Upload folder using huggingface_hub
Browse files- README.md +35 -45
- eole-config.yaml +13 -13
- eole_model/config.json +149 -0
- eole_model/model.00.safetensors +3 -0
- eole_model/src.spm.model +3 -0
- eole_model/tgt.spm.model +3 -0
- eole_model/vocab.json +0 -0
- model.bin +2 -2
README.md
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
---
|
| 2 |
language:
|
| 3 |
-
- zh
|
| 4 |
- en
|
|
|
|
| 5 |
tags:
|
| 6 |
- translation
|
| 7 |
license: cc-by-4.0
|
|
@@ -21,30 +21,41 @@ model-index:
|
|
| 21 |
metrics:
|
| 22 |
- name: CHRF
|
| 23 |
type: chrf
|
| 24 |
-
value:
|
|
|
|
|
|
|
|
|
|
| 25 |
---
|
| 26 |
|
| 27 |
|
| 28 |
# `quickmt-en-zh` Neural Machine Translation Model
|
| 29 |
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
##
|
|
|
|
|
|
|
| 33 |
|
| 34 |
```bash
|
| 35 |
git clone https://github.com/quickmt/quickmt.git
|
| 36 |
pip install ./quickmt/
|
| 37 |
-
```
|
| 38 |
-
|
| 39 |
-
## Download model
|
| 40 |
|
| 41 |
-
```bash
|
| 42 |
quickmt-model-download quickmt/quickmt-en-zh ./quickmt-en-zh
|
| 43 |
```
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
Inference with `quickmt`:
|
| 48 |
|
| 49 |
```python
|
| 50 |
from quickmt import Translator
|
|
@@ -53,48 +64,27 @@ from quickmt import Translator
|
|
| 53 |
t = Translator("./quickmt-en-zh/", device="auto")
|
| 54 |
|
| 55 |
# Translate - set beam size to 5 for higher quality (but slower speed)
|
| 56 |
-
t(["The
|
| 57 |
|
| 58 |
# Get alternative translations by sampling
|
| 59 |
# You can pass any cTranslate2 `translate_batch` arguments
|
| 60 |
-
t(["The
|
| 61 |
```
|
| 62 |
|
| 63 |
-
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use
|
| 64 |
-
|
| 65 |
-
# Model Information
|
| 66 |
-
|
| 67 |
-
* Trained using [`eole`](https://github.com/eole-nlp/eole)
|
| 68 |
-
- Trained for 82k steps with an effective batch size of 49152, which took less than 1 day on a single RTX 4090 on [vast.ai](https://cloud.vast.ai)
|
| 69 |
-
* Exported for fast inference to []CTranslate2](https://github.com/OpenNMT/CTranslate2) format
|
| 70 |
-
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main
|
| 71 |
-
* Seperate source and target Sentencepiece tokenizers (size 32k)
|
| 72 |
-
* Transformer "Big"
|
| 73 |
-
- 241,870,080 parameters
|
| 74 |
-
- 8 encoder layers and 2 decoder layers
|
| 75 |
-
- Gated-silu activations
|
| 76 |
-
- Trained and saved in bfloat16
|
| 77 |
|
| 78 |
-
See `eole-config.yaml` for more detail.
|
| 79 |
|
| 80 |
## Metrics
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
"GPU Time" is the time to translate the flores-devtest corpus using a batch size of 32 on a GTX 1080 GPU. "CPU Time" is the time to translate the following input with a single CPU core:
|
| 85 |
-
|
| 86 |
-
> James Joyce (2 February 1882 – 13 January 1941) was an Irish novelist, poet and literary critic who contributed to the modernist avant-garde movement and is regarded as one of the most influential and important writers of the 20th century.
