec47130126c6b6d9605b61cad
3
+ size 4997868656
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e7c4cc4a03889e94bc8d9eaea7e507ce7f19612c631d7ba5b2ea86338a91869
3
+ size 4261734000
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d7f92c434e684d79750be0f8a525e1f3051aea3d064915a7a3f53f828991639
3
+ size 1298137216
model.safetensors.index.json ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15549210624
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
25
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.15.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.16.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.16.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.17.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
87
+ "model.layers.17.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.18.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
95
+ "model.layers.18.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.19.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.19.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
105
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
106
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
107
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
108
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
109
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
110
+ "model.layers.2.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
111
+ "model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
112
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.20.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
119
+ "model.layers.20.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.21.self_attn.qkv_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.22.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
135
+ "model.layers.22.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.23.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
143
+ "model.layers.23.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.24.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.24.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.25.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
159
+ "model.layers.25.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.26.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
167
+ "model.layers.26.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.27.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.27.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.28.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
183
+ "model.layers.28.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.29.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
191
+ "model.layers.29.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
193
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
194
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
195
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
196
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.3.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
199
+ "model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.30.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
207
+ "model.layers.30.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.31.self_attn.qkv_proj.bias": "model-00003-of-00004.safetensors",
215
+ "model.layers.31.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.4.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
223
+ "model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
227
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
228
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
229
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
230
+ "model.layers.5.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
231
+ "model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
232
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
233
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
234
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
235
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
236
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
238
+ "model.layers.6.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
239
+ "model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
240
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
241
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
242
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.7.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
247
+ "model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.8.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
255
+ "model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
257
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
258
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
262
+ "model.layers.9.self_attn.qkv_proj.bias": "model-00001-of-00004.safetensors",
263
+ "model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.norm.weight": "model-00003-of-00004.safetensors"
265
+ }
266
+ }
modeling_zhinao.py ADDED
@@ -0,0 +1,1012 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 360zhinao and the HuggingFace Inc. team. All rights reserved.
2
+ # This code is built upon Huggingface's transformers repository.
3
+
4
+ import math
5
+ from typing import List, Optional, Tuple, Union
6
+
7
+ import torch
8
+ import torch.utils.checkpoint
9
+ from torch import nn
10
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
11
+
12
+ from transformers.activations import ACT2FN
13
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
14
+ from .configuration_zhinao import ZhinaoConfig
15
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
16
+ from transformers.modeling_outputs import (
17
+ BaseModelOutputWithPast,
18
+ CausalLMOutputWithPast,
19
+ SequenceClassifierOutputWithPast,
20
+ TokenClassifierOutput,
21
+ )
22
+ from transformers.modeling_utils import PreTrainedModel
23
+ from transformers.utils import (
24
+ add_start_docstrings,
25
+ add_start_docstrings_to_model_forward,
26
+ is_flash_attn_2_available,
27
+ is_flash_attn_greater_or_equal_2_10,
28
+ logging,
29
+ replace_return_docstrings,
30
+ )
31
+
32
+ if is_flash_attn_2_available():
33
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
34
+
35
+ logger = logging.get_logger(__name__)
36
+ _CONFIG_FOR_DOC = "ZhinaoConfig"
37
+
38
+
39
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Zhinao
40
+ class ZhinaoRMSNorm(nn.Module):
41
+ def __init__(self, hidden_size, eps=1e-6):
42
+ """
43
+ ZhinaoRMSNorm is equivalent to T5LayerNorm
44
+ """
45
+ super().__init__()
46
+ self.weight = nn.Parameter(torch.ones(hidden_size))
47
+ self.variance_epsilon = eps
48
+
49
+ def forward(self, hidden_states):
50
+ input_dtype = hidden_states.dtype
51
+ hidden_states = hidden_states.to(torch.float32)
52
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
53
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
54
+ return self.weight * hidden_states.to(input_dtype)
55
+
56
+
57
+ # Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Zhinao
58
+ class ZhinaoRotaryEmbedding(nn.Module):
59
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
60
+ super().__init__()
61
+
62
+ self.dim = dim
63
+ self.max_position_embeddings = max_position_embeddings
64
+ self.base = base
65
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
66
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
67
+
68
+ # Build here to make `torch.jit.trace` work.
69
+ self._set_cos_sin_cache(
70
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
71
+ )
72
+
73
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
74
+ self.max_seq_len_cached = seq_len
75
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
76
+
77
+ freqs = torch.outer(t, self.inv_freq)
78
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
79
+ emb = torch.cat((freqs, freqs), dim=-1)
80
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
81
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
82
+
83
+ def forward(self, x, seq_len=None):
84
+ # x: [bs, num_attention_heads, seq_len, head_size]
85
+ if seq_len > self.max_seq_len_cached:
86
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
87
+
88
+ return (
89
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
90
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
91
+ )
92
+
93
+
94
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
95
+ def rotate_half(x):
96
+ """Rotates half the hidden dims of the input."""
97
+ x1 = x[..., : x.shape[-1] // 2]
98
+ x2 = x[..., x.shape[-1] // 2 :]
99
+ return torch.cat((-x2, x1), dim=-1)
100
+
101
+
102
+ # Copied from transformers.models.mixtral.modeling_mixtral.apply_rotary_pos_emb
103
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
104
+ """Applies Rotary Position Embedding to the query and key tensors.
105
+
106
+ Args:
107
+ q (`torch.Tensor`): The query tensor.
108
+ k (`torch.Tensor`): The key tensor.
109
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
110
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
111
+ position_ids (`torch.Tensor`):
112
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
113
+ used to pass offsetted position ids when working with a KV-cache.
