rnnandi commited on
Commit
166c1f4
·
verified ·
1 Parent(s): ddbc6bd

Upload model livekit/turn-detector from revision v0.3.0-intl

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ # Only track large .json files in specific files
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ # Ignore common system files
2
+ .DS_Store
3
+ Thumbs.db
4
+
5
+ # Ignore personal notes
6
+ update_model_steps.sh
LICENSE ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LIVEKIT MODEL LICENSE AGREEMENT
2
+
3
+ 1. Introduction
4
+
5
+ LiveKit Incorporated ("LiveKit") is making available its proprietary models for
6
+ use pursuant to the terms and conditions of this Agreement. As further
7
+ described below, you may use these LiveKit models freely but can only use them
8
+ together with the LiveKit Agents framework. You cannot use the LiveKit models
9
+ on a standalone basis or with any other frameworks.
10
+
11
+ BY CLICKING "I ACCEPT," OR BY DOWNLOADING, INSTALLING, OR OTHERWISE ACCESSING
12
+ OR USING THE LIVEKIT MATERIALS, YOU AGREE THAT YOU HAVE READ AND UNDERSTOOD,
13
+ AND, AS A CONDITION TO YOUR USE OF THE LIVEKIT MATERIALS, YOU AGREE TO BE
14
+ BOUND BY, THE FOLLOWING TERMS AND CONDITIONS.
15
+
16
+ 2. Definitions
17
+
18
+ "Agreement" means this LiveKit Model License Agreement.
19
+
20
+ "Documentation" means the specifications, manuals, and documentation
21
+ accompanying any LiveKit Model and distributed by LiveKit.
22
+
23
+ "Licensee" or "you" means the individual or entity agreeing to be bound by
24
+ this Agreement.
25
+
26
+ "LiveKit Agents" means the proprietary LiveKit software framework for building
27
+ real-time multimodal AI applications with programmable backend participants.
28
+
29
+ "LiveKit Materials" means, collectively, the LiveKit Models and Documentation.
30
+
31
+ "LiveKit Model" means any of LiveKit's proprietary software models or
32
+ algorithms, including machine-learning software code, model weights,
33
+ inference-enabling software code, training-enabling software code, and
34
+ fine-tuning enabling software code. Any derivative works of a LiveKit Model,
35
+ whether developed by LiveKit, you, or any third party, will be deemed the
36
+ "LiveKit Model" for the purposes of this Agreement.
37
+
38
+ 3. License Rights
39
+
40
+ Right to Use LiveKit Materials. Subject to the terms and conditions of this
41
+ Agreement, including the requirements of Section 3.b, LiveKit grants you a
42
+ nonexclusive, nontransferable, worldwide, royalty-free license under LiveKit's
43
+ intellectual property rights to use, reproduce, distribute, copy, and create
44
+ derivative works of the LiveKit Materials.
45
+
46
+ Limitation on Use. As a condition to your use of the LiveKit Materials, you
47
+ agree: (i) not to use any LiveKit Models on a standalone basis or with any
48
+ frameworks other than LiveKit Agents; (ii) not to use any LiveKit Materials or
49
+ any output from, or results of using, LiveKit Models (including any derivative
50
+ works thereof) to improve or otherwise develop any other models that are not
51
+ LiveKit Models; or (iii) distribute or otherwise make available the LiveKit
52
+ Materials (including any derivative works thereof) except (x) pursuant to the
53
+ terms of this Agreement, and (y) you reproduce the above copyright notice.
54
+
55
+ 4. Intellectual Property
56
+
57
+ The LiveKit Materials are owned by LiveKit and its licensors. Except for the
58
+ rights granted to you under this Agreement, all rights are reserved and no
59
+ other express or implied rights are granted.
60
+
61
+ You will own any derivative works that you created from the LiveKit Materials,
62
+ subject to the terms of this Agreement.
63
+
64
+ 5. Disclaimer
65
+
66
+ UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING, LIVEKIT PROVIDES
67
+ THE LIVEKIT MATERIALS, AND ANY OUTPUT OR RESULTS THEREFROM, ON AN "AS IS"
68
+ BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED,
69
+ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE,
70
+ NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU
71
+ ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR
72
+ REDISTRIBUTING THE LIVEKIT MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR
73
+ USE OF THE LIVEKIT MATERIALS AND ANY OUTPUT AND RESULTS.
74
+
75
+ 6. Limitation of Liability
76
+
77
+ IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE),
78
+ CONTRACT, OR OTHERWISE, UNLESS REQUIRED BY APPLICABLE LAW (SUCH AS DELIBERATE
79
+ AND GROSSLY NEGLIGENT ACTS) OR AGREED TO IN WRITING, WILL LIVEKIT BE LIABLE TO
80
+ YOU FOR INDIRECT DAMAGES, INCLUDING ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
81
+ DAMAGES OF ANY CHARACTER ARISING AS A RESULT OF THIS AGREEMENT OR OUT OF THE
82
+ USE OR INABILITY TO USE THE LIVEKIT MATERIALS OR ANY OUTPUT OR RESULTS
83
+ THEREFROM (INCLUDING BUT NOT LIMITED TO DAMAGES FOR LOSS OF GOODWILL, WORK
84
+ STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER COMMERCIAL
85
+ DAMAGES OR LOSSES), EVEN IF LIVEKIT HAS BEEN ADVISED OF THE POSSIBILITY OF
86
+ SUCH DAMAGES.
87
+
88
+ 7. Trademarks
89
+
90
+ This Agreement does not grant permission to use the trade names, trademarks,
91
+ service marks, or product names of LiveKit, except as required for reasonable
92
+ and customary use in describing the origin of the LiveKit Materials.
93
+
94
+ 8. Term and Termination
95
+
96
+ The term of this Agreement commences upon your acceptance of this Agreement
97
+ and continues in effect until you cease using the LiveKit Materials or it is
98
+ terminated by either party (on immediate written notice to the other party).
99
+ This Agreement will automatically terminate if you breach any of its terms.
100
+ Upon termination, you must immediately cease all use of the LiveKit Materials.
101
+ Sections 4, 5, 6, and 9 will survive termination.
102
+
103
+ 9. Governing Law and Venue
104
+
105
+ This Agreement is subject to the laws of the State of California, without
106
+ regard to its conflict of laws principles. The UN Convention on Contracts for
107
+ the International Sale of Goods does not apply to this Agreement. The courts
108
+ located in San Francisco, California, have exclusive jurisdiction for any
109
+ dispute arising out of this Agreement.
110
+
111
+ + + + +
112
+
113
+ Last Updated: November 25, 2024
114
+
115
+
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-0.5B-Instruct_pruned",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 896,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1216,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 14,
17
+ "num_hidden_layers": 24,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.48.3",
26
+ "use_cache": true,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.3"
14
+ }
languages.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "hi":{
3
+ "tpr":0.9941,
4
+ "tnr":0.936,
5
+ "threshold":0.0220999997
6
+ },
7
+ "hindi":{
8
+ "tpr":0.9941,
9
+ "tnr":0.936,
10
+ "threshold":0.0220999997
11
+ },
12
+ "korean":{
13
+ "tpr":0.9932,
14
+ "tnr":0.887,
15
+ "threshold":0.0055999998
16
+ },
17
+ "ko":{
18
+ "tpr":0.9932,
19
+ "tnr":0.887,
20
+ "threshold":0.0055999998
21
+ },
22
+ "french":{
23
+ "tpr":0.993,
24
+ "tnr":0.8494,
25
+ "threshold":0.0091000004
26
+ },
27
+ "fr":{
28
+ "tpr":0.993,
29
+ "tnr":0.8494,
30
+ "threshold":0.0091000004
31
+ },
32
+ "portuguese":{
33
+ "tpr":0.9935,
34
+ "tnr":0.8275,
35
+ "threshold":0.0074
36
+ },
37
+ "pt":{
38
+ "tpr":0.9935,
39
+ "tnr":0.8275,
40
+ "threshold":0.0074
41
+ },
42
+ "indonesian":{
43
+ "tpr":0.993,
44
+ "tnr":0.8032,
45
+ "threshold":0.0077999998
46
+ },
47
+ "id":{
48
+ "tpr":0.993,
49
+ "tnr":0.8032,
50
+ "threshold":0.0077999998
51
+ },
52
+ "ru":{
53
+ "tpr":0.9933,
54
+ "tnr":0.8017,
55
+ "threshold":0.0024000001
56
+ },
57
+ "russian":{
58
+ "tpr":0.9933,
59
+ "tnr":0.8017,
60
+ "threshold":0.0024000001
