update readme
Browse files- README.md +7 -6
- ffl/224/v0_all_bs4x16/.hydra/config.yaml +128 -127
- ffl/224/v0_all_bs4x16/.hydra/hydra.yaml +16 -16
- ffl/224/v0_all_bs4x16/.hydra/overrides.yaml +5 -7
- ffl/224/v0_all_bs4x16/predict_demo.log +0 -0
- ffl/224/v4_image_bs4x16/.hydra/config.yaml +133 -148
- ffl/224/v4_image_bs4x16/.hydra/hydra.yaml +12 -14
- ffl/224/v4_image_bs4x16/.hydra/overrides.yaml +3 -7
- ffl/224/v4_image_bs4x16/predict_demo.log +0 -0
- ffl/224/v5_lidar_bs2x16_mnv64/.hydra/config.yaml +129 -126
- ffl/224/v5_lidar_bs2x16_mnv64/.hydra/hydra.yaml +17 -16
- ffl/224/v5_lidar_bs2x16_mnv64/.hydra/overrides.yaml +5 -6
- ffl/224/v5_lidar_bs2x16_mnv64/predict_demo.log +0 -0
- hisup/224/early_fusion_vit_cnn_bs2x16_mnv64/.hydra/config.yaml +37 -130
- hisup/224/early_fusion_vit_cnn_bs2x16_mnv64/.hydra/hydra.yaml +9 -11
- hisup/224/early_fusion_vit_cnn_bs2x16_mnv64/.hydra/overrides.yaml +3 -6
- hisup/224/early_fusion_vit_cnn_bs2x16_mnv64/predict_demo.log +0 -0
- hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64/.hydra/config.yaml +104 -203
- hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64/.hydra/hydra.yaml +18 -20
- hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64/.hydra/overrides.yaml +5 -9
- hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64/predict_demo.log +1 -0
- hisup/224/v3_image_vit_cnn_bs4x12/.hydra/config.yaml +108 -207
- hisup/224/v3_image_vit_cnn_bs4x12/.hydra/hydra.yaml +18 -20
- hisup/224/v3_image_vit_cnn_bs4x12/.hydra/overrides.yaml +5 -9
- hisup/224/v3_image_vit_cnn_bs4x12/predict_demo.log +0 -0
- pix2poly/224/early_fusion_bs2x16_mnv64/.hydra/config.yaml +114 -212
- pix2poly/224/early_fusion_bs2x16_mnv64/.hydra/hydra.yaml +19 -20
- pix2poly/224/early_fusion_bs2x16_mnv64/.hydra/overrides.yaml +6 -9
- pix2poly/224/early_fusion_bs2x16_mnv64/predict_demo.log +0 -0
- pix2poly/224/lidar_pp_vit_bs2x16_mnv64/.hydra/config.yaml +113 -212
- pix2poly/224/lidar_pp_vit_bs2x16_mnv64/.hydra/hydra.yaml +18 -21
- pix2poly/224/lidar_pp_vit_bs2x16_mnv64/.hydra/overrides.yaml +5 -10
- pix2poly/224/lidar_pp_vit_bs2x16_mnv64/predict_demo.log +0 -0
- pix2poly/224/v0_all_bs4x16/.hydra/config.yaml +2 -0
- pix2poly/224/v0_all_bs4x16/.hydra/hydra.yaml +4 -3
- pix2poly/224/v0_all_bs4x16/.hydra/overrides.yaml +2 -1
- pix2poly/224/v0_all_bs4x16/predict_demo.log +0 -0
- pix2poly/224/v4_image_vit_bs4x16/.hydra/config.yaml +39 -128
- pix2poly/224/v4_image_vit_bs4x16/.hydra/hydra.yaml +14 -14
- pix2poly/224/v4_image_vit_bs4x16/.hydra/overrides.yaml +4 -5
- pix2poly/224/v4_image_vit_bs4x16/predict_demo.log +0 -0
README.md
CHANGED
|
@@ -18,7 +18,6 @@ tags:
|
|
| 18 |
- pointcloud
|
| 19 |
- multimodal
|
| 20 |
---
|
| 21 |
-
|
| 22 |
<div align="center">
|
| 23 |
<h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
|
| 24 |
<h3><align="center">Raphael Sulzer<sup>1,2</sup> Liuyun Duan<sup>1</sup>
|
|
@@ -508,7 +507,6 @@ pip install .
