Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# SciFive Pubmed Base
|
| 2 |
+
|
| 3 |
+
## Introduction
|
| 4 |
+
Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598)
|
| 5 |
+
|
| 6 |
+
Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_
|
| 7 |
+
|
| 8 |
+
## How to use
|
| 9 |
+
For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive).
|
| 10 |
+
```python
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 12 |
+
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-Pubmed")
|
| 14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-Pubmed")
|
| 15 |
+
|
| 16 |
+
sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ."
|
| 17 |
+
text = "ncbi_ner: " + sentence + " </s>"
|
| 18 |
+
|
| 19 |
+
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
|
| 20 |
+
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
|
| 21 |
+
|
| 22 |
+
outputs = model.generate(
|
| 23 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
| 24 |
+
max_length=256,
|
| 25 |
+
early_stopping=True
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
for output in outputs:
|
| 29 |
+
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 30 |
+
print(line)
|
| 31 |
+
```
|