61
+ },
62
+ "english":{
63
+ "tpr":0.9934,
64
+ "tnr":0.8016,
65
+ "threshold":0.0049000001
66
+ },
67
+ "en":{
68
+ "tpr":0.9934,
69
+ "tnr":0.8016,
70
+ "threshold":0.0049000001
71
+ },
72
+ "zh":{
73
+ "tpr":0.9931,
74
+ "tnr":0.7996,
75
+ "threshold":0.0038999999
76
+ },
77
+ "chinese":{
78
+ "tpr":0.9931,
79
+ "tnr":0.7996,
80
+ "threshold":0.0038999999
81
+ },
82
+ "ja":{
83
+ "tpr":0.993,
84
+ "tnr":0.7982,
85
+ "threshold":0.0027000001
86
+ },
87
+ "japanese":{
88
+ "tpr":0.993,
89
+ "tnr":0.7982,
90
+ "threshold":0.0027000001
91
+ },
92
+ "it":{
93
+ "tpr":0.993,
94
+ "tnr":0.7976,
95
+ "threshold":0.0060999999
96
+ },
97
+ "italian":{
98
+ "tpr":0.993,
99
+ "tnr":0.7976,
100
+ "threshold":0.0060999999
101
+ },
102
+ "es":{
103
+ "tpr":0.9931,
104
+ "tnr":0.7967,
105
+ "threshold":0.0035999999
106
+ },
107
+ "spanish":{
108
+ "tpr":0.9931,
109
+ "tnr":0.7967,
110
+ "threshold":0.0035999999
111
+ },
112
+ "de":{
113
+ "tpr":0.9931,
114
+ "tnr":0.7755,
115
+ "threshold":0.0046999999
116
+ },
117
+ "german":{
118
+ "tpr":0.9931,
119
+ "tnr":0.7755,
120
+ "threshold":0.0046999999
121
+ },
122
+ "tr":{
123
+ "tpr":0.9934,
124
+ "tnr":0.743,
125
+ "threshold":0.0034
126
+ },
127
+ "turkish":{
128
+ "tpr":0.9934,
129
+ "tnr":0.743,
130
+ "threshold":0.0034
131
+ },
132
+ "nl":{
133
+ "tpr":0.9932,
134
+ "tnr":0.7337,
135
+ "threshold":0.0026
136
+ },
137
+ "dutch":{
138
+ "tpr":0.9932,
139
+ "tnr":0.7337,
140
+ "threshold":0.0026
141
+ }
142
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcc14a5bb854c5da7b650d4fa104dbb074fcd6ca28d9868d96aa123f99ae2d94
3
+ size 517418272
onnx/model_q8.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb517791184b05c659371092f20cf2e2a09407decd318f996f9ea159df3b166
3
+ size 396312785
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d64eb36ca66060e66d883312782e939e1292b3375c2bbdbdd18e7257fc0ba9de
3
+ size 1035007435
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66f70f09d3cb910592b4d2344caae1568a9b5043377429849d732244fbeec9cb
3
+ size 14391
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:588490afe995435560a63cecc7fcfbda7ae66e87863035b7c3c1f3d9a638454a
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% for message in messages %}{{'<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}{% endfor %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.7931236608249025,
3
+ "best_model_checkpoint": "./models/checkpoint-1500",
4
+ "epoch": 1.0053619302949062,
5
+ "eval_steps": 500,
6
+ "global_step": 1500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.003351206434316354,
13
+ "grad_norm": 248.0,
14
+ "learning_rate": 5e-06,
15
+ "loss": 12.9737,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.006702412868632708,
20
+ "grad_norm": 205.0,
21
+ "learning_rate": 1e-05,
22
+ "loss": 12.2905,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.010053619302949061,
27
+ "grad_norm": 78.5,
28
+ "learning_rate": 1.5e-05,
29
+ "loss": 10.8747,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.013404825737265416,
34
+ "grad_norm": 45.25,
35
+ "learning_rate": 2e-05,
36
+ "loss": 9.7048,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.01675603217158177,
41
+ "grad_norm": 35.0,
42
+ "learning_rate": 2.5e-05,
43
+ "loss": 8.8715,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.020107238605898123,
48
+ "grad_norm": 30.0,
49
+ "learning_rate": 3e-05,
50
+ "loss": 8.1936,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.023458445040214475,
55
+ "grad_norm": 29.5,
56
+ "learning_rate": 3.5e-05,
57
+ "loss": 7.5312,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.02680965147453083,
62
+ "grad_norm": 35.75,
63
+ "learning_rate": 4e-05,
64
+ "loss": 6.9812,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.030160857908847184,
69
+ "grad_norm": 47.75,
70
+ "learning_rate": 4.5e-05,
71
+ "loss": 6.2436,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.03351206434316354,
76
+ "grad_norm": 25.125,
77
+ "learning_rate": 5e-05,
78
+ "loss": 5.7614,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.03686327077747989,
83
+ "grad_norm": 19.625,
84
+ "learning_rate": 5.500000000000001e-05,
85
+ "loss": 5.6177,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.040214477211796246,
90
+ "grad_norm": 13.5625,
91
+ "learning_rate": 6e-05,
92
+ "loss": 5.3004,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.0435656836461126,
97
+ "grad_norm": 21.375,
98
+ "learning_rate": 6.500000000000001e-05,
99
+ "loss": 4.9812,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.04691689008042895,
104
+ "grad_norm": 14.6875,
105
+ "learning_rate": 7e-05,
106
+ "loss": 4.827,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.05026809651474531,
111
+ "grad_norm": 15.6875,
112
+ "learning_rate": 7.500000000000001e-05,
113
+ "loss": 4.4671,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.05361930294906166,
118
+ "grad_norm": 13.4375,
119
+ "learning_rate": 8e-05,
120
+ "loss": 4.5079,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.05697050938337802,
125
+ "grad_norm": 15.8125,
126
+ "learning_rate": 8.5e-05,
127
+ "loss": 4.2763,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.06032171581769437,
132
+ "grad_norm": 18.625,
133
+ "learning_rate": 9e-05,
134
+ "loss": 4.1637,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.06367292225201072,
139
+ "grad_norm": 15.125,
140
+ "learning_rate": 9.5e-05,
141
+ "loss": 4.0087,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.06702412868632708,
146
+ "grad_norm": 12.875,
147
+ "learning_rate": 0.0001,
148
+ "loss": 3.9387,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.07037533512064344,
153
+ "grad_norm": 14.0,
154
+ "learning_rate": 0.000105,
155
+ "loss": 3.9187,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.07372654155495978,
160
+ "grad_norm": 12.0,
161
+ "learning_rate": 0.00011000000000000002,
162
+ "loss": 3.808,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.07707774798927614,
167
+ "grad_norm": 12.1875,
168
+ "learning_rate": 0.00011499999999999999,
169
+ "loss": 3.6024,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.08042895442359249,
174
+ "grad_norm": 11.4375,
175
+ "learning_rate": 0.00012,
176
+ "loss": 3.6723,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.08378016085790885,
181
+ "grad_norm": 11.5625,
182
+ "learning_rate": 0.000125,
183
+ "loss": 3.5476,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.0871313672922252,
188
+ "grad_norm": 11.0,
189
+ "learning_rate": 0.00013000000000000002,
190
+ "loss": 3.4838,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.09048257372654156,
195
+ "grad_norm": 10.375,
196
+ "learning_rate": 0.00013500000000000003,
197
+ "loss": 3.5531,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.0938337801608579,
202
+ "grad_norm": 11.75,
203
+ "learning_rate": 0.00014,
204
+ "loss": 3.4721,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.09718498659517426,
209
+ "grad_norm": 11.75,
210
+ "learning_rate": 0.000145,
211
+ "loss": 3.4215,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.10053619302949061,
216
+ "grad_norm": 11.5,
217
+ "learning_rate": 0.00015000000000000001,
218
+ "loss": 3.5449,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.10388739946380697,
223
+ "grad_norm": 19.0,
224
+ "learning_rate": 0.000155,
225
+ "loss": 3.3309,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.10723860589812333,
230
+ "grad_norm": 10.0,
231
+ "learning_rate": 0.00016,
232
+ "loss": 3.3066,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.11058981233243968,
237
+ "grad_norm": 13.25,
238
+ "learning_rate": 0.000165,
239
+ "loss": 3.3844,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.11394101876675604,
244
+ "grad_norm": 10.5625,
245
+ "learning_rate": 0.00017,
246
+ "loss": 3.2758,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.11729222520107238,
251
+ "grad_norm": 10.75,