|
|
| 508 |
⚠️ **Warning**: The implementation of the LiDAR point cloud encoder uses Open3D-ML. Currently, Open3D-ML officially only supports the PyTorch version specified in `requirements-torch-cuda.txt`.
|
| 509 |
|
| 510 |
|
| 511 |
-
|
| 512 |
<!-- ## Model Zoo
|
| 513 |
|
| 514 |
|
|
@@ -550,13 +548,16 @@ python scripts/train.py --help
|
|
| 550 |
|
| 551 |
</details> -->
|
| 552 |
|
| 553 |
-
### Predict
|
| 554 |
|
| 555 |
-
|
| 556 |
|
| 557 |
```
|
| 558 |
-
python scripts/predict_demo.py
|
| 559 |
```
|
|
|
|
|
|
|
|
|
|
| 560 |
|
| 561 |
### Reproduce paper results
|
| 562 |
|
|
@@ -592,7 +593,7 @@ python scripts/train.py experiment=p2p_fusion checkpoint=latest
|
|
| 592 |
|
| 593 |
## Citation
|
| 594 |
|
| 595 |
-
If you
|
| 596 |
```bibtex
|
| 597 |
TODO
|
| 598 |
```
|
|
|
|
| 18 |
- pointcloud
|
| 19 |
- multimodal
|
| 20 |
---
|
|
|
|
| 21 |
<div align="center">
|
| 22 |
<h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
|
| 23 |
<h3><align="center">Raphael Sulzer<sup>1,2</sup> Liuyun Duan<sup>1</sup>
|
|
|
|
| 507 |
⚠️ **Warning**: The implementation of the LiDAR point cloud encoder uses Open3D-ML. Currently, Open3D-ML officially only supports the PyTorch version specified in `requirements-torch-cuda.txt`.
|
| 508 |
|
| 509 |
|
|
|
|
| 510 |
<!-- ## Model Zoo
|
| 511 |
|
| 512 |
|
|
|
|
| 548 |
|
| 549 |
</details> -->
|
| 550 |
|
| 551 |
+
### Predict demo tile
|
| 552 |
|
| 553 |
+
After downloading the model weights and setting up the code you can predict a demo tile by running
|
| 554 |
|
| 555 |
```
|
| 556 |
+
python scripts/predict_demo.py checkpoint=best_val_iou experiment=$MODEL_$MODALITY +image_file=demo_data/image0_CH_val.tif +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
| 557 |
```
|
| 558 |
+
At least one of `image_file` or `lidar_file` has to be specified. `$MODEL` can be one of the following: `ffl`, `hisup` or `p2p`. `$MODALITY` can be `image`, `lidar` or `fusion`.
|
| 559 |
+
The result will be stored in `prediction.png`.
|
| 560 |
+
|
| 561 |
|
| 562 |
### Reproduce paper results
|
| 563 |
|
|
|
|
| 593 |
|
| 594 |
## Citation
|
| 595 |
|
| 596 |
+
If you use our work please cite
|
| 597 |
```bibtex
|
| 598 |
TODO
|
| 599 |
```
|
ffl/224/v0_all_bs4x16/.hydra/config.yaml
CHANGED
|
@@ -1,117 +1,32 @@
|
|
| 1 |
host:
|
| 2 |
-
name:
|
| 3 |
-
data_root: /
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
run_type:
|
| 6 |
-
name:
|
| 7 |
batch_size: 16
|
| 8 |
-
train_subset:
|
| 9 |
-
val_subset:
|
| 10 |
-
test_subset:
|
| 11 |
-
logging:
|
| 12 |
-
num_workers:
|
| 13 |
-
log_to_wandb:
|
| 14 |
-
polygonization:
|
| 15 |
-
method:
|
| 16 |
-
- acm
|
| 17 |
-
common_params:
|
| 18 |
-
init_data_level: 0.5
|
| 19 |
-
simple_method:
|
| 20 |
-
data_level: 0.5
|
| 21 |
-
tolerance:
|
| 22 |
-
- 1.0
|
| 23 |
