--- library_name: pytorch license: other tags: - real_time - android pipeline_tag: object-detection --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mediapipe_hand/web-assets/model_demo.png) # MediaPipe-Hand-Detection: Optimized for Qualcomm Devices The MediaPipe Hand Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of hands in an image. This is based on the implementation of MediaPipe-Hand-Detection found [here](https://github.com/zmurez/MediaPipePyTorch/). This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/mediapipe_hand) library to export with custom configurations. More details on model performance across various devices, can be found [here](#performance-summary). Qualcomm AI Hub Models uses [Qualcomm AI Hub Workbench](https://workbench.aihub.qualcomm.com) to compile, profile, and evaluate this model. [Sign up](https://myaccount.qualcomm.com/signup) to run these models on a hosted Qualcomm® device. ## Getting Started There are two ways to deploy this model on your device: ### Option 1: Download Pre-Exported Models Below are pre-exported model assets ready for deployment. | Runtime | Precision | Chipset | SDK Versions | Download | |---|---|---|---|---| | ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mediapipe_hand/releases/v0.46.0/mediapipe_hand-onnx-float.zip) | QNN_DLC | float | Universal | QAIRT 2.42 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mediapipe_hand/releases/v0.46.0/mediapipe_hand-qnn_dlc-float.zip) | TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | [Download](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mediapipe_hand/releases/v0.46.0/mediapipe_hand-tflite-float.zip) For more device-specific assets and performance metrics, visit **[MediaPipe-Hand-Detection on Qualcomm® AI Hub](https://aihub.qualcomm.com/models/mediapipe_hand)**. ### Option 2: Export with Custom Configurations Use the [Qualcomm® AI Hub Models](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/mediapipe_hand) Python library to compile and export the model with your own: - Custom weights (e.g., fine-tuned checkpoints) - Custom input shapes - Target device and runtime configurations This option is ideal if you need to customize the model beyond the default configuration provided here. See our repository for [MediaPipe-Hand-Detection on GitHub](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/mediapipe_hand) for usage instructions. ## Model Details **Model Type:** Model_use_case.object_detection **Model Stats:** - Input resolution: 256x256 - Number of parameters (HandDetector): 1.76M - Model size (HandDetector) (float): 6.75 MB - Number of parameters (HandLandmarkDetector): 2.01M - Model size (HandLandmarkDetector) (float): 7.70 MB ## Performance Summary | Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |---|---|---|---|---|---|--- | HandDetector | ONNX | float | Snapdragon® X Elite | 0.97 ms | 3 - 3 MB | NPU | HandDetector | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 0.823 ms | 0 - 134 MB | NPU | HandDetector | ONNX | float | Qualcomm® QCS8550 (Proxy) | 1.047 ms | 0 - 52 MB | NPU | HandDetector | ONNX | float | Qualcomm® QCS9075 | 1.474 ms | 1 - 4 MB | NPU | HandDetector | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.632 ms | 0 - 110 MB | NPU | HandDetector | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.588 ms | 0 - 110 MB | NPU | HandDetector | QNN_DLC | float | Snapdragon® X Elite | 0.895 ms | 1 - 1 MB | NPU | HandDetector | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 0.53 ms | 0 - 60 MB | NPU | HandDetector | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 3.785 ms | 1 - 41 MB | NPU | HandDetector | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 0.731 ms | 1 - 3 MB | NPU | HandDetector | QNN_DLC | float | Qualcomm® SA8775P | 1.269 ms | 1 - 43 MB | NPU | HandDetector | QNN_DLC | float | Qualcomm® QCS9075 | 1.123 ms | 1 - 3 MB | NPU | HandDetector | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 1.349 ms | 0 - 54 MB | NPU | HandDetector | QNN_DLC | float | Qualcomm® SA7255P | 3.785 ms | 1 - 41 MB | NPU | HandDetector | QNN_DLC | float | Qualcomm® SA8295P | 1.71 ms | 0 - 31 MB | NPU | HandDetector | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.442 ms | 1 - 40 MB | NPU | HandDetector | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.381 ms | 1 - 43 MB | NPU | HandDetector | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 0.531 ms | 0 - 57 MB | NPU | HandDetector | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 3.808 ms | 0 - 39 MB | NPU | HandDetector | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 0.73 ms | 0 - 2 MB | NPU | HandDetector | TFLITE | float | Qualcomm® SA8775P | 1.302 ms | 0 - 43 MB | NPU | HandDetector | TFLITE | float | Qualcomm® QCS9075 | 1.124 ms | 0 - 7 MB | NPU | HandDetector | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 1.401 ms | 0 - 51 MB | NPU | HandDetector | TFLITE | float | Qualcomm® SA7255P | 3.808 ms | 0 - 39 MB | NPU | HandDetector | TFLITE | float | Qualcomm® SA8295P | 1.702 ms | 0 - 30 MB | NPU | HandDetector | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.449 ms | 0 - 44 MB | NPU | HandDetector | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.381 ms | 0 - 43 MB | NPU | HandLandmarkDetector | ONNX | float | Snapdragon® X Elite | 1.349 ms | 6 - 6 MB | NPU | HandLandmarkDetector | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 1.058 ms | 0 - 125 MB | NPU | HandLandmarkDetector | ONNX | float | Qualcomm® QCS8550 (Proxy) | 1.39 ms | 0 - 13 MB | NPU | HandLandmarkDetector | ONNX | float | Qualcomm® QCS9075 | 2.125 ms | 1 - 4 MB | NPU | HandLandmarkDetector | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.806 ms | 0 - 106 MB | NPU | HandLandmarkDetector | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.716 ms | 0 - 106 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Snapdragon® X Elite | 1.265 ms | 1 - 1 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 0.763 ms | 0 - 58 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 5.323 ms | 1 - 35 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 1.009 ms | 1 - 3 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Qualcomm® SA8775P | 1.851 ms | 1 - 39 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Qualcomm® QCS9075 | 1.677 ms | 3 - 5 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 1.942 ms | 0 - 53 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Qualcomm® SA7255P | 5.323 ms | 1 - 35 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Qualcomm® SA8295P | 2.261 ms | 0 - 31 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.607 ms | 0 - 38 MB | NPU | HandLandmarkDetector | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.512 ms | 1 - 39 MB | NPU | HandLandmarkDetector | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 0.754 ms | 0 - 61 MB | NPU | HandLandmarkDetector | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 5.363 ms | 0 - 42 MB | NPU | HandLandmarkDetector | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 0.996 ms | 0 - 2 MB | NPU | HandLandmarkDetector | TFLITE | float | Qualcomm® SA8775P | 1.882 ms | 0 - 45 MB | NPU | HandLandmarkDetector | TFLITE | float | Qualcomm® QCS9075 | 1.682 ms | 0 - 9 MB | NPU | HandLandmarkDetector | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 1.938 ms | 0 - 57 MB | NPU | HandLandmarkDetector | TFLITE | float | Qualcomm® SA7255P | 5.363 ms | 0 - 42 MB | NPU | HandLandmarkDetector | TFLITE | float | Qualcomm® SA8295P | 2.273 ms | 0 - 34 MB | NPU | HandLandmarkDetector | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.604 ms | 0 - 44 MB | NPU | HandLandmarkDetector | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.508 ms | 0 - 45 MB | NPU ## License * The license for the original implementation of MediaPipe-Hand-Detection can be found [here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE). ## References * [MediaPipe Hands: On-device Real-time Hand Tracking](https://arxiv.org/abs/2006.10214) * [Source Model Implementation](https://github.com/zmurez/MediaPipePyTorch/) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).