252
+ "learning_rate": 0.000175,
253
+ "loss": 3.4125,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.12064343163538874,
258
+ "grad_norm": 10.0,
259
+ "learning_rate": 0.00018,
260
+ "loss": 3.0847,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.1239946380697051,
265
+ "grad_norm": 23.5,
266
+ "learning_rate": 0.00018500000000000002,
267
+ "loss": 3.1467,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.12734584450402145,
272
+ "grad_norm": 8.0625,
273
+ "learning_rate": 0.00019,
274
+ "loss": 3.1672,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.1306970509383378,
279
+ "grad_norm": 7.21875,
280
+ "learning_rate": 0.000195,
281
+ "loss": 3.2039,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.13404825737265416,
286
+ "grad_norm": 6.71875,
287
+ "learning_rate": 0.0002,
288
+ "loss": 3.2238,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.13739946380697052,
293
+ "grad_norm": 8.0625,
294
+ "learning_rate": 0.00019999619230641713,
295
+ "loss": 3.1889,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.14075067024128687,
300
+ "grad_norm": 13.4375,
301
+ "learning_rate": 0.00019998476951563915,
302
+ "loss": 3.1551,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.14410187667560323,
307
+ "grad_norm": 11.0,
308
+ "learning_rate": 0.00019996573249755572,
309
+ "loss": 3.1229,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.14745308310991956,
314
+ "grad_norm": 8.375,
315
+ "learning_rate": 0.0001999390827019096,
316
+ "loss": 3.0822,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.15080428954423591,
321
+ "grad_norm": 7.875,
322
+ "learning_rate": 0.0001999048221581858,
323
+ "loss": 2.9755,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.15415549597855227,
328
+ "grad_norm": 8.5,
329
+ "learning_rate": 0.0001998629534754574,
330
+ "loss": 3.0043,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.15750670241286863,
335
+ "grad_norm": 9.0625,
336
+ "learning_rate": 0.0001998134798421867,
337
+ "loss": 2.9992,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.16085790884718498,
342
+ "grad_norm": 13.4375,
343
+ "learning_rate": 0.00019975640502598244,
344
+ "loss": 3.0183,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.16420911528150134,
349
+ "grad_norm": 10.875,
350
+ "learning_rate": 0.0001996917333733128,
351
+ "loss": 3.004,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.1675603217158177,
356
+ "grad_norm": 7.75,
357
+ "learning_rate": 0.00019961946980917456,
358
+ "loss": 3.0863,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.17091152815013405,
363
+ "grad_norm": 7.71875,
364
+ "learning_rate": 0.00019953961983671788,
365
+ "loss": 2.7425,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.1742627345844504,
370
+ "grad_norm": 9.5625,
371
+ "learning_rate": 0.00019945218953682734,
372
+ "loss": 3.0072,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.17761394101876676,
377
+ "grad_norm": 7.96875,
378
+ "learning_rate": 0.00019935718556765876,
379
+ "loss": 2.9687,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.18096514745308312,
384
+ "grad_norm": 8.8125,
385
+ "learning_rate": 0.00019925461516413223,
386
+ "loss": 2.9539,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.18431635388739948,
391
+ "grad_norm": 7.46875,
392
+ "learning_rate": 0.00019914448613738106,
393
+ "loss": 2.8877,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.1876675603217158,
398
+ "grad_norm": 5.65625,
399
+ "learning_rate": 0.00019902680687415705,
400
+ "loss": 2.8264,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.19101876675603216,
405
+ "grad_norm": 6.375,
406
+ "learning_rate": 0.0001989015863361917,
407
+ "loss": 2.8201,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.19436997319034852,
412
+ "grad_norm": 6.09375,
413
+ "learning_rate": 0.00019876883405951377,
414
+ "loss": 2.8141,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.19772117962466487,
419
+ "grad_norm": 7.0,
420
+ "learning_rate": 0.00019862856015372317,
421
+ "loss": 2.9018,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.20107238605898123,
426
+ "grad_norm": 6.34375,
427
+ "learning_rate": 0.00019848077530122083,
428
+ "loss": 2.8597,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.20442359249329758,
433
+ "grad_norm": 8.9375,
434
+ "learning_rate": 0.0001983254907563955,
435
+ "loss": 2.8288,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.20777479892761394,
440
+ "grad_norm": 21.375,
441
+ "learning_rate": 0.00019816271834476642,
442
+ "loss": 2.8927,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 0.2111260053619303,
447
+ "grad_norm": 9.9375,
448
+ "learning_rate": 0.00019799247046208297,
449
+ "loss": 2.6922,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 0.21447721179624665,
454
+ "grad_norm": 6.21875,
455
+ "learning_rate": 0.00019781476007338058,
456
+ "loss": 2.9288,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 0.217828418230563,
461
+ "grad_norm": 4.84375,
462
+ "learning_rate": 0.00019762960071199333,
463
+ "loss": 2.7749,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 0.22117962466487937,
468
+ "grad_norm": 6.28125,
469
+ "learning_rate": 0.00019743700647852354,
470
+ "loss": 2.725,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 0.22453083109919572,
475
+ "grad_norm": 11.8125,
476
+ "learning_rate": 0.00019723699203976766,
477
+ "loss": 2.9425,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 0.22788203753351208,
482
+ "grad_norm": 6.9375,
483
+ "learning_rate": 0.00019702957262759965,
484
+ "loss": 2.744,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 0.2312332439678284,
489
+ "grad_norm": 5.0625,
490
+ "learning_rate": 0.0001968147640378108,
491
+ "loss": 2.6849,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 0.23458445040214476,
496
+ "grad_norm": 5.9375,
497
+ "learning_rate": 0.00019659258262890683,
498
+ "loss": 2.9359,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 0.23793565683646112,
503
+ "grad_norm": 8.0,
504
+ "learning_rate": 0.0001963630453208623,
505
+ "loss": 2.7998,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 0.24128686327077747,
510
+ "grad_norm": 4.4375,
511
+ "learning_rate": 0.0001961261695938319,
512
+ "loss": 2.6601,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 0.24463806970509383,
517
+ "grad_norm": 5.1875,
518
+ "learning_rate": 0.0001958819734868193,
519
+ "loss": 2.6936,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 0.2479892761394102,
524
+ "grad_norm": 5.25,
525
+ "learning_rate": 0.00019563047559630357,
526
+ "loss": 2.7705,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 0.25134048257372654,
531
+ "grad_norm": 5.96875,
532
+ "learning_rate": 0.0001953716950748227,
533
+ "loss": 2.8504,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 0.2546916890080429,
538
+ "grad_norm": 5.78125,
539
+ "learning_rate": 0.00019510565162951537,
540
+ "loss": 2.5577,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 0.25804289544235925,
545
+ "grad_norm": 5.5,
546
+ "learning_rate": 0.00019483236552061994,
547
+ "loss": 2.7717,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 0.2613941018766756,
552
+ "grad_norm": 4.8125,
553
+ "learning_rate": 0.0001945518575599317,
554
+ "loss": 2.6139,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 0.26474530831099197,
559
+ "grad_norm": 60.75,
560
+ "learning_rate": 0.00019426414910921787,
561
+ "loss": 2.7684,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 0.2680965147453083,
566
+ "grad_norm": 4.53125,
567
+ "learning_rate": 0.00019396926207859084,
568
+ "loss": 2.6009,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 0.2714477211796247,
573
+ "grad_norm": 5.28125,
574
+ "learning_rate": 0.00019366721892483978,
575
+ "loss": 2.6487,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 0.27479892761394104,
580
+ "grad_norm": 4.625,
581
+ "learning_rate": 0.00019335804264972018,