|
| 87 |
-
|
| 88 |
-
| Model | chrf2 | comet22 | CPU Time (s) | GPU Time (s) |
|
| 89 |
-
| -------------------------------- | ----- | -------- | -------------|------------- |
|
| 90 |
-
| quickmt/quickmt-zh-en | 34.53 | 0.8512 | 1.91 | 3.92 |
|
| 91 |
-
| Helsinki-NLP/opus-mt-zh-en | 29.20 | 0.8236 | 1.50 | 10.10 |
|
| 92 |
-
| facebook/m2m100_418M | 26.63 | 0.7376 | 10.2 | 49.02 |
|
| 93 |
-
| facebook/nllb-200-distilled-600M | 24.68 | 0.7840 | 13.2 | 55.92 |
|
| 94 |
-
|
| 95 |
-
`quickmt-en-zh` is the highest quality and is the fastest on GPU (and not far behind on CPU).
|
| 96 |
-
|
| 97 |
-
Helsinki-NLP/opus-mt-en-zh is one of the most downloaded machine translation models on HuggingFace, and this model is considerably more accurate *and* similar in speed.
|
| 98 |
-
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
|
|
|
|
|
| 1 |
---
|
| 2 |
language:
|
|
|
|
| 3 |
- en
|
| 4 |
+
- zh
|
| 5 |
tags:
|
| 6 |
- translation
|
| 7 |
license: cc-by-4.0
|
|
|
|
| 21 |
metrics:
|
| 22 |
- name: CHRF
|
| 23 |
type: chrf
|
| 24 |
+
value: 58.10
|
| 25 |
+
- name: COMET
|
| 26 |
+
type: comet
|
| 27 |
+
value: 58.10
|
| 28 |
---
|
| 29 |
|
| 30 |
|
| 31 |
# `quickmt-en-zh` Neural Machine Translation Model
|
| 32 |
|
| 33 |
+
`quickmt-en-zh` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `zh`.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
## Model Information
|
| 37 |
+
|
| 38 |
+
* Trained using [`eole`](https://github.com/eole-nlp/eole)
|
| 39 |
+
* 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
|
| 40 |
+
* Separate source and target Sentencepiece tokenizers
|
| 41 |
+
* Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
|
| 42 |
+
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main
|
| 43 |
+
|
| 44 |
+
See the `eole` model configuration in this repository for further details.
|
| 45 |
+
|
| 46 |
|
| 47 |
+
## Usage with `quickmt`
|
| 48 |
+
|
| 49 |
+
First, install `quickmt` and download the model
|
| 50 |
|
| 51 |
```bash
|
| 52 |
git clone https://github.com/quickmt/quickmt.git
|
| 53 |
pip install ./quickmt/
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
| 55 |
quickmt-model-download quickmt/quickmt-en-zh ./quickmt-en-zh
|
| 56 |
```
|
| 57 |
|
| 58 |
+
Next use the model in python:
|
|
|
|
|
|
|
| 59 |
|
| 60 |
```python
|
| 61 |
from quickmt import Translator
|
|
|
|
| 64 |
t = Translator("./quickmt-en-zh/", device="auto")
|
| 65 |
|
| 66 |
# Translate - set beam size to 5 for higher quality (but slower speed)
|
| 67 |
+
t(["The Boot Monument is an American Revolutionary War memorial located in Saratoga National Historical Park in the state of New York."], beam_size=1)
|
| 68 |
|
| 69 |
# Get alternative translations by sampling
|
| 70 |
# You can pass any cTranslate2 `translate_batch` arguments
|
| 71 |
+
t(["The Boot Monument is an American Revolutionary War memorial located in Saratoga National Historical Park in the state of New York."], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
|
| 72 |
```
|
| 73 |
|
| 74 |
+
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
|
|
|
| 76 |
|
| 77 |
## Metrics
|
| 78 |
|
| 79 |
+
`chrf2` is calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"zho_Hans"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate (using `ctranslate2`) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
| Model | chrf2 | comet22 | Time (s) |
|
| 82 |
+
| -------------------------------- | ----- | ------- | -------- |
|
| 83 |
+
| quickmt/quickmt-en-zh | 35.22 | 85.39 | 0.96 |
|
| 84 |
+
| Helsinki-NLP/opus-mt-en-zh | 29.20 | 82.36 | 3.41 |
|
| 85 |
+
| facebook/m2m100_418M | 25.86 | 73.76 | 16.71 |
|
| 86 |
+
| facebook/m2m100_1.2B | 28.94 | 78.38 | 31.09 |
|
| 87 |
+
| facebook/nllb-200-distilled-600M | 24.52 | 78.41 | 19.01 |
|
| 88 |
+
| facebook/nllb-200-distilled-1.3B | 26.79 | 79.87 | 32.03 |
|
| 89 |
|
| 90 |
+
`quickmt-en-zh` is the fastest *and* highest quality.
