File size: 12,337 Bytes
e39ff3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import mlx.core as mx
import mlx.nn as nn
import json
from dataclasses import dataclass
from pathlib import Path
@dataclass
class ModelArgs:
hidden_size: int
num_attention_heads: int
num_hidden_layers: int
vocab_size: int
intermediate_size: int
intermediate_size_mlp: int = None
num_key_value_heads: int = 0
rms_norm_eps: float = 1e-5
rope_theta: float = 10000.0
head_dim: int = None
use_dual_mlp: bool = False
tie_word_embeddings: bool = True
use_qk_norm: bool = False
attn_scale: float = 1.0
no_rope_layers: list | None = None
attention_chunk_size: int | None = None
attn_temperature_tuning: bool = False
@classmethod
def from_dict(cls, params):
return cls(
hidden_size=params["hidden_size"],
num_attention_heads=params["num_attention_heads"],
num_hidden_layers=params["num_hidden_layers"],
vocab_size=params["vocab_size"],
intermediate_size=params["intermediate_size"],
intermediate_size_mlp=params.get("intermediate_size_mlp"),
num_key_value_heads=params.get("num_key_value_heads", 0),
rms_norm_eps=params.get("rms_norm_eps", 1e-5),
rope_theta=params.get("rope_theta", 10000.0),
head_dim=params.get("head_dim"),
# Default: off. We'll detect from weights in load_model.
use_dual_mlp=False,
tie_word_embeddings=params.get("tie_word_embeddings", True),
use_qk_norm=params.get("use_qk_norm", False),
attn_scale=params.get("attn_scale", 1.0),
no_rope_layers=params.get("no_rope_layers"),
attention_chunk_size=params.get("attention_chunk_size"),
attn_temperature_tuning=params.get("attn_temperature_tuning", False),
)
class RMSNorm(nn.Module):
def __init__(self, dims: int, eps: float = 1e-5):
super().__init__()
self.weight = mx.ones((dims,))
self.eps = eps
def _norm(self, x):
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
def __call__(self, x):
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
return self.weight * output
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.n_heads = args.num_attention_heads
self.n_kv_heads = (
args.num_key_value_heads
if args.num_key_value_heads > 0
else args.num_attention_heads
)
self.head_dim = (
args.head_dim
if getattr(args, "head_dim", None) is not None
else (args.hidden_size // self.n_heads)
)
# Use standard LLaMA scaling. The attn_scale field in some configs
# does not correspond to SDPA scaling and degrades outputs if applied here.
self.scale = self.head_dim**-0.5
self.q_proj = nn.Linear(
args.hidden_size, self.n_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
args.hidden_size, self.n_kv_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
args.hidden_size, self.n_kv_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
self.n_heads * self.head_dim, args.hidden_size, bias=False
)
self.q_norm = (
RMSNorm(self.head_dim, eps=args.rms_norm_eps)
if getattr(args, "use_qk_norm", False)
else None
)
self.k_norm = (
RMSNorm(self.head_dim, eps=args.rms_norm_eps)
if getattr(args, "use_qk_norm", False)
else None
)
# Llama 4 text models commonly use traditional RoPE application
self.rope = nn.RoPE(self.head_dim, traditional=True, base=args.rope_theta)
def __call__(
self,
x,
mask=None,
cache=None,
apply_rope: bool = True,
attn_temp: float | None = None,
):
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if self.q_norm is not None:
queries = self.q_norm(queries)
keys = self.k_norm(keys)
# Optionally apply RoPE depending on per-layer setting
if apply_rope:
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
else:
if cache is not None:
keys, values = cache.update_and_fetch(keys, values)
if self.n_kv_heads != self.n_heads:
repeat = self.n_heads // self.n_kv_heads
keys = mx.repeat(keys, repeat, axis=1)
values = mx.repeat(values, repeat, axis=1)
# Optional attention temperature tuning (scale the softmax input)
scale = self.scale if attn_temp is None else (self.scale * attn_temp)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output)
class SwiGLUMLP(nn.Module):
"""Standard LLaMA-style gated MLP (SwiGLU)."""
def __init__(self, dim, intermediate_size, activation=nn.silu):
super().__init__()
self.gate_proj = nn.Linear(dim, intermediate_size, bias=False)
self.up_proj = nn.Linear(dim, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, dim, bias=False)
# self.activation = activation
def __call__(self, x):
# return self.down_proj(self.activation(self.gate_proj(x)) * self.up_proj(x))
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class DualMLP(nn.Module):
"""Dense dual-branch MLP: gated + plain."""