582
+ "loss": 2.5787,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 0.2781501340482574,
587
+ "grad_norm": 4.78125,
588
+ "learning_rate": 0.00019304175679820247,
589
+ "loss": 2.5201,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 0.28150134048257375,
594
+ "grad_norm": 4.5,
595
+ "learning_rate": 0.00019271838545667876,
596
+ "loss": 2.575,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 0.2848525469168901,
601
+ "grad_norm": 10.4375,
602
+ "learning_rate": 0.0001923879532511287,
603
+ "loss": 2.4937,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 0.28820375335120646,
608
+ "grad_norm": 14.5625,
609
+ "learning_rate": 0.00019205048534524406,
610
+ "loss": 2.6559,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 0.2915549597855228,
615
+ "grad_norm": 4.28125,
616
+ "learning_rate": 0.0001917060074385124,
617
+ "loss": 2.529,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 0.2949061662198391,
622
+ "grad_norm": 4.125,
623
+ "learning_rate": 0.0001913545457642601,
624
+ "loss": 2.6327,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 0.2982573726541555,
629
+ "grad_norm": 4.96875,
630
+ "learning_rate": 0.00019099612708765434,
631
+ "loss": 2.6676,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 0.30160857908847183,
636
+ "grad_norm": 4.84375,
637
+ "learning_rate": 0.000190630778703665,
638
+ "loss": 2.531,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 0.3049597855227882,
643
+ "grad_norm": 4.40625,
644
+ "learning_rate": 0.00019025852843498607,
645
+ "loss": 2.586,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 0.30831099195710454,
650
+ "grad_norm": 4.1875,
651
+ "learning_rate": 0.0001898794046299167,
652
+ "loss": 2.6193,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 0.3116621983914209,
657
+ "grad_norm": 4.375,
658
+ "learning_rate": 0.00018949343616020252,
659
+ "loss": 2.5805,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 0.31501340482573725,
664
+ "grad_norm": 4.1875,
665
+ "learning_rate": 0.0001891006524188368,
666
+ "loss": 2.6252,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 0.3183646112600536,
671
+ "grad_norm": 3.9375,
672
+ "learning_rate": 0.00018870108331782217,
673
+ "loss": 2.5582,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 0.32171581769436997,
678
+ "grad_norm": 4.90625,
679
+ "learning_rate": 0.00018829475928589271,
680
+ "loss": 2.6244,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 0.3250670241286863,
685
+ "grad_norm": 31.375,
686
+ "learning_rate": 0.00018788171126619653,
687
+ "loss": 2.651,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 0.3284182305630027,
692
+ "grad_norm": 4.5,
693
+ "learning_rate": 0.00018746197071393958,
694
+ "loss": 2.5153,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 0.33176943699731903,
699
+ "grad_norm": 4.15625,
700
+ "learning_rate": 0.00018703556959398998,
701
+ "loss": 2.6416,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 0.3351206434316354,
706
+ "grad_norm": 4.90625,
707
+ "learning_rate": 0.00018660254037844388,
708
+ "loss": 2.5965,
709
+ "step": 500
710
+ },
711
+ {
712
+ "epoch": 0.3351206434316354,
713
+ "eval_128_ap": 0.6946773245581791,
714
+ "eval_128_auc": 0.9680845837539295,
715
+ "eval_128_loss": 2.086740016937256,
716
+ "eval_128_runtime": 19.4102,
717
+ "eval_128_samples_per_second": 20.608,
718
+ "eval_128_steps_per_second": 5.152,
719
+ "step": 500
720
+ },
721
+ {
722
+ "epoch": 0.33847184986595175,
723
+ "grad_norm": 4.4375,
724
+ "learning_rate": 0.00018616291604415258,
725
+ "loss": 2.435,
726
+ "step": 505
727
+ },
728
+ {
729
+ "epoch": 0.3418230563002681,
730
+ "grad_norm": 4.875,
731
+ "learning_rate": 0.00018571673007021123,
732
+ "loss": 2.5466,
733
+ "step": 510
734
+ },
735
+ {
736
+ "epoch": 0.34517426273458446,
737
+ "grad_norm": 3.875,
738
+ "learning_rate": 0.00018526401643540922,
739
+ "loss": 2.6,
740
+ "step": 515
741
+ },
742
+ {
743
+ "epoch": 0.3485254691689008,
744
+ "grad_norm": 6.34375,
745
+ "learning_rate": 0.0001848048096156426,
746
+ "loss": 2.4788,
747
+ "step": 520
748
+ },
749
+ {
750
+ "epoch": 0.35187667560321717,
751
+ "grad_norm": 4.0625,
752
+ "learning_rate": 0.0001843391445812886,
753
+ "loss": 2.4897,
754
+ "step": 525
755
+ },
756
+ {
757
+ "epoch": 0.3552278820375335,
758
+ "grad_norm": 3.84375,
759
+ "learning_rate": 0.00018386705679454242,
760
+ "loss": 2.3744,
761
+ "step": 530
762
+ },
763
+ {
764
+ "epoch": 0.3585790884718499,
765
+ "grad_norm": 3.5625,
766
+ "learning_rate": 0.00018338858220671682,
767
+ "loss": 2.5395,
768
+ "step": 535
769
+ },
770
+ {
771
+ "epoch": 0.36193029490616624,
772
+ "grad_norm": 4.28125,
773
+ "learning_rate": 0.00018290375725550417,
774
+ "loss": 2.4539,
775
+ "step": 540
776
+ },
777
+ {
778
+ "epoch": 0.3652815013404826,
779
+ "grad_norm": 4.03125,
780
+ "learning_rate": 0.00018241261886220154,
781
+ "loss": 2.4642,
782
+ "step": 545
783
+ },
784
+ {
785
+ "epoch": 0.36863270777479895,
786
+ "grad_norm": 5.03125,
787
+ "learning_rate": 0.0001819152044288992,
788
+ "loss": 2.5463,
789
+ "step": 550
790
+ },
791
+ {
792
+ "epoch": 0.3719839142091153,
793
+ "grad_norm": 3.921875,
794
+ "learning_rate": 0.00018141155183563193,
795
+ "loss": 2.4316,
796
+ "step": 555
797
+ },
798
+ {
799
+ "epoch": 0.3753351206434316,
800
+ "grad_norm": 6.3125,
801
+ "learning_rate": 0.00018090169943749476,
802
+ "loss": 2.4111,
803
+ "step": 560
804
+ },
805
+ {
806
+ "epoch": 0.37868632707774796,
807
+ "grad_norm": 4.84375,
808
+ "learning_rate": 0.00018038568606172173,
809
+ "loss": 2.5699,
810
+ "step": 565
811
+ },
812
+ {
813
+ "epoch": 0.3820375335120643,
814
+ "grad_norm": 4.40625,
815
+ "learning_rate": 0.00017986355100472928,
816
+ "loss": 2.3959,
817
+ "step": 570
818
+ },
819
+ {
820
+ "epoch": 0.3853887399463807,
821
+ "grad_norm": 4.34375,
822
+ "learning_rate": 0.00017933533402912354,
823
+ "loss": 2.4525,
824
+ "step": 575
825
+ },
826
+ {
827
+ "epoch": 0.38873994638069703,
828
+ "grad_norm": 4.375,
829
+ "learning_rate": 0.00017880107536067218,
830
+ "loss": 2.5208,
831
+ "step": 580
832
+ },
833
+ {
834
+ "epoch": 0.3920911528150134,
835
+ "grad_norm": 4.5625,
836
+ "learning_rate": 0.0001782608156852414,
837
+ "loss": 2.482,
838
+ "step": 585
839
+ },
840
+ {
841
+ "epoch": 0.39544235924932974,
842
+ "grad_norm": 4.375,
843
+ "learning_rate": 0.0001777145961456971,
844
+ "loss": 2.4212,
845
+ "step": 590
846
+ },
847
+ {
848
+ "epoch": 0.3987935656836461,
849
+ "grad_norm": 4.4375,
850
+ "learning_rate": 0.00017716245833877201,
851
+ "loss": 2.4238,
852
+ "step": 595
853
+ },
854
+ {
855
+ "epoch": 0.40214477211796246,
856
+ "grad_norm": 4.90625,
857
+ "learning_rate": 0.0001766044443118978,
858
+ "loss": 2.4752,
859
+ "step": 600
860
+ },
861
+ {
862
+ "epoch": 0.4054959785522788,
863
+ "grad_norm": 4.15625,
864
+ "learning_rate": 0.0001760405965600031,
865
+ "loss": 2.4592,
866
+ "step": 605
867
+ },
868
+ {
869
+ "epoch": 0.40884718498659517,
870
+ "grad_norm": 4.0625,
871
+ "learning_rate": 0.00017547095802227723,
872
+ "loss": 2.3419,
873
+ "step": 610
874
+ },
875
+ {
876
+ "epoch": 0.4121983914209115,
877
+ "grad_norm": 3.75,
878
+ "learning_rate": 0.00017489557207890023,
879
+ "loss": 2.4173,
880
+ "step": 615
881
+ },
882
+ {
883
+ "epoch": 0.4155495978552279,
884
+ "grad_norm": 4.3125,
885
+ "learning_rate": 0.00017431448254773944,
886
+ "loss": 2.4782,
887
+ "step": 620
888
+ },
889
+ {
890
+ "epoch": 0.41890080428954424,
891
+ "grad_norm": 4.96875,
892
+ "learning_rate": 0.0001737277336810124,
893
+ "loss": 2.4608,
894
+ "step": 625
895
+ },
896
+ {
897
+ "epoch": 0.4222520107238606,
898
+ "grad_norm": 3.453125,
899
+ "learning_rate": 0.00017313537016191706,
900
+ "loss": 2.3687,
901
+ "step": 630
902
+ },
903
+ {
904
+ "epoch": 0.42560321715817695,
905
+ "grad_norm": 4.0,
906
+ "learning_rate": 0.00017253743710122878,
907