114
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
115
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
116
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
117
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
118
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
119
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
120
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
121
+ Returns:
122
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
123
+ """
124
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
125
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
126
+ q_embed = (q * cos) + (rotate_half(q) * sin)
127
+ k_embed = (k * cos) + (rotate_half(k) * sin)
128
+ return q_embed, k_embed
129
+
130
+
131
+ # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Zhinao
132
+ class ZhinaoMLP(nn.Module):
133
+ def __init__(self, config):
134
+ super().__init__()
135
+ self.hidden_size = config.hidden_size
136
+ self.intermediate_size = config.intermediate_size
137
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
138
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
139
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
140
+ self.act_fn = ACT2FN[config.hidden_act]
141
+
142
+ def forward(self, hidden_state):
143
+ return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
144
+
145
+
146
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
147
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
148
+ """
149
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
150
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
151
+ """
152
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
153
+ if n_rep == 1:
154
+ return hidden_states
155
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
156
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
157
+
158
+
159
+ class ZhinaoAttention(nn.Module):
160
+ """
161
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
162
+ and "Generating Long Sequences with Sparse Transformers".
163
+ """
164
+
165
+ def __init__(self, config: ZhinaoConfig, layer_idx: Optional[int] = None):
166
+ super().__init__()
167
+ self.config = config
168
+ self.layer_idx = layer_idx
169
+ if layer_idx is None:
170
+ logger.warning_once(
171
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
172
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
173
+ "when creating this class."
174
+ )
175
+
176
+ self.hidden_size = config.hidden_size
177
+ self.num_heads = config.num_attention_heads
178
+ self.head_dim = self.hidden_size // self.num_heads
179
+ self.num_key_value_heads = config.num_key_value_heads
180
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
181
+ self.max_position_embeddings = config.max_position_embeddings
182
+ self.rope_theta = config.rope_theta
183
+ self.is_causal = True
184
+ self.attention_dropout = config.attention_dropout
185
+
186
+ if (self.head_dim * self.num_heads) != self.hidden_size:
187
+ raise ValueError(
188
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
189
+ f" and `num_heads`: {self.num_heads})."
190
+ )
191
+
192
+ self.qkv_hidden_size = (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim
193
+ self.qkv_proj = nn.Linear(self.hidden_size, self.qkv_hidden_size, bias=True)
194
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
195
+
196
+ self.rotary_emb = ZhinaoRotaryEmbedding(
197
+ self.head_dim,
198
+ max_position_embeddings=self.max_position_embeddings,
199
+ base=self.rope_theta,
200
+ )
201
+
202
+ def forward(
203
+ self,
204
+ hidden_states: torch.Tensor,
205
+ attention_mask: Optional[torch.Tensor] = None,
206
+ position_ids: Optional[torch.LongTensor] = None,
207
+ past_key_value: Optional[Cache] = None,
208
+ output_attentions: bool = False,
209
+ use_cache: bool = False,
210
+ cache_position: Optional[torch.LongTensor] = None,
211
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
212
+ bsz, q_len, _ = hidden_states.size()
213
+
214
+ mixed_x_layer = self.qkv_proj(hidden_states)
215
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
216
+ (self.num_key_value_heads, ((self.num_heads // self.num_key_value_heads + 2) * self.head_dim))
217
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
218
+ query, key_states, value_states = torch.split(
219
+ mixed_x_layer,
220
+ [self.num_heads // self.num_key_value_heads * self.head_dim, self.head_dim, self.head_dim],
221
+ dim=3
222
+ )
223
+ # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn]
224
+ query_states = query.contiguous().view(query.size(0), query.size(1), -1, self.head_dim)
225
+
226
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
227
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
228
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
229
+
230
+ kv_seq_len = key_states.shape[-2]
231
+ if past_key_value is not None:
232
+ if self.layer_idx is None:
233
+ raise ValueError(
234
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
235
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
236
+ "with a layer index."
237
+ )
238
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
239
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
240
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
241
+
242
+ if past_key_value is not None:
243
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
244
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
245
+
246
+ # repeat k/v heads if n_kv_heads < n_heads
247
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
248
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
249
+
250
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
251
+
252
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
253
+ raise ValueError(
254
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
255
+ f" {attn_weights.size()}"
256
+ )
257
+
258
+ if attention_mask is not None: # no matter the length, we just slice it
259
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
260
+ attn_weights = attn_weights + causal_mask
261
+
262
+ # upcast attention to fp32
263
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
264
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
265
+ attn_output = torch.matmul(attn_weights, value_states)
266
+
267
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
268
+ raise ValueError(
269
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
270
+ f" {attn_output.size()}"
271
+ )
272
+
273
+ attn_output = attn_output.transpose(1, 2).contiguous()
274
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
275
+
276
+ attn_output = self.o_proj(attn_output)
277
+
278
+ if not output_attentions:
279
+ attn_weights = None
280
+
281
+ return attn_output, attn_weights, past_key_value
282
+
283
+
284
+ class ZhinaoFlashAttention2(ZhinaoAttention):
285
+ """
286
+ Zhinao flash attention module, following Zhinao attention module. This module inherits from `ZhinaoAttention`
287
+ as the weights of the module stays untouched. The only required change would be on the forward pass
288
+ where it needs to correctly call the public API of flash attention and deal with padding tokens
289
+ in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
290
+ config.max_window_layers layers.
