Update README.md
Browse files
README.md
CHANGED
|
@@ -71,6 +71,30 @@ model_path = "real-jiakai/roberta-base-uncased-finetuned-swag"
|
|
| 71 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 72 |
model = AutoModelForMultipleChoice.from_pretrained(model_path)
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
# Example scenarios
|
| 75 |
test_examples = [
|
| 76 |
{
|
|
@@ -93,29 +117,22 @@ test_examples = [
|
|
| 93 |
}
|
| 94 |
]
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
[context]
|
| 99 |
-
endings,
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
padding="max_length",
|
| 103 |
-
return_tensors="pt"
|
| 104 |
)
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
return {
|
| 115 |
-
'context': context,
|
| 116 |
-
'predicted_ending': endings[predicted_idx],
|
| 117 |
-
'probabilities': torch.softmax(logits, dim=1)[0].tolist()
|
| 118 |
-
}
|
| 119 |
```
|
| 120 |
|
| 121 |
## Limitations and Biases
|
|
|
|
| 71 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 72 |
model = AutoModelForMultipleChoice.from_pretrained(model_path)
|
| 73 |
|
| 74 |
+
def predict_swag(context, endings, model, tokenizer):
|
| 75 |
+
encoding = tokenizer(
|
| 76 |
+
[context] * 4,
|
| 77 |
+
endings,
|
| 78 |
+
truncation=True,
|
| 79 |
+
max_length=128,
|
| 80 |
+
padding="max_length",
|
| 81 |
+
return_tensors="pt"
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
input_ids = encoding['input_ids'].unsqueeze(0)
|
| 85 |
+
attention_mask = encoding['attention_mask'].unsqueeze(0)
|
| 86 |
+
|
| 87 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 88 |
+
logits = outputs.logits
|
| 89 |
+
|
| 90 |
+
predicted_idx = torch.argmax(logits).item()
|
| 91 |
+
|
| 92 |
+
return {
|
| 93 |
+
'context': context,
|
| 94 |
+
'predicted_ending': endings[predicted_idx],
|
| 95 |
+
'probabilities': torch.softmax(logits, dim=1)[0].tolist()
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
# Example scenarios
|
| 99 |
test_examples = [
|
| 100 |
{
|
|
|
|
| 117 |
}
|
| 118 |
]
|
| 119 |
|
| 120 |
+
for i, example in enumerate(test_examples, 1):
|
| 121 |
+
result = predict_swag(
|
| 122 |
+
example['context'],
|
| 123 |
+
example['endings'],
|
| 124 |
+
model,
|
| 125 |
+
tokenizer
|
|
|
|
|
|
|
| 126 |
)
|
| 127 |
|
| 128 |
+
print(f"\n=== Test Scenario {i} ===")
|
| 129 |
+
print(f"Initial Context: {result['context']}")
|
| 130 |
+
print(f"\nPredicted Most Likely Ending: {result['predicted_ending']}")
|
| 131 |
+
print("\nProbabilities for All Options:")
|
| 132 |
+
for idx, (ending, prob) in enumerate(zip(result['all_endings'], result['probabilities'])):
|
| 133 |
+
print(f"Option {idx}: {ending}")
|
| 134 |
+
print(f"Probability: {prob:.3f}")
|
| 135 |
+
print("\n" + "="*50)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
```
|
| 137 |
|
| 138 |
## Limitations and Biases
|