+ "loss": 2.5249,
908
+ "step": 635
909
+ },
910
+ {
911
+ "epoch": 0.4289544235924933,
912
+ "grad_norm": 3.65625,
913
+ "learning_rate": 0.0001719339800338651,
914
+ "loss": 2.3771,
915
+ "step": 640
916
+ },
917
+ {
918
+ "epoch": 0.43230563002680966,
919
+ "grad_norm": 3.90625,
920
+ "learning_rate": 0.00017132504491541818,
921
+ "loss": 2.5041,
922
+ "step": 645
923
+ },
924
+ {
925
+ "epoch": 0.435656836461126,
926
+ "grad_norm": 3.53125,
927
+ "learning_rate": 0.00017071067811865476,
928
+ "loss": 2.2476,
929
+ "step": 650
930
+ },
931
+ {
932
+ "epoch": 0.4390080428954424,
933
+ "grad_norm": 4.3125,
934
+ "learning_rate": 0.0001700909264299851,
935
+ "loss": 2.4838,
936
+ "step": 655
937
+ },
938
+ {
939
+ "epoch": 0.44235924932975873,
940
+ "grad_norm": 3.421875,
941
+ "learning_rate": 0.00016946583704589973,
942
+ "loss": 2.3025,
943
+ "step": 660
944
+ },
945
+ {
946
+ "epoch": 0.4457104557640751,
947
+ "grad_norm": 6.125,
948
+ "learning_rate": 0.0001688354575693754,
949
+ "loss": 2.3728,
950
+ "step": 665
951
+ },
952
+ {
953
+ "epoch": 0.44906166219839144,
954
+ "grad_norm": 3.578125,
955
+ "learning_rate": 0.00016819983600624986,
956
+ "loss": 2.3742,
957
+ "step": 670
958
+ },
959
+ {
960
+ "epoch": 0.4524128686327078,
961
+ "grad_norm": 3.8125,
962
+ "learning_rate": 0.00016755902076156604,
963
+ "loss": 2.5019,
964
+ "step": 675
965
+ },
966
+ {
967
+ "epoch": 0.45576407506702415,
968
+ "grad_norm": 6.09375,
969
+ "learning_rate": 0.00016691306063588583,
970
+ "loss": 2.4063,
971
+ "step": 680
972
+ },
973
+ {
974
+ "epoch": 0.45911528150134046,
975
+ "grad_norm": 3.84375,
976
+ "learning_rate": 0.00016626200482157378,
977
+ "loss": 2.3548,
978
+ "step": 685
979
+ },
980
+ {
981
+ "epoch": 0.4624664879356568,
982
+ "grad_norm": 4.375,
983
+ "learning_rate": 0.00016560590289905073,
984
+ "loss": 2.3674,
985
+ "step": 690
986
+ },
987
+ {
988
+ "epoch": 0.46581769436997317,
989
+ "grad_norm": 3.859375,
990
+ "learning_rate": 0.00016494480483301836,
991
+ "loss": 2.3071,
992
+ "step": 695
993
+ },
994
+ {
995
+ "epoch": 0.4691689008042895,
996
+ "grad_norm": 3.71875,
997
+ "learning_rate": 0.00016427876096865394,
998
+ "loss": 2.3699,
999
+ "step": 700
1000
+ },
1001
+ {
1002
+ "epoch": 0.4725201072386059,
1003
+ "grad_norm": 3.859375,
1004
+ "learning_rate": 0.0001636078220277764,
1005
+ "loss": 2.2788,
1006
+ "step": 705
1007
+ },
1008
+ {
1009
+ "epoch": 0.47587131367292224,
1010
+ "grad_norm": 3.546875,
1011
+ "learning_rate": 0.00016293203910498376,
1012
+ "loss": 2.2637,
1013
+ "step": 710
1014
+ },
1015
+ {
1016
+ "epoch": 0.4792225201072386,
1017
+ "grad_norm": 3.65625,
1018
+ "learning_rate": 0.00016225146366376198,
1019
+ "loss": 2.3791,
1020
+ "step": 715
1021
+ },
1022
+ {
1023
+ "epoch": 0.48257372654155495,
1024
+ "grad_norm": 3.46875,
1025
+ "learning_rate": 0.00016156614753256584,
1026
+ "loss": 2.2704,
1027
+ "step": 720
1028
+ },
1029
+ {
1030
+ "epoch": 0.4859249329758713,
1031
+ "grad_norm": 6.21875,
1032
+ "learning_rate": 0.00016087614290087208,
1033
+ "loss": 2.3598,
1034
+ "step": 725
1035
+ },
1036
+ {
1037
+ "epoch": 0.48927613941018766,
1038
+ "grad_norm": 3.671875,
1039
+ "learning_rate": 0.00016018150231520483,
1040
+ "loss": 2.4334,
1041
+ "step": 730
1042
+ },
1043
+ {
1044
+ "epoch": 0.492627345844504,
1045
+ "grad_norm": 3.65625,
1046
+ "learning_rate": 0.00015948227867513415,
1047
+ "loss": 2.434,
1048
+ "step": 735
1049
+ },
1050
+ {
1051
+ "epoch": 0.4959785522788204,
1052
+ "grad_norm": 3.640625,
1053
+ "learning_rate": 0.00015877852522924732,
1054
+ "loss": 2.3569,
1055
+ "step": 740
1056
+ },
1057
+ {
1058
+ "epoch": 0.49932975871313673,
1059
+ "grad_norm": 3.6875,
1060
+ "learning_rate": 0.00015807029557109398,
1061
+ "loss": 2.3909,
1062
+ "step": 745
1063
+ },
1064
+ {
1065
+ "epoch": 0.5026809651474531,
1066
+ "grad_norm": 3.765625,
1067
+ "learning_rate": 0.0001573576436351046,
1068
+ "loss": 2.3255,
1069
+ "step": 750
1070
+ },
1071
+ {
1072
+ "epoch": 0.5060321715817694,
1073
+ "grad_norm": 3.421875,
1074
+ "learning_rate": 0.00015664062369248328,
1075
+ "loss": 2.2162,
1076
+ "step": 755
1077
+ },
1078
+ {
1079
+ "epoch": 0.5093833780160858,
1080
+ "grad_norm": 4.4375,
1081
+ "learning_rate": 0.0001559192903470747,
1082
+ "loss": 2.2311,
1083
+ "step": 760
1084
+ },
1085
+ {
1086
+ "epoch": 0.5127345844504021,
1087
+ "grad_norm": 12.0625,
1088
+ "learning_rate": 0.0001551936985312058,
1089
+ "loss": 2.2553,
1090
+ "step": 765
1091
+ },
1092
+ {
1093
+ "epoch": 0.5160857908847185,
1094
+ "grad_norm": 3.90625,
1095
+ "learning_rate": 0.0001544639035015027,
1096
+ "loss": 2.3287,
1097
+ "step": 770
1098
+ },
1099
+ {
1100
+ "epoch": 0.5194369973190348,
1101
+ "grad_norm": 3.484375,
1102
+ "learning_rate": 0.0001537299608346824,
1103
+ "loss": 2.3142,
1104
+ "step": 775
1105
+ },
1106
+ {
1107
+ "epoch": 0.5227882037533512,
1108
+ "grad_norm": 3.375,
1109
+ "learning_rate": 0.0001529919264233205,
1110
+ "loss": 2.3647,
1111
+ "step": 780
1112
+ },
1113
+ {
1114
+ "epoch": 0.5261394101876675,
1115
+ "grad_norm": 4.1875,
1116
+ "learning_rate": 0.0001522498564715949,
1117
+ "loss": 2.2755,
1118
+ "step": 785
1119
+ },
1120
+ {
1121
+ "epoch": 0.5294906166219839,
1122
+ "grad_norm": 3.84375,
1123
+ "learning_rate": 0.00015150380749100545,
1124
+ "loss": 2.1969,
1125
+ "step": 790
1126
+ },
1127
+ {
1128
+ "epoch": 0.5328418230563002,
1129
+ "grad_norm": 3.46875,
1130
+ "learning_rate": 0.00015075383629607042,
1131
+ "loss": 2.3177,
1132
+ "step": 795
1133
+ },
1134
+ {
1135
+ "epoch": 0.5361930294906166,
1136
+ "grad_norm": 3.875,
1137
+ "learning_rate": 0.00015000000000000001,
1138
+ "loss": 2.2585,
1139
+ "step": 800
1140
+ },
1141
+ {
1142
+ "epoch": 0.539544235924933,
1143
+ "grad_norm": 3.8125,
1144
+ "learning_rate": 0.00014924235601034672,
1145
+ "loss": 2.3202,
1146
+ "step": 805
1147
+ },
1148
+ {
1149
+ "epoch": 0.5428954423592494,
1150
+ "grad_norm": 3.65625,
1151
+ "learning_rate": 0.00014848096202463372,
1152
+ "loss": 2.2391,
1153
+ "step": 810
1154
+ },
1155
+ {
1156
+ "epoch": 0.5462466487935657,
1157
+ "grad_norm": 4.15625,
1158
+ "learning_rate": 0.00014771587602596084,
1159
+ "loss": 2.1343,
1160
+ "step": 815
1161
+ },
1162
+ {
1163
+ "epoch": 0.5495978552278821,
1164
+ "grad_norm": 3.203125,
1165
+ "learning_rate": 0.00014694715627858908,
1166
+ "loss": 2.2725,
1167
+ "step": 820
1168
+ },
1169
+ {
1170
+ "epoch": 0.5529490616621984,
1171
+ "grad_norm": 3.4375,
1172
+ "learning_rate": 0.00014617486132350343,
1173
+ "loss": 2.1359,
1174
+ "step": 825
1175
+ },
1176
+ {
1177
+ "epoch": 0.5563002680965148,
1178
+ "grad_norm": 3.4375,
1179
+ "learning_rate": 0.00014539904997395468,
1180
+ "loss": 2.081,
1181
+ "step": 830
1182
+ },
1183
+ {
1184
+ "epoch": 0.5596514745308311,
1185
+ "grad_norm": 3.15625,
1186
+ "learning_rate": 0.00014461978131098088,
1187
+ "loss": 2.1051,
1188
+ "step": 835
1189
+ },
1190
+ {
1191
+ "epoch": 0.5630026809651475,
1192
+ "grad_norm": 3.328125,
1193
+ "learning_rate": 0.00014383711467890774,
1194
+ "loss": 2.1229,
1195
+ "step": 840
1196
+ },
1197
+ {
1198
+ "epoch": 0.5663538873994638,
1199
+ "grad_norm": 4.09375,
1200
+ "learning_rate": 0.00014305110968082952,
1201
+ "loss": 2.2683,
1202
+ "step": 845
1203
+ },
1204
+ {
1205
+ "epoch": 0.5697050938337802,
1206
+ "grad_norm": 3.484375,
1207
+ "learning_rate": 0.00014226182617406996,
1208
+ "loss": 2.1467,
1209
+ "step": 850
1210
+ },
1211
+ {
1212
+ "epoch": 0.5730563002680965,
1213
+ "grad_norm": 3.640625,
1214
+ "learning_rate": 0.00014146932426562392,
1215
+ "loss": 2.1038,
1216
+ "step": 855
1217
+ },
1218
+ {
1219
+ "epoch": 0.5764075067024129,
1220
+ "grad_norm": 3.390625,
1221
+ "learning_rate": 0.00014067366430758004,
1222
+ "loss": 2.3725,
1223
+ "step": 860
1224
+ },
1225
+ {
1226
+ "epoch": 0.5797587131367292,
1227
+ "grad_norm": 5.125,
1228