291
+ """
292
+
293
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
294
+ def __init__(self, *args, **kwargs):
295
+ super().__init__(*args, **kwargs)
296
+
297
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
298
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
299
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
300
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
301
+
302
+ def forward(
303
+ self,
304
+ hidden_states: torch.Tensor,
305
+ attention_mask: Optional[torch.Tensor] = None,
306
+ position_ids: Optional[torch.LongTensor] = None,
307
+ past_key_value: Optional[Cache] = None,
308
+ output_attentions: bool = False,
309
+ use_cache: bool = False,
310
+ cache_position: Optional[torch.LongTensor] = None,
311
+ ):
312
+ bsz, q_len, _ = hidden_states.size()
313
+
314
+ mixed_x_layer = self.qkv_proj(hidden_states)
315
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
316
+ (self.num_key_value_heads, ((self.num_heads // self.num_key_value_heads + 2) * self.head_dim))
317
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
318
+ query, key_states, value_states = torch.split(
319
+ mixed_x_layer,
320
+ [self.num_heads // self.num_key_value_heads * self.head_dim, self.head_dim, self.head_dim],
321
+ dim=3
322
+ )
323
+ # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn]
324
+ query_states = query.contiguous().view(query.size(0), query.size(1), -1, self.head_dim)
325
+
326
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
327
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
328
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
329
+
330
+ kv_seq_len = key_states.shape[-2]
331
+ if past_key_value is not None:
332
+ if self.layer_idx is None:
333
+ raise ValueError(
334
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
335
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
336
+ "with a layer index."
337
+ )
338
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
339
+
340
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
341
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
342
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
343
+
344
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
345
+
346
+ if past_key_value is not None:
347
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
348
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
349
+ if (
350
+ getattr(self.config, "sliding_window", None) is not None
351
+ and kv_seq_len > self.config.sliding_window
352
+ and cache_has_contents
353
+ ):
354
+ slicing_tokens = 1 - self.config.sliding_window
355
+
356
+ past_key = past_key_value[self.layer_idx][0]
357
+ past_value = past_key_value[self.layer_idx][1]
358
+
359
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
360
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
361
+
362
+ if past_key.shape[-2] != self.config.sliding_window - 1:
363
+ raise ValueError(
364
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
365
+ f" {past_key.shape}"
366
+ )
367
+
368
+ if attention_mask is not None:
369
+ attention_mask = attention_mask[:, slicing_tokens:]
370
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
371
+
372
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
373
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
374
+
375
+ # repeat k/v heads if n_kv_heads < n_heads
376
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
377
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
378
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
379
+
380
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
381
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
382
+ # cast them back in float16 just to be sure everything works as expected.
383
+ input_dtype = query_states.dtype
384
+ if input_dtype == torch.float32:
385
+ if torch.is_autocast_enabled():
386
+ target_dtype = torch.get_autocast_gpu_dtype()
387
+ # Handle the case where the model is quantized
388
+ elif hasattr(self.config, "_pre_quantization_dtype"):
389
+ target_dtype = self.config._pre_quantization_dtype
390
+ else:
391
+ target_dtype = self.qkv_proj.weight.dtype
392
+
393
+ logger.warning_once(
394
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
395
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
396
+ f" {target_dtype}."
397
+ )
398
+
399
+ query_states = query_states.to(target_dtype)
400
+ key_states = key_states.to(target_dtype)
401
+ value_states = value_states.to(target_dtype)
402
+
403
+ # Reashape to the expected shape for Flash Attention
404
+ query_states = query_states.transpose(1, 2)
405
+ key_states = key_states.transpose(1, 2)
406
+ value_states = value_states.transpose(1, 2)
407
+
408
+ if (
409
+ self.config.use_sliding_window
410
+ and getattr(self.config, "sliding_window", None) is not None
411
+ and self.layer_idx >= self.config.max_window_layers
412
+ ):
413
+ sliding_window = self.config.sliding_window
414
+ else:
415
+ sliding_window = None
416
+
417
+ attn_output = _flash_attention_forward(
418
+ query_states,
419
+ key_states,
420
+ value_states,
421
+ attention_mask,
422
+ q_len,
423
+ dropout=dropout_rate,
424
+ sliding_window=sliding_window,
425
+ is_causal=self.is_causal,
426
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
427
+ )
428
+
429
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
430
+ attn_output = self.o_proj(attn_output)
431
+
432
+ if not output_attentions:
433
+ attn_weights = None
434
+
435
+ return attn_output, attn_weights, past_key_value
436
+
437
+
438
+ # Copied from transformers.models.mixtral.modeling_mixtral.MixtralSdpaAttention with Mixtral->Zhinao
439
+ class ZhinaoSdpaAttention(ZhinaoAttention):
440
+ """
441
+ Zhinao attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
442
+ `ZhinaoAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
443
+ SDPA API.