|
eole-config.yaml
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
## IO
|
| 2 |
-
save_data:
|
| 3 |
overwrite: True
|
| 4 |
seed: 1234
|
| 5 |
report_every: 100
|
|
@@ -18,8 +18,8 @@ n_sample: 0
|
|
| 18 |
|
| 19 |
data:
|
| 20 |
corpus_1:
|
| 21 |
-
path_tgt: hf://quickmt/quickmt-train-zh-en/zh
|
| 22 |
path_src: hf://quickmt/quickmt-train-zh-en/en
|
|
|
|
| 23 |
path_sco: hf://quickmt/quickmt-train-zh-en/sco
|
| 24 |
valid:
|
| 25 |
path_src: en-zh/dev.eng
|
|
@@ -31,15 +31,15 @@ transforms_configs:
|
|
| 31 |
src_subword_model: "en-zh/src.spm.model"
|
| 32 |
tgt_subword_model: "en-zh/tgt.spm.model"
|
| 33 |
filtertoolong:
|
| 34 |
-
src_seq_length:
|
| 35 |
-
tgt_seq_length:
|
| 36 |
|
| 37 |
training:
|
| 38 |
# Run configuration
|
| 39 |
model_path: en-zh/model
|
| 40 |
keep_checkpoint: 4
|
| 41 |
save_checkpoint_steps: 2000
|
| 42 |
-
train_steps:
|
| 43 |
valid_steps: 2000
|
| 44 |
|
| 45 |
# Train on a single GPU
|
|
@@ -48,22 +48,22 @@ training:
|
|
| 48 |
|
| 49 |
# Batching
|
| 50 |
batch_type: "tokens"
|
| 51 |
-
batch_size:
|
| 52 |
-
valid_batch_size:
|
| 53 |
batch_size_multiple: 8
|
| 54 |
-
accum_count: [
|
| 55 |
accum_steps: [0]
|
| 56 |
|
| 57 |
# Optimizer & Compute
|
| 58 |
-
compute_dtype: "
|
| 59 |
optim: "pagedadamw8bit"
|
| 60 |
-
learning_rate:
|
| 61 |
warmup_steps: 10000
|
| 62 |
decay_method: "noam"
|
| 63 |
adam_beta2: 0.998
|
| 64 |
|
| 65 |
# Data loading
|
| 66 |
-
bucket_size:
|
| 67 |
num_workers: 8
|
| 68 |
prefetch_factor: 100
|
| 69 |
|
|
@@ -71,7 +71,7 @@ training:
|
|
| 71 |
dropout_steps: [0]
|
| 72 |
dropout: [0.1]
|
| 73 |
attention_dropout: [0.1]
|
| 74 |
-
max_grad_norm:
|
| 75 |
label_smoothing: 0.1
|
| 76 |
average_decay: 0.0001
|
| 77 |
param_init_method: xavier_uniform
|
|
@@ -83,7 +83,7 @@ model:
|
|
| 83 |
share_embeddings: false
|
| 84 |
share_decoder_embeddings: true
|
| 85 |
add_ffnbias: true
|
| 86 |
-
mlp_activation_fn:
|
| 87 |
add_estimator: false
|
| 88 |
add_qkvbias: false
|
| 89 |
norm_eps: 1e-6
|
|
|
|
| 1 |
## IO
|
| 2 |
+
save_data: en-zh/data_spm
|
| 3 |
overwrite: True
|
| 4 |
seed: 1234
|
| 5 |
report_every: 100
|
|
|
|
| 18 |
|
| 19 |
data:
|
| 20 |
corpus_1:
|
|
|
|
| 21 |
path_src: hf://quickmt/quickmt-train-zh-en/en
|
| 22 |
+
path_tgt: hf://quickmt/quickmt-train-zh-en/zh
|
| 23 |