+ "learning_rate": 0.00013987490689252463,
1229
+ "loss": 2.1452,
1230
+ "step": 865
1231
+ },
1232
+ {
1233
+ "epoch": 0.5831099195710456,
1234
+ "grad_norm": 3.421875,
1235
+ "learning_rate": 0.00013907311284892736,
1236
+ "loss": 2.1279,
1237
+ "step": 870
1238
+ },
1239
+ {
1240
+ "epoch": 0.5864611260053619,
1241
+ "grad_norm": 3.265625,
1242
+ "learning_rate": 0.000138268343236509,
1243
+ "loss": 2.2028,
1244
+ "step": 875
1245
+ },
1246
+ {
1247
+ "epoch": 0.5898123324396782,
1248
+ "grad_norm": 3.546875,
1249
+ "learning_rate": 0.00013746065934159123,
1250
+ "loss": 2.2621,
1251
+ "step": 880
1252
+ },
1253
+ {
1254
+ "epoch": 0.5931635388739946,
1255
+ "grad_norm": 3.40625,
1256
+ "learning_rate": 0.00013665012267242974,
1257
+ "loss": 2.3162,
1258
+ "step": 885
1259
+ },
1260
+ {
1261
+ "epoch": 0.596514745308311,
1262
+ "grad_norm": 3.3125,
1263
+ "learning_rate": 0.00013583679495453,
1264
+ "loss": 2.2635,
1265
+ "step": 890
1266
+ },
1267
+ {
1268
+ "epoch": 0.5998659517426274,
1269
+ "grad_norm": 3.65625,
1270
+ "learning_rate": 0.00013502073812594675,
1271
+ "loss": 2.2185,
1272
+ "step": 895
1273
+ },
1274
+ {
1275
+ "epoch": 0.6032171581769437,
1276
+ "grad_norm": 3.40625,
1277
+ "learning_rate": 0.00013420201433256689,
1278
+ "loss": 2.1357,
1279
+ "step": 900
1280
+ },
1281
+ {
1282
+ "epoch": 0.6065683646112601,
1283
+ "grad_norm": 3.875,
1284
+ "learning_rate": 0.0001333806859233771,
1285
+ "loss": 2.1906,
1286
+ "step": 905
1287
+ },
1288
+ {
1289
+ "epoch": 0.6099195710455764,
1290
+ "grad_norm": 3.578125,
1291
+ "learning_rate": 0.00013255681544571568,
1292
+ "loss": 2.1371,
1293
+ "step": 910
1294
+ },
1295
+ {
1296
+ "epoch": 0.6132707774798928,
1297
+ "grad_norm": 3.328125,
1298
+ "learning_rate": 0.00013173046564050924,
1299
+ "loss": 2.1377,
1300
+ "step": 915
1301
+ },
1302
+ {
1303
+ "epoch": 0.6166219839142091,
1304
+ "grad_norm": 3.078125,
1305
+ "learning_rate": 0.00013090169943749476,
1306
+ "loss": 2.1863,
1307
+ "step": 920
1308
+ },
1309
+ {
1310
+ "epoch": 0.6199731903485255,
1311
+ "grad_norm": 3.5625,
1312
+ "learning_rate": 0.00013007057995042732,
1313
+ "loss": 2.1153,
1314
+ "step": 925
1315
+ },
1316
+ {
1317
+ "epoch": 0.6233243967828418,
1318
+ "grad_norm": 3.125,
1319
+ "learning_rate": 0.00012923717047227368,
1320
+ "loss": 2.1994,
1321
+ "step": 930
1322
+ },
1323
+ {
1324
+ "epoch": 0.6266756032171582,
1325
+ "grad_norm": 3.203125,
1326
+ "learning_rate": 0.00012840153447039228,
1327
+ "loss": 2.205,
1328
+ "step": 935
1329
+ },
1330
+ {
1331
+ "epoch": 0.6300268096514745,
1332
+ "grad_norm": 3.46875,
1333
+ "learning_rate": 0.0001275637355816999,
1334
+ "loss": 2.1964,
1335
+ "step": 940
1336
+ },
1337
+ {
1338
+ "epoch": 0.6333780160857909,
1339
+ "grad_norm": 3.625,
1340
+ "learning_rate": 0.00012672383760782568,
1341
+ "loss": 2.1978,
1342
+ "step": 945
1343
+ },
1344
+ {
1345
+ "epoch": 0.6367292225201072,
1346
+ "grad_norm": 3.171875,
1347
+ "learning_rate": 0.00012588190451025207,
1348
+ "loss": 2.1862,
1349
+ "step": 950
1350
+ },
1351
+ {
1352
+ "epoch": 0.6400804289544236,
1353
+ "grad_norm": 3.296875,
1354
+ "learning_rate": 0.00012503800040544416,
1355
+ "loss": 2.1544,
1356
+ "step": 955
1357
+ },
1358
+ {
1359
+ "epoch": 0.6434316353887399,
1360
+ "grad_norm": 3.46875,
1361
+ "learning_rate": 0.00012419218955996676,
1362
+ "loss": 2.1247,
1363
+ "step": 960
1364
+ },
1365
+ {
1366
+ "epoch": 0.6467828418230563,
1367
+ "grad_norm": 3.0625,
1368
+ "learning_rate": 0.00012334453638559057,
1369
+ "loss": 2.132,
1370
+ "step": 965
1371
+ },
1372
+ {
1373
+ "epoch": 0.6501340482573726,
1374
+ "grad_norm": 3.5,
1375
+ "learning_rate": 0.0001224951054343865,
1376
+ "loss": 2.0192,
1377
+ "step": 970
1378
+ },
1379
+ {
1380
+ "epoch": 0.653485254691689,
1381
+ "grad_norm": 3.359375,
1382
+ "learning_rate": 0.00012164396139381029,
1383
+ "loss": 2.0863,
1384
+ "step": 975
1385
+ },
1386
+ {
1387
+ "epoch": 0.6568364611260054,
1388
+ "grad_norm": 3.234375,
1389
+ "learning_rate": 0.00012079116908177593,
1390
+ "loss": 2.162,
1391
+ "step": 980
1392
+ },
1393
+ {
1394
+ "epoch": 0.6601876675603218,
1395
+ "grad_norm": 3.4375,
1396
+ "learning_rate": 0.00011993679344171973,
1397
+ "loss": 2.2546,
1398
+ "step": 985
1399
+ },
1400
+ {
1401
+ "epoch": 0.6635388739946381,
1402
+ "grad_norm": 3.640625,
1403
+ "learning_rate": 0.00011908089953765449,
1404
+ "loss": 2.1244,
1405
+ "step": 990
1406
+ },
1407
+ {
1408
+ "epoch": 0.6668900804289544,
1409
+ "grad_norm": 3.515625,
1410
+ "learning_rate": 0.00011822355254921478,
1411
+ "loss": 2.1339,
1412
+ "step": 995
1413
+ },
1414
+ {
1415
+ "epoch": 0.6702412868632708,
1416
+ "grad_norm": 5.46875,
1417
+ "learning_rate": 0.00011736481776669306,
1418
+ "loss": 2.1744,
1419
+ "step": 1000
1420
+ },
1421
+ {
1422
+ "epoch": 0.6702412868632708,
1423
+ "eval_128_ap": 0.7636418814117207,
1424
+ "eval_128_auc": 0.9774185615872945,
1425
+ "eval_128_loss": 1.7800103425979614,
1426
+ "eval_128_runtime": 21.8273,
1427
+ "eval_128_samples_per_second": 18.326,
1428
+ "eval_128_steps_per_second": 4.581,
1429
+ "step": 1000
1430
+ },
1431
+ {
1432
+ "epoch": 0.6735924932975871,
1433
+ "grad_norm": 3.359375,
1434
+ "learning_rate": 0.00011650476058606777,
1435
+ "loss": 1.9784,
1436
+ "step": 1005
1437
+ },
1438
+ {
1439
+ "epoch": 0.6769436997319035,
1440
+ "grad_norm": 3.0625,
1441
+ "learning_rate": 0.0001156434465040231,
1442
+ "loss": 1.9891,
1443
+ "step": 1010
1444
+ },
1445
+ {
1446
+ "epoch": 0.6802949061662198,
1447
+ "grad_norm": 3.8125,
1448
+ "learning_rate": 0.00011478094111296109,
1449
+ "loss": 2.0137,
1450
+ "step": 1015
1451
+ },
1452
+ {
1453
+ "epoch": 0.6836461126005362,
1454
+ "grad_norm": 3.5625,
1455
+ "learning_rate": 0.00011391731009600654,
1456
+ "loss": 2.0556,
1457
+ "step": 1020
1458
+ },
1459
+ {
1460
+ "epoch": 0.6869973190348525,
1461
+ "grad_norm": 3.140625,
1462
+ "learning_rate": 0.00011305261922200519,
1463
+ "loss": 2.0577,
1464
+ "step": 1025
1465
+ },
1466
+ {
1467
+ "epoch": 0.6903485254691689,
1468
+ "grad_norm": 3.1875,
1469
+ "learning_rate": 0.00011218693434051475,
1470
+ "loss": 2.0269,
1471
+ "step": 1030
1472
+ },
1473
+ {
1474
+ "epoch": 0.6936997319034852,
1475
+ "grad_norm": 3.28125,
1476
+ "learning_rate": 0.0001113203213767907,
1477
+ "loss": 2.0982,
1478
+ "step": 1035
1479
+ },
1480
+ {
1481
+ "epoch": 0.6970509383378016,
1482
+ "grad_norm": 3.28125,
1483
+ "learning_rate": 0.00011045284632676536,
1484
+ "loss": 2.1156,
1485
+ "step": 1040
1486
+ },
1487
+ {
1488
+ "epoch": 0.7004021447721179,
1489
+ "grad_norm": 3.140625,
1490
+ "learning_rate": 0.00010958457525202241,
1491
+ "loss": 2.0988,
1492
+ "step": 1045
1493
+ },
1494
+ {
1495
+ "epoch": 0.7037533512064343,
1496
+ "grad_norm": 3.40625,
1497
+ "learning_rate": 0.00010871557427476583,
1498
+ "loss": 2.0687,
1499
+ "step": 1050
1500
+ },
1501
+ {
1502
+ "epoch": 0.7071045576407506,
1503
+ "grad_norm": 3.359375,
1504
+ "learning_rate": 0.0001078459095727845,
1505
+ "loss": 2.0488,
1506
+ "step": 1055
1507
+ },
1508
+ {
1509
+ "epoch": 0.710455764075067,
1510
+ "grad_norm": 3.390625,
1511
+ "learning_rate": 0.00010697564737441252,
1512
+ "loss": 2.1562,
1513
+ "step": 1060
1514
+ },
1515
+ {
1516
+ "epoch": 0.7138069705093834,
1517
+ "grad_norm": 2.96875,
1518
+ "learning_rate": 0.00010610485395348571,
1519
+ "loss": 2.0119,
1520
+ "step": 1065
1521
+ },
1522
+ {
1523
+ "epoch": 0.7171581769436998,
1524
+ "grad_norm": 3.328125,
1525
+ "learning_rate": 0.0001052335956242944,
1526
+ "loss": 2.0686,
1527
+ "step": 1070
1528
+ },
1529
+ {
1530
+ "epoch": 0.7205093833780161,
1531
+ "grad_norm": 3.65625,
1532
+ "learning_rate": 0.00010436193873653361,
1533
+ "loss": 2.0053,
1534
+ "step": 1075
1535
+ },
1536
+ {
1537
+ "epoch": 0.7238605898123325,
1538
+ "grad_norm": 3.15625,
1539
+ "learning_rate": 0.00010348994967025012,
1540
+ "loss": 2.0279,