444
+ """
445
+
446
+ # Adapted from ZhinaoAttention.forward
447
+ def forward(
448
+ self,
449
+ hidden_states: torch.Tensor,
450
+ attention_mask: Optional[torch.Tensor] = None,
451
+ position_ids: Optional[torch.LongTensor] = None,
452
+ past_key_value: Optional[Cache] = None,
453
+ output_attentions: bool = False,
454
+ use_cache: bool = False,
455
+ cache_position: Optional[torch.LongTensor] = None,
456
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
457
+ if output_attentions:
458
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
459
+ logger.warning_once(
460
+ "ZhinaoModel is using ZhinaoSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
461
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
462
+ )
463
+ return super().forward(
464
+ hidden_states=hidden_states,
465
+ attention_mask=attention_mask,
466
+ position_ids=position_ids,
467
+ past_key_value=past_key_value,
468
+ output_attentions=output_attentions,
469
+ use_cache=use_cache,
470
+ )
471
+
472
+ bsz, q_len, _ = hidden_states.size()
473
+
474
+ mixed_x_layer = self.qkv_proj(hidden_states)
475
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
476
+ (self.num_key_value_heads, ((self.num_heads // self.num_key_value_heads + 2) * self.head_dim))
477
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
478
+ query, key_states, value_states = torch.split(
479
+ mixed_x_layer,
480
+ [self.num_heads // self.num_key_value_heads * self.head_dim, self.head_dim, self.head_dim],
481
+ dim=3
482
+ )
483
+ # [sq, b, ng, np/ng * hn] -> [sq, b, np, hn]
484
+ query_states = query.contiguous().view(query.size(0), query.size(1), -1, self.head_dim)
485
+
486
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
487
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
488
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
489
+
490
+ kv_seq_len = key_states.shape[-2]
491
+ if past_key_value is not None:
492
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
493
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
494
+
495
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
496
+
497
+ if past_key_value is not None:
498
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
499
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
500
+
501
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
502
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
503
+
504
+ causal_mask = attention_mask
505
+ if attention_mask is not None: # no matter the length, we just slice it
506
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
507
+
508
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
509
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
510
+ if query_states.device.type == "cuda" and attention_mask is not None:
511
+ query_states = query_states.contiguous()
512
+ key_states = key_states.contiguous()
513
+ value_states = value_states.contiguous()
514
+
515
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
516
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
517
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
518
+ is_causal = True if causal_mask is None and q_len > 1 else False
519
+
520
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
521
+ query_states,
522
+ key_states,
523
+ value_states,
524
+ attn_mask=causal_mask,
525
+ dropout_p=self.attention_dropout if self.training else 0.0,
526
+ is_causal=is_causal,
527
+ )
528
+
529
+ attn_output = attn_output.transpose(1, 2).contiguous()
530
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
531
+
532
+ attn_output = self.o_proj(attn_output)
533
+
534
+ return attn_output, None, past_key_value
535
+
536
+
537
+ Zhinao_ATTENTION_CLASSES = {
538
+ "eager": ZhinaoAttention,
539
+ "flash_attention_2": ZhinaoFlashAttention2,
540
+ "sdpa": ZhinaoSdpaAttention,
541
+ }
542
+
543
+
544
+ class ZhinaoDecoderLayer(nn.Module):
545
+ def __init__(self, config: ZhinaoConfig, layer_idx: int):
546
+ super().__init__()
547
+ self.hidden_size = config.hidden_size
548
+
549
+ if config.sliding_window and config._attn_implementation != "flash_attention_2":
550
+ logger.warning_once(
551
+ f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
552
+ "unexpected results may be encountered."
553
+ )
554
+ if layer_idx == 0:
555
+ print("_attn_implementation:", config._attn_implementation)
556
+ self.self_attn = Zhinao_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
557
+
558
+ self.mlp = ZhinaoMLP(config)
559
+ self.input_layernorm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
560
+ self.post_attention_layernorm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
561
+
562
+ def forward(
563
+ self,
564
+ hidden_states: torch.Tensor,
565
+ attention_mask: Optional[torch.Tensor] = None,
566
+ position_ids: Optional[torch.LongTensor] = None,
567
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
568
+ output_attentions: Optional[bool] = False,
569
+ use_cache: Optional[bool] = False,
570
+ cache_position: Optional[torch.LongTensor] = None,
571
+ **kwargs,
572
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
573
+ """
574
+ Args:
575
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
576
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
577
+ `(batch, sequence_length)` where padding elements are indicated by 0.
578
+ output_attentions (`bool`, *optional*):
579
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
580
+ returned tensors for more detail.
581
+ use_cache (`bool`, *optional*):
582
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
583
+ (see `past_key_values`).
584
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
585
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
586
+ Indices depicting the position of the input sequence tokens in the sequence.
587
+ kwargs (`dict`, *optional*):
588
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
589
+ into the model
590
+ """
591
+
592
+ residual = hidden_states
593
+
594
+ hidden_states = self.input_layernorm(hidden_states)
595
+
596
+ # Self Attention
597
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
598
+ hidden_states=hidden_states,
599
+ attention_mask=attention_mask,
600
+ position_ids=position_ids,
601
+ past_key_value=past_key_value,
602
+ output_attentions=output_attentions,
603
+ use_cache=use_cache,
604
+ cache_position=cache_position,
605
+ )
606
+ hidden_states = residual + hidden_states
607
+
608
+ # Fully Connected
609
+ residual = hidden_states
610
+ hidden_states = self.post_attention_layernorm(hidden_states)
611
+ hidden_states = self.mlp(hidden_states)
612
+ hidden_states = residual + hidden_states
613
+
614
+ outputs = (hidden_states,)
