--- library_name: peft license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - base_model:adapter:meta-llama/Meta-Llama-3-8B-Instruct - llama-factory - transformers pipeline_tag: text-generation model-index: - name: train_winogrande_101112_1760638067 results: [] --- # train_winogrande_101112_1760638067 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the winogrande dataset. It achieves the following results on the evaluation set: - Loss: 0.2432 - Num Input Tokens Seen: 34100624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 101112 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:-----:|:------:|:---------------:|:-----------------:| | 0.2238 | 2.0 | 16160 | 0.2324 | 3410576 | | 0.2434 | 4.0 | 32320 | 0.2204 | 6820640 | | 0.1744 | 6.0 | 48480 | 0.1129 | 10230096 | | 0.0037 | 8.0 | 64640 | 0.0676 | 13639760 | | 0.0006 | 10.0 | 80800 | 0.0786 | 17048912 | | 0.063 | 12.0 | 96960 | 0.1006 | 20458720 | | 0.0001 | 14.0 | 113120 | 0.1434 | 23869008 | | 0.0 | 16.0 | 129280 | 0.1929 | 27280464 | | 0.0 | 18.0 | 145440 | 0.2320 | 30690528 | | 0.0 | 20.0 | 161600 | 0.2432 | 34100624 | ### Framework versions - PEFT 0.17.1 - Transformers 4.51.3 - Pytorch 2.9.0+cu128 - Datasets 4.0.0 - Tokenizers 0.21.4