def __init__(self, dim, intermediate_gated, intermediate_plain, activation=nn.silu):
super().__init__()
self.g_up = nn.Linear(dim, intermediate_gated, bias=False)
self.g_gate = nn.Linear(dim, intermediate_gated, bias=False)
self.g_down = nn.Linear(intermediate_gated, dim, bias=False)
self.p_up = nn.Linear(dim, intermediate_plain, bias=False)
self.p_down = nn.Linear(intermediate_plain, dim, bias=False)
# self.activation = activation
def __call__(self, x):
# gated_out = self.g_down(self.activation(self.g_gate(x)) * self.g_up(x))
# plain_out = self.p_down(self.activation(self.p_up(x)))
gated_out = self.g_down(nn.silu(self.g_gate(x)) * self.g_up(x))
plain_out = self.p_down(nn.silu(self.p_up(x)))
return gated_out + plain_out
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs, layer_idx: int):
super().__init__()
self.attention = Attention(args)
self.layer_idx = layer_idx
# RoPE gating per layer.
# If the config provides a per-layer no_rope mask:
# - If it disables ALL layers, ignore it (apply RoPE everywhere)
# - Otherwise, honor the per-layer flag.
if (
isinstance(args.no_rope_layers, list)
and len(args.no_rope_layers) > layer_idx
):
all_marked = all(bool(v) for v in args.no_rope_layers)
if all_marked:
disable_rope = False
else:
disable_rope = bool(args.no_rope_layers[layer_idx])
else:
disable_rope = False
self.apply_rope = not disable_rope
self.layer_idx = layer_idx
if args.use_dual_mlp and args.intermediate_size_mlp:
self.feed_forward = DualMLP(
args.hidden_size,
args.intermediate_size,
args.intermediate_size_mlp,
)
else:
self.feed_forward = SwiGLUMLP(
args.hidden_size,
args.intermediate_size_mlp,
)
self.attention_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.ffn_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(self, x, mask=None, cache=None):
L = x.shape[1]
# Use standard causal mask; iRoPE chunking is not applied for now
attn_mask = (
None
if L <= 1
else nn.MultiHeadAttention.create_additive_causal_mask(L).astype(x.dtype)
)
args = self.attention.args
apply_rope = self.apply_rope
attn_temp = 1.0 if getattr(args, "attn_temperature_tuning", False) else None
r = self.attention(
self.attention_norm(x),
attn_mask,
cache,
apply_rope=apply_rope,
attn_temp=attn_temp,
)
h = x + r
r = self.feed_forward(self.ffn_norm(h))
return h + r
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
# Plain Python list is fine in MLX
self.layers = [
TransformerBlock(args=args, layer_idx=i)
for i in range(args.num_hidden_layers)
]
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
if not self.args.tie_word_embeddings:
self.output = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(self, inputs, cache=None):
h = self.tok_embeddings(inputs)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, None, c)
h = self.norm(h)
if self.args.tie_word_embeddings:
return h @ self.tok_embeddings.weight.T
else:
return self.output(h)
def load_model(model_path: str):
model_path = Path(model_path)
with open(model_path / "config.json", "r") as f:
config = json.load(f)
from safetensors import safe_open
from mlx.utils import tree_unflatten
# Peek at weights to decide MLP variant
with safe_open(model_path / "model.safetensors", framework="mlx") as f:
keys = list(f.keys())
has_dual = any(
(".feed_forward.g_up.weight" in k)
or (".mlp.g_up.weight" in k)
or (".feed_forward.p_up.weight" in k)
or (".mlp.p_up.weight" in k)
for k in keys
)
args = ModelArgs.from_dict(config)
args.use_dual_mlp = bool(has_dual)
model = Model(args)
weights = {}
with safe_open(model_path / "model.safetensors", framework="mlx") as f:
for k in f.keys():
v = f.get_tensor(k)
# The keys in the safetensors file are from the Hugging Face model.
# We need to map them to the names in our MLX model.
k = k.replace("model.embed_tokens", "tok_embeddings")
k = k.replace("model.layers", "layers")
k = k.replace("self_attn", "attention")
k = k.replace("input_layernorm", "attention_norm")
k = k.replace("post_attention_layernorm", "ffn_norm")
k = k.replace("mlp.", "feed_forward.")
k = k.replace("model.norm", "norm")
# For the MLP, the names are conveniently the same if using SwiGLUMLP
# k = k.replace("feed_forward.gate_proj", "feed_forward.gate_proj")
# k = k.replace("feed_forward.up_proj", "feed_forward.up_proj")
# k = k.replace("feed_forward.down_proj", "feed_forward.down_proj")
weights[k] = v
# The output layer is tied to the token embeddings, so we don't load weights for it separately.
if config.get("tie_word_embeddings", True):
weights.pop("output.weight", None)
model.update(tree_unflatten(list(weights.items())))
return model
|