path_sco: hf://quickmt/quickmt-train-zh-en/sco
|
| 24 |
valid:
|
| 25 |
path_src: en-zh/dev.eng
|
|
|
|
| 31 |
src_subword_model: "en-zh/src.spm.model"
|
| 32 |
tgt_subword_model: "en-zh/tgt.spm.model"
|
| 33 |
filtertoolong:
|
| 34 |
+
src_seq_length: 256
|
| 35 |
+
tgt_seq_length: 256
|
| 36 |
|
| 37 |
training:
|
| 38 |
# Run configuration
|
| 39 |
model_path: en-zh/model
|
| 40 |
keep_checkpoint: 4
|
| 41 |
save_checkpoint_steps: 2000
|
| 42 |
+
train_steps: 100000
|
| 43 |
valid_steps: 2000
|
| 44 |
|
| 45 |
# Train on a single GPU
|
|
|
|
| 48 |
|
| 49 |
# Batching
|
| 50 |
batch_type: "tokens"
|
| 51 |
+
batch_size: 16384
|
| 52 |
+
valid_batch_size: 16384
|
| 53 |
batch_size_multiple: 8
|
| 54 |
+
accum_count: [8]
|
| 55 |
accum_steps: [0]
|
| 56 |
|
| 57 |
# Optimizer & Compute
|
| 58 |
+
compute_dtype: "bf16"
|
| 59 |
optim: "pagedadamw8bit"
|
| 60 |
+
learning_rate: 2.0
|
| 61 |
warmup_steps: 10000
|
| 62 |
decay_method: "noam"
|
| 63 |
adam_beta2: 0.998
|
| 64 |
|
| 65 |
# Data loading
|
| 66 |
+
bucket_size: 128000
|
| 67 |
num_workers: 8
|
| 68 |
prefetch_factor: 100
|
| 69 |
|
|
|
|
| 71 |
dropout_steps: [0]
|
| 72 |
dropout: [0.1]
|
| 73 |
attention_dropout: [0.1]
|
| 74 |
+
max_grad_norm: 2
|
| 75 |
label_smoothing: 0.1
|
| 76 |
average_decay: 0.0001
|
| 77 |
param_init_method: xavier_uniform
|
|
|
|
| 83 |
share_embeddings: false
|
| 84 |
share_decoder_embeddings: true
|
| 85 |
add_ffnbias: true
|
| 86 |
+
mlp_activation_fn: gelu
|
| 87 |
add_estimator: false
|
| 88 |
add_qkvbias: false
|
| 89 |
norm_eps: 1e-6
|
eole_model/config.json
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"valid_metrics": [
|
| 3 |
+
"BLEU"
|
| 4 |
+
],
|
| 5 |
+
"report_every": 100,
|
| 6 |
+
"src_vocab": "zh-en-benchmark/tgt.eole.vocab",
|
| 7 |
+
"src_vocab_size": 32000,
|
| 8 |
+
"tensorboard": true,
|
| 9 |
+
"seed": 1234,
|
| 10 |
+
"transforms": [
|
| 11 |
+
"sentencepiece",
|
| 12 |
+
"filtertoolong"
|
| 13 |
+
],
|
| 14 |
+
"share_vocab": false,
|
| 15 |
+
"tensorboard_log_dir_dated": "tensorboard/Feb-15_15-35-05",
|
| 16 |
+
"overwrite": true,
|
| 17 |
+
"tensorboard_log_dir": "tensorboard",
|
| 18 |
+
"tgt_vocab_size": 32000,
|
| 19 |
+
"tgt_vocab": "zh-en-benchmark/src.eole.vocab",
|
| 20 |
+
"save_data": "zh_en/data_spm",
|
| 21 |
+
"vocab_size_multiple": 8,
|
| 22 |
+
"n_sample": 0,
|
| 23 |