615
+
616
+ if output_attentions:
617
+ outputs += (self_attn_weights,)
618
+
619
+ if use_cache:
620
+ outputs += (present_key_value,)
621
+
622
+ return outputs
623
+
624
+ class ZhinaoPreTrainedModel(PreTrainedModel):
625
+ config_class = ZhinaoConfig
626
+ base_model_prefix = "model"
627
+ supports_gradient_checkpointing = True
628
+ _no_split_modules = ["ZhinaoDecoderLayer"]
629
+ _skip_keys_device_placement = "past_key_values"
630
+ _supports_flash_attn_2 = True
631
+ _supports_sdpa = True
632
+ _supports_cache_class = True
633
+
634
+ def _init_weights(self, module):
635
+ std = self.config.initializer_range
636
+ if isinstance(module, nn.Linear):
637
+ module.weight.data.normal_(mean=0.0, std=std)
638
+ if module.bias is not None:
639
+ module.bias.data.zero_()
640
+ elif isinstance(module, nn.Embedding):
641
+ module.weight.data.normal_(mean=0.0, std=std)
642
+ if module.padding_idx is not None:
643
+ module.weight.data[module.padding_idx].zero_()
644
+
645
+
646
+ class ZhinaoModel(ZhinaoPreTrainedModel):
647
+ """
648
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ZhinaoDecoderLayer`]
649
+
650
+ Args:
651
+ config: ZhinaoConfig
652
+ """
653
+
654
+ def __init__(self, config: ZhinaoConfig):
655
+ super().__init__(config)
656
+ self.padding_idx = config.pad_token_id
657
+ self.vocab_size = config.vocab_size
658
+
659
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
660
+ self.layers = nn.ModuleList(
661
+ [ZhinaoDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
662
+ )
663
+ self._attn_implementation = config._attn_implementation
664
+ self.norm = ZhinaoRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
665
+
666
+ self.gradient_checkpointing = False
667
+ # Initialize weights and apply final processing
668
+ self.post_init()
669
+
670
+ def get_input_embeddings(self):
671
+ return self.embed_tokens
672
+
673
+ def set_input_embeddings(self, value):
674
+ self.embed_tokens = value
675
+
676
+ def forward(
677
+ self,
678
+ input_ids: torch.LongTensor = None,
679
+ attention_mask: Optional[torch.Tensor] = None,
680
+ position_ids: Optional[torch.LongTensor] = None,
681
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
682
+ inputs_embeds: Optional[torch.FloatTensor] = None,
683
+ use_cache: Optional[bool] = None,
684
+ output_attentions: Optional[bool] = None,
685
+ output_hidden_states: Optional[bool] = None,
686
+ return_dict: Optional[bool] = None,
687
+ cache_position: Optional[torch.LongTensor] = None,
688
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
689
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
690
+ output_hidden_states = (
691
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
692
+ )
693
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
694
+
695
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
696
+
697
+ if (input_ids is None) ^ (inputs_embeds is not None):
698
+ raise ValueError(
699
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
700
+ )
701
+
702
+ if self.gradient_checkpointing and self.training:
703
+ if use_cache:
704
+ logger.warning_once(
705
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
706
+ )
707
+ use_cache = False
708
+
709
+ use_legacy_cache = False
710
+ if use_cache and not isinstance(past_key_values, Cache) and not self.training:
711
+ use_legacy_cache = True
712
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
713
+ logger.warning_once(
714
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
715
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
716
+ )
717
+
718
+ if inputs_embeds is None:
719
+ inputs_embeds = self.embed_tokens(input_ids)
720
+
721
+ if cache_position is None:
722
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
723
+ cache_position = torch.arange(
724
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
725
+ )
726
+ if position_ids is None:
727
+ position_ids = cache_position.unsqueeze(0)
728
+
729
+ causal_mask = self._update_causal_mask(
730
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
731
+ )
732
+
733
+ hidden_states = inputs_embeds
734
+
735
+ # decoder layers
736
+ all_hidden_states = () if output_hidden_states else None
737
+ all_self_attns = () if output_attentions else None
738
+ next_decoder_cache = None
739
+
740
+ for decoder_layer in self.layers:
741
+ if output_hidden_states:
742
+ all_hidden_states += (hidden_states,)
743
+
744
+ if self.gradient_checkpointing and self.training:
745
+ layer_outputs = self._gradient_checkpointing_func(
746
+ decoder_layer.__call__,
747
+ hidden_states,
748
+ causal_mask,
749
+ position_ids,
750
+ past_key_values,
751
+ output_attentions,
752
+ use_cache,
753
+ cache_position,
754
+ )
755
+ else:
756
+ layer_outputs = decoder_layer(
757
+ hidden_states,
758
+ attention_mask=causal_mask,
759
+ position_ids=position_ids,
760
+ past_key_value=past_key_values,
761
+ output_attentions=output_attentions,
762
+ use_cache=use_cache,
763
+ cache_position=cache_position,
764
+ )
765
+
766
+ hidden_states = layer_outputs[0]
767
+
768
+ if use_cache:
769
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
770
+
771
+ if output_attentions:
772
+ all_self_attns += (layer_outputs[1],)
773
+
774
+ hidden_states = self.norm(hidden_states)
775
+
776
+ # add hidden states from the last decoder layer
777
+ if output_hidden_states:
778
+ all_hidden_states += (hidden_states,)
779
+
780
+ next_cache = None
781
+ if use_cache:
782
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
783
+
784
+ if not return_dict:
785
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
786
+ return BaseModelOutputWithPast(
787
+ last_hidden_state=hidden_states,
788
+ past_key_values=next_cache,
789
+ hidden_states=all_hidden_states,
790
+ attentions=all_self_attns,
791
+ )
792
+
793
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
794
+ def _update_causal_mask(
795
+ self,
796
+ attention_mask: torch.Tensor,
797
+ input_tensor: torch.Tensor,
798
+ cache_position: torch.Tensor,
799
+ past_key_values: Cache,
800
+ output_attentions: bool,
801
+ ):
802
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
803
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
804
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
805
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
806
+
807
+ if self.config._attn_implementation == "flash_attention_2":
808
+ if attention_mask is not None and 0.0 in attention_mask:
809
+ return attention_mask
810
+ return None
811
+
812
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
813
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
814
+ # to infer the attention mask.