1541
+ "step": 1080
1542
+ },
1543
+ {
1544
+ "epoch": 0.7272117962466488,
1545
+ "grad_norm": 3.3125,
1546
+ "learning_rate": 0.00010261769483078733,
1547
+ "loss": 2.2239,
1548
+ "step": 1085
1549
+ },
1550
+ {
1551
+ "epoch": 0.7305630026809652,
1552
+ "grad_norm": 3.1875,
1553
+ "learning_rate": 0.00010174524064372837,
1554
+ "loss": 2.0663,
1555
+ "step": 1090
1556
+ },
1557
+ {
1558
+ "epoch": 0.7339142091152815,
1559
+ "grad_norm": 3.25,
1560
+ "learning_rate": 0.0001008726535498374,
1561
+ "loss": 2.1292,
1562
+ "step": 1095
1563
+ },
1564
+ {
1565
+ "epoch": 0.7372654155495979,
1566
+ "grad_norm": 2.984375,
1567
+ "learning_rate": 0.0001,
1568
+ "loss": 2.0677,
1569
+ "step": 1100
1570
+ },
1571
+ {
1572
+ "epoch": 0.7406166219839142,
1573
+ "grad_norm": 3.109375,
1574
+ "learning_rate": 9.912734645016263e-05,
1575
+ "loss": 1.9551,
1576
+ "step": 1105
1577
+ },
1578
+ {
1579
+ "epoch": 0.7439678284182306,
1580
+ "grad_norm": 4.34375,
1581
+ "learning_rate": 9.825475935627165e-05,
1582
+ "loss": 2.0803,
1583
+ "step": 1110
1584
+ },
1585
+ {
1586
+ "epoch": 0.7473190348525469,
1587
+ "grad_norm": 3.25,
1588
+ "learning_rate": 9.73823051692127e-05,
1589
+ "loss": 2.114,
1590
+ "step": 1115
1591
+ },
1592
+ {
1593
+ "epoch": 0.7506702412868632,
1594
+ "grad_norm": 3.0625,
1595
+ "learning_rate": 9.651005032974994e-05,
1596
+ "loss": 2.0298,
1597
+ "step": 1120
1598
+ },
1599
+ {
1600
+ "epoch": 0.7540214477211796,
1601
+ "grad_norm": 3.203125,
1602
+ "learning_rate": 9.563806126346642e-05,
1603
+ "loss": 2.15,
1604
+ "step": 1125
1605
+ },
1606
+ {
1607
+ "epoch": 0.7573726541554959,
1608
+ "grad_norm": 3.359375,
1609
+ "learning_rate": 9.476640437570562e-05,
1610
+ "loss": 2.0435,
1611
+ "step": 1130
1612
+ },
1613
+ {
1614
+ "epoch": 0.7607238605898123,
1615
+ "grad_norm": 3.140625,
1616
+ "learning_rate": 9.38951460465143e-05,
1617
+ "loss": 2.0872,
1618
+ "step": 1135
1619
+ },
1620
+ {
1621
+ "epoch": 0.7640750670241286,
1622
+ "grad_norm": 3.421875,
1623
+ "learning_rate": 9.302435262558747e-05,
1624
+ "loss": 1.981,
1625
+ "step": 1140
1626
+ },
1627
+ {
1628
+ "epoch": 0.767426273458445,
1629
+ "grad_norm": 2.796875,
1630
+ "learning_rate": 9.215409042721552e-05,
1631
+ "loss": 1.9386,
1632
+ "step": 1145
1633
+ },
1634
+ {
1635
+ "epoch": 0.7707774798927614,
1636
+ "grad_norm": 3.34375,
1637
+ "learning_rate": 9.128442572523417e-05,
1638
+ "loss": 2.0754,
1639
+ "step": 1150
1640
+ },
1641
+ {
1642
+ "epoch": 0.7741286863270778,
1643
+ "grad_norm": 3.234375,
1644
+ "learning_rate": 9.04154247479776e-05,
1645
+ "loss": 2.0129,
1646
+ "step": 1155
1647
+ },
1648
+ {
1649
+ "epoch": 0.7774798927613941,
1650
+ "grad_norm": 3.328125,
1651
+ "learning_rate": 8.954715367323468e-05,
1652
+ "loss": 2.099,
1653
+ "step": 1160
1654
+ },
1655
+ {
1656
+ "epoch": 0.7808310991957105,
1657
+ "grad_norm": 3.171875,
1658
+ "learning_rate": 8.867967862320934e-05,
1659
+ "loss": 2.055,
1660
+ "step": 1165
1661
+ },
1662
+ {
1663
+ "epoch": 0.7841823056300268,
1664
+ "grad_norm": 3.109375,
1665
+ "learning_rate": 8.781306565948528e-05,
1666
+ "loss": 1.9264,
1667
+ "step": 1170
1668
+ },
1669
+ {
1670
+ "epoch": 0.7875335120643432,
1671
+ "grad_norm": 3.359375,
1672
+ "learning_rate": 8.694738077799488e-05,
1673
+ "loss": 1.9382,
1674
+ "step": 1175
1675
+ },
1676
+ {
1677
+ "epoch": 0.7908847184986595,
1678
+ "grad_norm": 3.5625,
1679
+ "learning_rate": 8.608268990399349e-05,
1680
+ "loss": 1.9913,
1681
+ "step": 1180
1682
+ },
1683
+ {
1684
+ "epoch": 0.7942359249329759,
1685
+ "grad_norm": 3.390625,
1686
+ "learning_rate": 8.521905888703893e-05,
1687
+ "loss": 2.2202,
1688
+ "step": 1185
1689
+ },
1690
+ {
1691
+ "epoch": 0.7975871313672922,
1692
+ "grad_norm": 3.296875,
1693
+ "learning_rate": 8.435655349597689e-05,
1694
+ "loss": 1.9226,
1695
+ "step": 1190
1696
+ },
1697
+ {
1698
+ "epoch": 0.8009383378016086,
1699
+ "grad_norm": 3.375,
1700
+ "learning_rate": 8.349523941393224e-05,
1701
+ "loss": 1.9842,
1702
+ "step": 1195
1703
+ },
1704
+ {
1705
+ "epoch": 0.8042895442359249,
1706
+ "grad_norm": 3.109375,
1707
+ "learning_rate": 8.263518223330697e-05,
1708
+ "loss": 2.0414,
1709
+ "step": 1200
1710
+ },
1711
+ {
1712
+ "epoch": 0.8076407506702413,
1713
+ "grad_norm": 3.375,
1714
+ "learning_rate": 8.177644745078526e-05,
1715
+ "loss": 1.9747,
1716
+ "step": 1205
1717
+ },
1718
+ {
1719
+ "epoch": 0.8109919571045576,
1720
+ "grad_norm": 3.1875,
1721
+ "learning_rate": 8.091910046234552e-05,
1722
+ "loss": 2.1483,
1723
+ "step": 1210
1724
+ },
1725
+ {
1726
+ "epoch": 0.814343163538874,
1727
+ "grad_norm": 3.046875,
1728
+ "learning_rate": 8.00632065582803e-05,
1729
+ "loss": 2.003,
1730
+ "step": 1215
1731
+ },
1732
+ {
1733
+ "epoch": 0.8176943699731903,
1734
+ "grad_norm": 3.4375,
1735
+ "learning_rate": 7.920883091822408e-05,
1736
+ "loss": 1.9795,
1737
+ "step": 1220
1738
+ },
1739
+ {
1740
+ "epoch": 0.8210455764075067,
1741
+ "grad_norm": 4.46875,
1742
+ "learning_rate": 7.835603860618972e-05,
1743
+ "loss": 1.9079,
1744
+ "step": 1225
1745
+ },
1746
+ {
1747
+ "epoch": 0.824396782841823,
1748
+ "grad_norm": 3.046875,
1749
+ "learning_rate": 7.750489456561352e-05,
1750
+ "loss": 1.9086,
1751
+ "step": 1230
1752
+ },
1753
+ {
1754
+ "epoch": 0.8277479892761395,
1755
+ "grad_norm": 3.1875,
1756
+ "learning_rate": 7.66554636144095e-05,
1757
+ "loss": 2.138,
1758
+ "step": 1235
1759
+ },
1760
+ {
1761
+ "epoch": 0.8310991957104558,
1762
+ "grad_norm": 3.125,
1763
+ "learning_rate": 7.580781044003324e-05,
1764
+ "loss": 1.9724,
1765
+ "step": 1240
1766
+ },
1767
+ {
1768
+ "epoch": 0.8344504021447721,
1769
+ "grad_norm": 3.265625,
1770
+ "learning_rate": 7.496199959455584e-05,
1771
+ "loss": 2.0067,
1772
+ "step": 1245
1773
+ },
1774
+ {
1775
+ "epoch": 0.8378016085790885,
1776
+ "grad_norm": 3.359375,
1777
+ "learning_rate": 7.411809548974792e-05,
1778
+ "loss": 1.9761,
1779
+ "step": 1250
1780
+ },
1781
+ {
1782
+ "epoch": 0.8411528150134048,
1783
+ "grad_norm": 3.265625,
1784
+ "learning_rate": 7.327616239217431e-05,
1785
+ "loss": 1.9118,
1786
+ "step": 1255
1787
+ },
1788
+ {
1789
+ "epoch": 0.8445040214477212,
1790
+ "grad_norm": 2.96875,
1791
+ "learning_rate": 7.243626441830009e-05,
1792
+ "loss": 1.992,
1793
+ "step": 1260
1794
+ },
1795
+ {
1796
+ "epoch": 0.8478552278820375,
1797
+ "grad_norm": 3.109375,
1798
+ "learning_rate": 7.159846552960774e-05,
1799
+ "loss": 1.9095,
1800
+ "step": 1265
1801
+ },
1802
+ {
1803
+ "epoch": 0.8512064343163539,
1804
+ "grad_norm": 3.0625,
1805
+ "learning_rate": 7.076282952772633e-05,
1806
+ "loss": 1.9637,
1807
+ "step": 1270
1808
+ },
1809
+ {
1810
+ "epoch": 0.8545576407506702,
1811
+ "grad_norm": 3.265625,
1812
+ "learning_rate": 6.992942004957271e-05,
1813
+ "loss": 1.9976,
1814
+ "step": 1275
1815
+ },
1816
+ {
1817
+ "epoch": 0.8579088471849866,
1818
+ "grad_norm": 3.203125,
1819
+ "learning_rate": 6.909830056250527e-05,
1820
+ "loss": 2.0146,
1821
+ "step": 1280
1822
+ },
1823
+ {
1824
+ "epoch": 0.8612600536193029,
1825
+ "grad_norm": 4.03125,
1826
+ "learning_rate": 6.826953435949081e-05,
1827
+ "loss": 1.9493,
1828
+ "step": 1285
1829
+ },
1830
+ {
1831
+ "epoch": 0.8646112600536193,
1832
+ "grad_norm": 3.25,
1833
+ "learning_rate": 6.744318455428436e-05,
1834
+ "loss": 2.0348,
1835
+ "step": 1290
1836
+ },
1837
+ {
1838
+ "epoch": 0.8679624664879356,
1839
+ "grad_norm": 3.09375,
1840
+ "learning_rate": 6.661931407662292e-05,
1841
+ "loss": 1.9574,
1842
+ "step": 1295
1843
+ },
1844
+ {
1845
+ "epoch": 0.871313672922252,
1846
+ "grad_norm": 3.234375,
1847
+ "learning_rate": 6.579798566743314e-05,
1848
+ "loss": 2.023,
1849
+ "step": 1300
1850
+ },
1851
+ {
1852
+ "epoch": 0.8746648793565683,
1853
+ "grad_norm": 3.109375,
1854
+ "learning_rate": 6.497926187405326e-05,
1855
+ "loss": 1.9266,
1856
+ "step": 1305
1857
+ },
1858
+ {
1859
+ "epoch": 0.8780160857908847,