+
"training": {
|
| 24 |
+
"compute_dtype": "torch.bfloat16",
|
| 25 |
+
"learning_rate": 2.0,
|
| 26 |
+
"param_init_method": "xavier_uniform",
|
| 27 |
+
"gpu_ranks": [
|
| 28 |
+
0
|
| 29 |
+
],
|
| 30 |
+
"normalization": "tokens",
|
| 31 |
+
"bucket_size": 128000,
|
| 32 |
+
"warmup_steps": 10000,
|
| 33 |
+
"attention_dropout": [
|
| 34 |
+
0.1
|
| 35 |
+
],
|
| 36 |
+
"num_workers": 0,
|
| 37 |
+
"label_smoothing": 0.1,
|
| 38 |
+
"model_path": "zh-en-benchmark/model",
|
| 39 |
+
"valid_batch_size": 16384,
|
| 40 |
+
"accum_count": [
|
| 41 |
+
8
|
| 42 |
+
],
|
| 43 |
+
"max_grad_norm": 2.0,
|
| 44 |
+
"batch_size": 16384,
|
| 45 |
+
"accum_steps": [
|
| 46 |
+
0
|
| 47 |
+
],
|
| 48 |
+
"save_checkpoint_steps": 2000,
|
| 49 |
+
"prefetch_factor": 100,
|
| 50 |
+
"valid_steps": 2000,
|
| 51 |
+
"optim": "pagedadamw8bit",
|
| 52 |
+
"world_size": 1,
|
| 53 |
+
"decay_method": "noam",
|
| 54 |
+
"dropout": [
|
| 55 |
+
0.1
|
| 56 |
+
],
|
| 57 |
+
"batch_type": "tokens",
|
| 58 |
+
"dropout_steps": [
|
| 59 |
+
0
|
| 60 |
+
],
|
| 61 |
+
"batch_size_multiple": 8,
|
| 62 |
+
"keep_checkpoint": 4,
|
| 63 |
+
"adam_beta2": 0.998,
|
| 64 |
+
"average_decay": 0.0001,
|
| 65 |
+
"train_steps": 100000
|
| 66 |
+
},
|
| 67 |
+
"model": {
|
| 68 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
| 69 |
+
"share_decoder_embeddings": true,
|
| 70 |
+
"mlp_activation_fn": "gelu",
|
| 71 |
+
"norm_eps": 1e-06,
|
| 72 |
+
"add_ffnbias": true,
|
| 73 |
+
"add_estimator": false,
|
| 74 |
+
"architecture": "transformer",
|
| 75 |
+
"share_embeddings": false,
|
| 76 |
+
"layer_norm": "standard",
|
| 77 |
+
"transformer_ff": 4096,
|
| 78 |
+
"add_qkvbias": false,
|
| 79 |
+
"hidden_size": 1024,
|
| 80 |
+
"heads": 16,
|
| 81 |
+
"decoder": {
|
| 82 |
+
"tgt_word_vec_size": 1024,
|
| 83 |
+
"decoder_type": "transformer",
|
| 84 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
| 85 |
+
"layer_norm": "standard",
|
| 86 |
+
"transformer_ff": 4096,
|
| 87 |
+
"layers": 2,
|
| 88 |
+
"mlp_activation_fn": "gelu",
|
| 89 |
+
"n_positions": null,
|
| 90 |
+
"add_qkvbias": false,
|
| 91 |
+
"hidden_size": 1024,
|
| 92 |
+
"norm_eps": 1e-06,
|
| 93 |
+
"add_ffnbias": true,
|
| 94 |
+
"heads": 16
|
| 95 |
+
},
|
| 96 |
+
"encoder": {
|
| 97 |
+
"encoder_type": "transformer",
|
| 98 |
+
"src_word_vec_size": 1024,