815
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
816
+ using_static_cache = isinstance(past_key_values, StaticCache)
817
+
818
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
819
+ if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
820
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
821
+ attention_mask,
822
+ inputs_embeds=input_tensor,
823
+ past_key_values_length=past_seen_tokens,
824
+ is_training=self.training,
825
+ ):
826
+ return None
827
+
828
+ dtype, device = input_tensor.dtype, input_tensor.device
829
+ min_dtype = torch.finfo(dtype).min
830
+ sequence_length = input_tensor.shape[1]
831
+ if using_static_cache:
832
+ target_length = past_key_values.get_max_length()
833
+ else:
834
+ target_length = (
835
+ attention_mask.shape[-1]
836
+ if isinstance(attention_mask, torch.Tensor)
837
+ else past_seen_tokens + sequence_length + 1
838
+ )
839
+
840
+ if attention_mask is not None and attention_mask.dim() == 4:
841
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
842
+ if attention_mask.max() != 0:
843
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
844
+ causal_mask = attention_mask
845
+ else:
846
+ causal_mask = torch.full(
847
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
848
+ )
849
+ if sequence_length != 1:
850
+ causal_mask = torch.triu(causal_mask, diagonal=1)
851
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
852
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
853
+ if attention_mask is not None:
854
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
855
+ mask_length = attention_mask.shape[-1]
856
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
857
+ padding_mask = padding_mask == 0
858
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
859
+ padding_mask, min_dtype
860
+ )
861
+ if (
862
+ self.config._attn_implementation == "sdpa"
863
+ and attention_mask is not None
864
+ and attention_mask.device.type == "cuda"
865
+ and not output_attentions
866
+ ):
867
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
868
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
869
+ # Details: https://github.com/pytorch/pytorch/issues/110213
870
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
871
+
872
+ return causal_mask
873
+
874
+
875
+ class ZhinaoForCausalLM(ZhinaoPreTrainedModel):
876
+ _tied_weights_keys = ["lm_head.weight"]
877
+
878
+ def __init__(self, config):
879
+ super().__init__(config)
880
+ self.model = ZhinaoModel(config)
881
+ self.vocab_size = config.vocab_size
882
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
883
+
884
+ # Initialize weights and apply final processing
885
+ self.post_init()
886
+
887
+ def get_input_embeddings(self):
888
+ return self.model.embed_tokens
889
+
890
+ def set_input_embeddings(self, value):
891
+ self.model.embed_tokens = value
892
+
893
+ def get_output_embeddings(self):
894
+ return self.lm_head
895
+
896
+ def set_output_embeddings(self, new_embeddings):
897
+ self.lm_head = new_embeddings
898
+
899
+ def set_decoder(self, decoder):
900
+ self.model = decoder
901
+
902
+ def get_decoder(self):
903
+ return self.model
904
+
905
+ def forward(
906
+ self,
907
+ input_ids: torch.LongTensor = None,
908
+ attention_mask: Optional[torch.Tensor] = None,
909
+ position_ids: Optional[torch.LongTensor] = None,
910
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
911
+ inputs_embeds: Optional[torch.FloatTensor] = None,
912
+ labels: Optional[torch.LongTensor] = None,
913
+ use_cache: Optional[bool] = None,
914
+ output_attentions: Optional[bool] = None,
915
+ output_hidden_states: Optional[bool] = None,
916
+ return_dict: Optional[bool] = None,
917
+ cache_position: Optional[torch.LongTensor] = None,
918
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
919
+
920
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
921
+ output_hidden_states = (
922
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
923
+ )
924
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
925
+
926
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
927
+ outputs = self.model(
928
+ input_ids=input_ids,
929
+ attention_mask=attention_mask,
930
+ position_ids=position_ids,
931
+ past_key_values=past_key_values,
932
+ inputs_embeds=inputs_embeds,
933
+ use_cache=use_cache,
934
+ output_attentions=output_attentions,
935
+ output_hidden_states=output_hidden_states,
936
+ return_dict=return_dict,
937
+ cache_position=cache_position,
938
+ )
939
+
940
+ hidden_states = outputs[0]
941
+ logits = self.lm_head(hidden_states)
942
+ logits = logits.float()
943
+
944
+ loss = None
945
+ if labels is not None:
946
+ # Shift so that tokens < n predict n
947
+ shift_logits = logits[..., :-1, :].contiguous()
948
+ shift_labels = labels[..., 1:].contiguous()
949
+ # Flatten the tokens
950
+ loss_fct = CrossEntropyLoss()
951
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
952
+ shift_labels = shift_labels.view(-1)
953
+ # Enable model parallelism
954
+ shift_labels = shift_labels.to(shift_logits.device)
955
+ loss = loss_fct(shift_logits, shift_labels)
956
+
957
+ if not return_dict:
958
+ output = (logits,) + outputs[1:]
959
+ return (loss,) + output if loss is not None else output
960
+
961
+ return CausalLMOutputWithPast(
962
+ loss=loss,
963
+ logits=logits,
964
+ past_key_values=outputs.past_key_values,
965
+ hidden_states=outputs.hidden_states,
966
+ attentions=outputs.attentions,
967
+ )
968
+
969
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.prepare_inputs_for_generation
970
+ def prepare_inputs_for_generation(