1860
+ "grad_norm": 3.078125,
1861
+ "learning_rate": 6.416320504546997e-05,
1862
+ "loss": 1.9451,
1863
+ "step": 1310
1864
+ },
1865
+ {
1866
+ "epoch": 0.881367292225201,
1867
+ "grad_norm": 3.296875,
1868
+ "learning_rate": 6.334987732757029e-05,
1869
+ "loss": 2.0478,
1870
+ "step": 1315
1871
+ },
1872
+ {
1873
+ "epoch": 0.8847184986595175,
1874
+ "grad_norm": 3.15625,
1875
+ "learning_rate": 6.25393406584088e-05,
1876
+ "loss": 2.0049,
1877
+ "step": 1320
1878
+ },
1879
+ {
1880
+ "epoch": 0.8880697050938338,
1881
+ "grad_norm": 3.15625,
1882
+ "learning_rate": 6.173165676349103e-05,
1883
+ "loss": 1.9374,
1884
+ "step": 1325
1885
+ },
1886
+ {
1887
+ "epoch": 0.8914209115281502,
1888
+ "grad_norm": 3.140625,
1889
+ "learning_rate": 6.092688715107264e-05,
1890
+ "loss": 1.9352,
1891
+ "step": 1330
1892
+ },
1893
+ {
1894
+ "epoch": 0.8947721179624665,
1895
+ "grad_norm": 3.203125,
1896
+ "learning_rate": 6.012509310747538e-05,
1897
+ "loss": 1.8953,
1898
+ "step": 1335
1899
+ },
1900
+ {
1901
+ "epoch": 0.8981233243967829,
1902
+ "grad_norm": 3.25,
1903
+ "learning_rate": 5.9326335692419995e-05,
1904
+ "loss": 2.0176,
1905
+ "step": 1340
1906
+ },
1907
+ {
1908
+ "epoch": 0.9014745308310992,
1909
+ "grad_norm": 3.203125,
1910
+ "learning_rate": 5.853067573437612e-05,
1911
+ "loss": 1.9532,
1912
+ "step": 1345
1913
+ },
1914
+ {
1915
+ "epoch": 0.9048257372654156,
1916
+ "grad_norm": 3.03125,
1917
+ "learning_rate": 5.773817382593008e-05,
1918
+ "loss": 1.9968,
1919
+ "step": 1350
1920
+ },
1921
+ {
1922
+ "epoch": 0.9081769436997319,
1923
+ "grad_norm": 3.0625,
1924
+ "learning_rate": 5.694889031917047e-05,
1925
+ "loss": 2.0223,
1926
+ "step": 1355
1927
+ },
1928
+ {
1929
+ "epoch": 0.9115281501340483,
1930
+ "grad_norm": 3.0625,
1931
+ "learning_rate": 5.616288532109225e-05,
1932
+ "loss": 1.8986,
1933
+ "step": 1360
1934
+ },
1935
+ {
1936
+ "epoch": 0.9148793565683646,
1937
+ "grad_norm": 3.109375,
1938
+ "learning_rate": 5.5380218689019125e-05,
1939
+ "loss": 1.8947,
1940
+ "step": 1365
1941
+ },
1942
+ {
1943
+ "epoch": 0.9182305630026809,
1944
+ "grad_norm": 2.9375,
1945
+ "learning_rate": 5.4600950026045326e-05,
1946
+ "loss": 2.0307,
1947
+ "step": 1370
1948
+ },
1949
+ {
1950
+ "epoch": 0.9215817694369973,
1951
+ "grad_norm": 2.859375,
1952
+ "learning_rate": 5.3825138676496624e-05,
1953
+ "loss": 1.8391,
1954
+ "step": 1375
1955
+ },
1956
+ {
1957
+ "epoch": 0.9249329758713136,
1958
+ "grad_norm": 3.078125,
1959
+ "learning_rate": 5.305284372141095e-05,
1960
+ "loss": 1.9281,
1961
+ "step": 1380
1962
+ },
1963
+ {
1964
+ "epoch": 0.92828418230563,
1965
+ "grad_norm": 3.03125,
1966
+ "learning_rate": 5.2284123974039154e-05,
1967
+ "loss": 2.0512,
1968
+ "step": 1385
1969
+ },
1970
+ {
1971
+ "epoch": 0.9316353887399463,
1972
+ "grad_norm": 3.171875,
1973
+ "learning_rate": 5.15190379753663e-05,
1974
+ "loss": 1.9567,
1975
+ "step": 1390
1976
+ },
1977
+ {
1978
+ "epoch": 0.9349865951742627,
1979
+ "grad_norm": 3.125,
1980
+ "learning_rate": 5.07576439896533e-05,
1981
+ "loss": 1.864,
1982
+ "step": 1395
1983
+ },
1984
+ {
1985
+ "epoch": 0.938337801608579,
1986
+ "grad_norm": 3.296875,
1987
+ "learning_rate": 5.000000000000002e-05,
1988
+ "loss": 1.9016,
1989
+ "step": 1400
1990
+ },
1991
+ {
1992
+ "epoch": 0.9416890080428955,
1993
+ "grad_norm": 3.28125,
1994
+ "learning_rate": 4.924616370392961e-05,
1995
+ "loss": 2.0128,
1996
+ "step": 1405
1997
+ },
1998
+ {
1999
+ "epoch": 0.9450402144772118,
2000
+ "grad_norm": 2.8125,
2001
+ "learning_rate": 4.8496192508994576e-05,
2002
+ "loss": 2.0419,
2003
+ "step": 1410
2004
+ },
2005
+ {
2006
+ "epoch": 0.9483914209115282,
2007
+ "grad_norm": 3.03125,
2008
+ "learning_rate": 4.7750143528405126e-05,
2009
+ "loss": 1.964,
2010
+ "step": 1415
2011
+ },
2012
+ {
2013
+ "epoch": 0.9517426273458445,
2014
+ "grad_norm": 3.0625,
2015
+ "learning_rate": 4.700807357667952e-05,
2016
+ "loss": 1.9684,
2017
+ "step": 1420
2018
+ },
2019
+ {
2020
+ "epoch": 0.9550938337801609,
2021
+ "grad_norm": 3.265625,
2022
+ "learning_rate": 4.6270039165317605e-05,
2023
+ "loss": 1.9713,
2024
+ "step": 1425
2025
+ },
2026
+ {
2027
+ "epoch": 0.9584450402144772,
2028
+ "grad_norm": 3.015625,
2029
+ "learning_rate": 4.553609649849728e-05,
2030
+ "loss": 1.8728,
2031
+ "step": 1430
2032
+ },
2033
+ {
2034
+ "epoch": 0.9617962466487936,
2035
+ "grad_norm": 3.28125,
2036
+ "learning_rate": 4.480630146879419e-05,
2037
+ "loss": 1.8794,
2038
+ "step": 1435
2039
+ },
2040
+ {
2041
+ "epoch": 0.9651474530831099,
2042
+ "grad_norm": 3.296875,
2043
+ "learning_rate": 4.4080709652925336e-05,
2044
+ "loss": 2.017,
2045
+ "step": 1440
2046
+ },
2047
+ {
2048
+ "epoch": 0.9684986595174263,
2049
+ "grad_norm": 3.140625,
2050
+ "learning_rate": 4.335937630751674e-05,
2051
+ "loss": 1.9458,
2052
+ "step": 1445
2053
+ },
2054
+ {
2055
+ "epoch": 0.9718498659517426,
2056
+ "grad_norm": 3.09375,
2057
+ "learning_rate": 4.264235636489542e-05,
2058
+ "loss": 2.0505,
2059
+ "step": 1450
2060
+ },
2061
+ {
2062
+ "epoch": 0.975201072386059,
2063
+ "grad_norm": 3.21875,
2064
+ "learning_rate": 4.1929704428906026e-05,
2065
+ "loss": 1.9101,
2066
+ "step": 1455
2067
+ },
2068
+ {
2069
+ "epoch": 0.9785522788203753,
2070
+ "grad_norm": 3.078125,
2071
+ "learning_rate": 4.12214747707527e-05,
2072
+ "loss": 1.8192,
2073
+ "step": 1460
2074
+ },
2075
+ {
2076
+ "epoch": 0.9819034852546917,
2077
+ "grad_norm": 3.0,
2078
+ "learning_rate": 4.0517721324865884e-05,
2079
+ "loss": 1.9514,
2080
+ "step": 1465
2081
+ },
2082
+ {
2083
+ "epoch": 0.985254691689008,
2084
+ "grad_norm": 3.3125,
2085
+ "learning_rate": 3.981849768479517e-05,
2086
+ "loss": 1.9101,
2087
+ "step": 1470
2088
+ },
2089
+ {
2090
+ "epoch": 0.9886058981233244,
2091
+ "grad_norm": 2.96875,
2092
+ "learning_rate": 3.9123857099127936e-05,
2093
+ "loss": 1.8583,
2094
+ "step": 1475
2095
+ },
2096
+ {
2097
+ "epoch": 0.9919571045576407,
2098
+ "grad_norm": 3.078125,
2099
+ "learning_rate": 3.843385246743417e-05,
2100
+ "loss": 1.8693,
2101
+ "step": 1480
2102
+ },
2103
+ {
2104
+ "epoch": 0.9953083109919572,
2105
+ "grad_norm": 3.109375,
2106
+ "learning_rate": 3.774853633623806e-05,
2107
+ "loss": 1.952,
2108
+ "step": 1485
2109
+ },
2110
+ {
2111
+ "epoch": 0.9986595174262735,
2112
+ "grad_norm": 2.9375,
2113
+ "learning_rate": 3.7067960895016275e-05,
2114
+ "loss": 1.9502,
2115
+ "step": 1490
2116
+ },
2117
+ {
2118
+ "epoch": 1.0020107238605898,
2119
+ "grad_norm": 4.1875,
2120
+ "learning_rate": 3.6392177972223594e-05,
2121
+ "loss": 1.7212,
2122
+ "step": 1495
2123
+ },
2124
+ {
2125
+ "epoch": 1.0053619302949062,
2126
+ "grad_norm": 2.96875,
2127
+ "learning_rate": 3.5721239031346066e-05,
2128
+ "loss": 1.6225,
2129
+ "step": 1500
2130
+ },
2131
+ {
2132
+ "epoch": 1.0053619302949062,
2133
+ "eval_128_ap": 0.7931236608249025,
2134
+ "eval_128_auc": 0.9804633885794023,
2135
+ "eval_128_loss": 1.6620492935180664,
2136
+ "eval_128_runtime": 20.588,
2137
+ "eval_128_samples_per_second": 19.429,
2138
+ "eval_128_steps_per_second": 4.857,
2139
+ "step": 1500
2140
+ }
2141
+ ],
2142
+ "logging_steps": 5,
2143
+ "max_steps": 2000,
2144
+ "num_input_tokens_seen": 0,
2145
+ "num_train_epochs": 2,
2146
+ "save_steps": 500,
2147
+ "stateful_callbacks": {
2148
+ "TrainerControl": {
2149
+ "args": {
2150
+ "should_epoch_stop": false,
2151
+ "should_evaluate": false,
2152
+ "should_log": false,
2153
+ "should_save": true,
2154
+ "should_training_stop": false
2155
+ },
2156
+ "attributes": {}
2157
+ }
2158
+ },
2159
+ "total_flos": 4517613999095808.0,
2160
+ "train_batch_size": 8,
2161
+ "trial_name": null,
2162
+ "trial_params": null
2163
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b401459a110bcfbc0ae993f2040677ba421d24a5acfed8807cbdd6a9c04c026b
3
+ size 5969
vocab.json ADDED
The diff for this file is too large to render. See raw diff