--- license: other base_model: "black-forest-labs/FLUX.2-dev" tags: - flux2 - flux2-diffusers - text-to-image - image-to-image - diffusers - simpletuner - safe-for-work - lora - template:sd-lora - standard pipeline_tag: text-to-image inference: true --- # quzo/textf22 This is a PEFT LoRA derived from [black-forest-labs/FLUX.2-dev](https://huggingface.co/black-forest-labs/FLUX.2-dev). The main validation prompt used during training was: ``` 🟫 man is holding a sign that says hello world from flux2 ``` ## Validation settings - CFG: `4.0` - CFG Rescale: `0.0` - Steps: `16` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `1024x1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 1 - Training steps: 1200 - Learning rate: 0.0001 - Learning rate schedule: constant - Warmup steps: 0 - Max grad value: 2.0 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow_matching[] - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Base model precision: `no_change` - Caption dropout probability: 0.1% - LoRA Rank: 32 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default - LoRA mode: Standard ## Datasets ### emi-256 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 1 - Resolution: 0.065536 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### emi-crop-256 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 2 - Resolution: 0.065536 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ### emi-512 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 3 - Resolution: 0.262144 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### emi-crop-512 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 2 - Resolution: 0.262144 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ### emi-768 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 2 - Resolution: 0.589824 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### emi-crop-768 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 2 - Resolution: 0.589824 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ### emi-1024 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 3 - Resolution: 1.048576 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### emi-crop-1024 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 2 - Resolution: 1.048576 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ### emi-1440 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 2 - Resolution: 2.0736 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### emi-crop-1440 - Repeats: 10 - Total number of images: 10 - Total number of aspect buckets: 2 - Resolution: 2.0736 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.2-dev' adapter_id = 'quzo/quzo/textf22' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "🟫 man is holding a sign that says hello world from flux2" negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average' ## Optional: quantise the model to save on vram. ## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time. #from optimum.quanto import quantize, freeze, qint8 #quantize(pipeline.transformer, weights=qint8) #freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level model_output = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=16, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=1024, height=1024, guidance_scale=4.0, ).images[0] model_output.save("output.png", format="PNG") ```