971
+ self,
972
+ input_ids,
973
+ past_key_values=None,
974
+ attention_mask=None,
975
+ inputs_embeds=None,
976
+ cache_position=None,
977
+ position_ids=None,
978
+ use_cache=True,
979
+ **kwargs,
980
+ ):
981
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
982
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
983
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
984
+ if past_key_values is not None:
985
+ if inputs_embeds is not None: # Exception 1
986
+ input_ids = input_ids[:, -cache_position.shape[0] :]
987
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
988
+ input_ids = input_ids[:, cache_position]
989
+
990
+ if attention_mask is not None and position_ids is None:
991
+ # create position_ids on the fly for batch generation
992
+ position_ids = attention_mask.long().cumsum(-1) - 1
993
+ position_ids.masked_fill_(attention_mask == 0, 1)
994
+ if past_key_values:
995
+ position_ids = position_ids[:, -input_ids.shape[1] :]
996
+
997
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
998
+ if inputs_embeds is not None and cache_position[0] == 0:
999
+ model_inputs = {"inputs_embeds": inputs_embeds}
1000
+ else:
1001
+ model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
1002
+
1003
+ model_inputs.update(
1004
+ {
1005
+ "position_ids": position_ids,
1006
+ "cache_position": cache_position,
1007
+ "past_key_values": past_key_values,
1008
+ "use_cache": use_cache,
1009
+ "attention_mask": attention_mask,
1010
+ }
1011
+ )
1012
+ return model_inputs
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<pad>"
3
+ }
tokenization_zhinao.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import base64
4
+ import tiktoken
5
+ from typing import Collection, Optional, Dict, List, Set, Tuple, Union
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import PaddingStrategy
8
+ from transformers.tokenization_utils import PreTrainedTokenizer
9
+
10
+
11
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
12
+
13
+
14
+ class SPTokenizer:
15
+ def __init__(self, model_path):
16
+ self.vocab_file = model_path
17
+ self.pad_token = '<pad>'
18
+ self.unk_token = '<unk>'
19
+ self.mask_token = '<mask>'
20
+ self.eod_token = '<eod>'
21
+ self.eop_token = '<eop>'
22
+ self.im_start_token = '<|im_start|>'
23
+ self.im_end_token = '<|im_end|>'
24
+ self.think_eob = "<think>"
25
+ self.think_eod = "</think>"
26
+
27
+ ## special_tokens
28
+ self.SPECIAL_TOKENS = (
29
+ self.pad_token,
30
+ self.unk_token,
31
+ self.mask_token,
32
+ self.eod_token,
33
+ self.eop_token,
34
+ '[space2]', '[space3]', '[space4]', '[space8]',
35
+ self.im_start_token, self.im_end_token,
36
+ self.think_eob, self.think_eod
37
+ )
38
+ self.bulid_tokenizer()
39
+ self.out = self.output_core_token()
40
+
41
+ self.token2strs = {
42
+ "[space2]": " ",
43
+ "[space3]": " ",
44
+ "[space4]": " ",
45
+ "[space8]": " ",
46
+ }
47
+ self.str2tokens = {v: k for k, v in self.token2strs.items()}
48
+ self.sorted_strs = sorted(list(self.str2tokens.keys()),
49
+ key=lambda x: len(x), reverse=True)
50
+
51
+ ## skip_special_tokens
52
+ self.decode_skip_special_tokens = [
53
+ self.pad_token,
54
+ self.unk_token,
55
+ self.mask_token,
56
+ self.eod_token,
57
+ self.eop_token,
58
+ self.im_start_token,
59
+ self.im_end_token,
60
+ self.think_eob,
61
+ self.think_eod]
62
+ self.decode_skip_special_tokens_ids = [self.convert_token_to_id(token) for token in self.decode_skip_special_tokens]
63
+
64
+ def _load_tiktoken_bpe(self, tiktoken_bpe_file: str):
65
+ with open(tiktoken_bpe_file, "rb") as f:
66
+ contents = f.read()
67
+ return {
68
+ base64.b64decode(token): int(rank)
69
+ for token, rank in (line.split() for line in contents.splitlines() if line)
70
+ }
71
+
72
+ def bulid_tokenizer(self):
73
+ mergeable_ranks = self._load_tiktoken_bpe(self.vocab_file)
74
+ special_tokens = {
75
+ token: index
76
+ for index, token in enumerate(
77
+ self.SPECIAL_TOKENS, start=len(mergeable_ranks)
78
+ )
79
+ }
80
+ encode = tiktoken.Encoding(
81
+ "zhinao",
82
+ pat_str=PAT_STR,
83
+ mergeable_ranks=mergeable_ranks,
84
+ special_tokens=special_tokens
85
+ )
86
+ decoder = {v: k for k, v in mergeable_ranks.items()}
87
+ decoder.update({v: k for k, v in special_tokens.items()})
88
+ decoder_token2id = {v: k for k, v in decoder.items()}
89
+
90
+ self.tokenizer = encode
91
+ self.decoder = decoder
92
+ self.decoder_token2id = decoder_token2id
93
+ self.num_tokens = len(mergeable_ranks) + len(self.SPECIAL_TOKENS)
94
+
95
+ def output_core_token(self):
96
+ """output special tokens"""
97
+ out = {}
98
+ for t in self.SPECIAL_TOKENS:
99
+ out[t] = self.convert_token_to_id(t)
100
+ return out
101
+
102
+ def tokenize(
103
+ self,
104
+ text,
105
+ allowed_special: Union[Set, str] = "all",
106
+ disallowed_special: Union[Collection, str] = ()):
107
+ tokens = []
108
+ text = self.convert(text)
109
+ for idx in self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special):
110
+ tokens.append(self.decoder[idx])
111
+ return tokens
112
+
113
+ def encode(self, text, allowed_special="all", disallowed_special=()):
114
+ """text to id"""
115
+ text = self.convert(text)
116
+ return self.tokenizer.encode(text, allowed_special=allowed_special, disallowed_special=disallowed_special)
117
+
118
+ def decode(self, ids, errors="replace"):
119
+ """id to text"""
120
+ text = self.tokenizer.decode(ids, errors=errors)
121
+ return self.deconvert(text)
122
+
123
+ def decode_tokens(self, tokens: List[str]) -> str:
124
+ """
125
+ Converts a sequence of tokens in a single string.