|
| 99 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
| 100 |
+
"layer_norm": "standard",
|
| 101 |
+
"transformer_ff": 4096,
|
| 102 |
+
"layers": 8,
|
| 103 |
+
"mlp_activation_fn": "gelu",
|
| 104 |
+
"n_positions": null,
|
| 105 |
+
"add_qkvbias": false,
|
| 106 |
+
"hidden_size": 1024,
|
| 107 |
+
"norm_eps": 1e-06,
|
| 108 |
+
"add_ffnbias": true,
|
| 109 |
+
"heads": 16
|
| 110 |
+
},
|
| 111 |
+
"embeddings": {
|
| 112 |
+
"src_word_vec_size": 1024,
|
| 113 |
+
"position_encoding_type": "SinusoidalInterleaved",
|
| 114 |
+
"word_vec_size": 1024,
|
| 115 |
+
"tgt_word_vec_size": 1024
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
"transforms_configs": {
|
| 119 |
+
"sentencepiece": {
|
| 120 |
+
"src_subword_model": "${MODEL_PATH}/tgt.spm.model",
|
| 121 |
+
"tgt_subword_model": "${MODEL_PATH}/src.spm.model"
|
| 122 |
+
},
|
| 123 |
+
"filtertoolong": {
|
| 124 |
+
"src_seq_length": 256,
|
| 125 |
+
"tgt_seq_length": 256
|
| 126 |
+
}
|
| 127 |
+
},
|
| 128 |
+
"data": {
|
| 129 |
+
"corpus_1": {
|
| 130 |
+
"path_align": null,
|
| 131 |
+
"transforms": [
|
| 132 |
+
"sentencepiece",
|
| 133 |
+
"filtertoolong"
|
| 134 |
+
],
|
| 135 |
+
"path_sco": "hf://quickmt/quickmt-train-zh-en/sco",
|
| 136 |
+
"path_tgt": "hf://quickmt/quickmt-train-zh-en/zh",
|
| 137 |
+
"path_src": "hf://quickmt/quickmt-train-zh-en/en"
|
| 138 |
+
},
|
| 139 |
+
"valid": {
|
| 140 |
+
"path_tgt": "zh-en-benchmark/dev.zho",
|
| 141 |
+
"transforms": [
|
| 142 |
+
"sentencepiece",
|
| 143 |
+
"filtertoolong"
|
| 144 |
+
],
|
| 145 |
+
"path_src": "zh-en-benchmark/dev.eng",
|
| 146 |
+
"path_align": null
|
| 147 |
+
}
|
| 148 |
+
}
|
| 149 |
+
}
|
eole_model/model.00.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8048ce4ad988fd291e807de6c3bce62e2d87b7054b186a9d0e7ca829b1a2ff7b
|
| 3 |
+
size 820042008
|
eole_model/src.spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:23d03d562fc3f8fe57e497dac0ece4827c254675a80c103fc4bb4040638ceb67
|
| 3 |
+
size 733978
|
eole_model/tgt.spm.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c373f1d78753313b0dbc337058bf8450e1fdd6fe662a49e0941affce44ec14c5
|
| 3 |
+
size 800955
|
eole_model/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:433e7c41b63223f2d4600c740ce2a00a1bbe6dba1190a5fc10e8cc245e2ef387
|
| 3 |
+
size 409972810
|