126
+ """
127
+ text = ""
128
+ temp = b""
129
+ for t in tokens:
130
+ if isinstance(t, str):
131
+ if temp:
132
+ text += temp.decode("utf-8", errors="ignore")
133
+ temp = b""
134
+ text += t
135
+ elif isinstance(t, bytes):
136
+ temp += t
137
+ else:
138
+ raise TypeError("token should only be of type bytes or str")
139
+ if temp:
140
+ text += temp.decode("utf-8", errors="ignore")
141
+ return self.deconvert(text)
142
+
143
+ def convert_id_to_token(self, idx):
144
+ return self.decoder[idx]
145
+
146
+ def convert_token_to_id(self, token):
147
+ return self.decoder_token2id[token]
148
+
149
+ def convert(self, text):
150
+ """将文本的特殊字符转换成特殊token"""
151
+ for k in ["[br]", "<br>"]:
152
+ text = text.replace(k, "\n")
153
+ for k in self.sorted_strs:
154
+ if k in text:
155
+ text = text.replace(k, self.str2tokens[k])
156
+ return text
157
+
158
+ def deconvert(self, text):
159
+ """将解码文本恢复原始字符"""
160
+ for t in self.token2strs:
161
+ if t in text:
162
+ text = text.replace(t, self.token2strs[t])
163
+ return text
164
+
165
+
166
+ class ZhinaoTokenizer(PreTrainedTokenizer):
167
+ vocab_files_names = {"vocab_file": "vocab/360.tiktoken"}
168
+ model_input_names = ["input_ids", "attention_mask"]
169
+
170
+ def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs):
171
+ self.name = "ZhinaoTokenizer"
172
+ self.vocab_file = vocab_file
173
+ self.tokenizer = SPTokenizer(model_path=vocab_file)
174
+ try:
175
+ kwargs.pop('eos_token')
176
+ kwargs.pop('pad_token')
177
+ kwargs.pop('unk_token')
178
+ except:
179
+ pass
180
+ super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs)
181
+ self.pad_token_id = self.tokenizer.convert_token_to_id(self.tokenizer.pad_token)
182
+ self.eod_id = self.tokenizer.convert_token_to_id(self.tokenizer.eod_token)
183
+ self.im_start_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_start_token)
184
+ self.im_end_id = self.tokenizer.convert_token_to_id(self.tokenizer.im_end_token)
185
+
186
+ @property
187
+ def eop_token(self) -> str:
188
+ return self.tokenizer.eop_token
189
+
190
+ @property
191
+ def eop_token_id(self):
192
+ return self.tokenizer.convert_token_to_id(self.tokenizer.eop_token)
193
+
194
+ @property
195
+ def eos_token_id(self):
196
+ return self.tokenizer.convert_token_to_id(self.tokenizer.eod_token)
197
+
198
+ @property
199
+ def vocab_size(self):
200
+ return self.tokenizer.num_tokens
201
+
202
+ def get_vocab(self):
203
+ """ Returns vocab as a dict """
204
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
205
+ vocab.update(self.added_tokens_encoder)
206
+ return vocab
207
+
208
+ def tokenize(
209
+ self,
210
+ text: str,
211
+ allowed_special: Union[Set, str] = "all",
212
+ disallowed_special: Union[Collection, str] = (),
213
+ split_special_tokens=False,
214
+ ) -> List[Union[bytes, str]]:
215
+ tokens = []
216
+ for t in self.tokenizer.encode(
217
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
218
+ ):
219
+ tokens.append(self.tokenizer.decoder[t])
220
+ return tokens
221
+
222
+ def _decode(
223
+ self,
224
+ token_ids: Union[int, List[int]],
225
+ skip_special_tokens: bool = False,
226
+ errors: str = "ignore",
227
+ **kwargs,
228
+ ) -> str:
229
+ if isinstance(token_ids, int):
230
+ token_ids = [token_ids]
231
+ if skip_special_tokens:
232
+ token_ids = [i for i in token_ids if i not in self.tokenizer.decode_skip_special_tokens_ids]
233
+ return self.tokenizer.decode(token_ids, errors=errors)
234
+
235
+ def _tokenize(self, text, **kwargs):
236
+ raise NotImplementedError
237
+
238
+ def _convert_token_to_id(self, token):
239
+ """ Converts a token (str) in an id using the vocab. """
240
+ return self.tokenizer.convert_token_to_id(token)
241
+
242
+ def _convert_id_to_token(self, index):
243
+ """Converts an index (integer) in a token (str) using the vocab. """
244
+ return self.tokenizer.convert_id_to_token(index)
245
+
246
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
247
+ """
248
+ Converts a sequence of tokens in a single string.
249
+ """
250
+ return self.tokenizer.decode_tokens(tokens)
251
+
252
+ def save_vocabulary(self, save_directory, filename_prefix=None):
253
+ """Save only the vocabulary of the tokenizer (vocabulary). """
254
+ if os.path.isdir(save_directory):
255
+ vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"])
256
+ else:
257
+ vocab_file = save_directory
258
+
259
+ with open(self.vocab_file, 'rb') as fin:
260
+ proto_str = fin.read()
261
+
262
+ os.makedirs(save_directory + "/vocab", exist_ok=True)
263
+ with open(vocab_file, "wb") as writer:
264
+ writer.write(proto_str)
265
+
266
+ return (vocab_file,)
tokenizer_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "158323": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ }
11
+ },
12
+ "auto_map": {
13
+ "AutoTokenizer": [
14
+ "tokenization_zhinao.ZhinaoTokenizer",
15
+ null
16
+ ]
17
+ },
18
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
19
+ "clean_up_tokenization_spaces": false,
20
+ "do_lower_case": false,
21
+ "extra_special_tokens": {},
22
+ "model_max_length": 4096,
23
+ "pad_token": "<pad>",
24
+ "padding_side": "left",
25
+ "remove_space": false,
26
+ "tokenizer_class": "ZhinaoTokenizer"
27
+ }
vocab/360.tiktoken ADDED
The diff for this file is too large to render. See raw diff