-
seg_threshold: 0.5
|
| 24 |
-
min_area: 10
|
| 25 |
-
asm_method:
|
| 26 |
-
init_method: skeleton
|
| 27 |
-
data_level: 0.5
|
| 28 |
-
loss_params:
|
| 29 |
-
coefs:
|
| 30 |
-
step_thresholds:
|
| 31 |
-
- 0
|
| 32 |
-
- 100
|
| 33 |
-
- 200
|
| 34 |
-
- 300
|
| 35 |
-
data:
|
| 36 |
-
- 1.0
|
| 37 |
-
- 0.1
|
| 38 |
-
- 0.0
|
| 39 |
-
- 0.0
|
| 40 |
-
crossfield:
|
| 41 |
-
- 0.0
|
| 42 |
-
- 0.05
|
| 43 |
-
- 0.0
|
| 44 |
-
- 0.0
|
| 45 |
-
length:
|
| 46 |
-
- 0.1
|
| 47 |
-
- 0.01
|
| 48 |
-
- 0.0
|
| 49 |
-
- 0.0
|
| 50 |
-
curvature:
|
| 51 |
-
- 0.0
|
| 52 |
-
- 0.0
|
| 53 |
-
- 1.0
|
| 54 |
-
- 0.0
|
| 55 |
-
corner:
|
| 56 |
-
- 0.0
|
| 57 |
-
- 0.0
|
| 58 |
-
- 0.5
|
| 59 |
-
- 0.0
|
| 60 |
-
junction:
|
| 61 |
-
- 0.0
|
| 62 |
-
- 0.0
|
| 63 |
-
- 0.5
|
| 64 |
-
- 0.0
|
| 65 |
-
curvature_dissimilarity_threshold: 2
|
| 66 |
-
corner_angles:
|
| 67 |
-
- 45
|
| 68 |
-
- 90
|
| 69 |
-
- 135
|
| 70 |
-
corner_angle_threshold: 22.5
|
| 71 |
-
junction_angles:
|
| 72 |
-
- 0
|
| 73 |
-
- 45
|
| 74 |
-
- 90
|
| 75 |
-
- 135
|
| 76 |
-
junction_angle_weights:
|
| 77 |
-
- 1
|
| 78 |
-
- 0.01
|
| 79 |
-
- 0.1
|
| 80 |
-
- 0.01
|
| 81 |
-
junction_angle_threshold: 22.5
|
| 82 |
-
lr: 0.1
|
| 83 |
-
gamma: 0.995
|
| 84 |
-
device: cuda
|
| 85 |
-
tolerance:
|
| 86 |
-
- 1
|
| 87 |
-
seg_threshold: 0.5
|
| 88 |
-
min_area: 10
|
| 89 |
-
acm_method:
|
| 90 |
-
steps: 500
|
| 91 |
-
data_level: 0.5
|
| 92 |
-
data_coef: 0.1
|
| 93 |
-
length_coef: 0.4
|
| 94 |
-
crossfield_coef: 0.5
|
| 95 |
-
poly_lr: 0.01
|
| 96 |
-
warmup_iters: 100
|
| 97 |
-
warmup_factor: 0.1
|
| 98 |
-
device: cuda
|
| 99 |
-
tolerance:
|
| 100 |
-
- 1
|
| 101 |
-
seg_threshold: 0.5
|
| 102 |
-
min_area: 10
|
| 103 |
dataset:
|
| 104 |
-
name:
|
| 105 |
size: ${..experiment.encoder.in_size}
|
| 106 |
-
path: ${host.data_root}/${.
|
| 107 |
annotations:
|
| 108 |
-
train: ${..path}/annotations_${...country}_train.json
|
| 109 |
-
val: ${..path}/annotations_${...country}_val.json
|
| 110 |
-
test: ${..path}/annotations_${...country}_test.json
|
| 111 |
ffl_stats:
|
| 112 |
-
train: ${..path}/ffl/train/stats-${...country}.pt
|
| 113 |
-
val: ${..path}/ffl/val/stats-${...country}.pt
|
| 114 |
-
test: ${..path}/ffl/test/stats-${...country}.pt
|
| 115 |
train_subset: ${..run_type.train_subset}
|
| 116 |
val_subset: ${..run_type.val_subset}
|
| 117 |
test_subset: ${..run_type.test_subset}
|
|
@@ -137,7 +52,7 @@ experiment:
|
|
| 137 |
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 138 |
vit:
|
| 139 |
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 140 |
-
checkpoint_file: ${....host.
|
| 141 |
pretrained: true
|
| 142 |
patch_size: 8
|
| 143 |
patch_feature_size: 28
|
|
@@ -224,28 +139,114 @@ experiment:
|
|
| 224 |
patch_size: null
|
| 225 |
patch_overlap: 200
|
| 226 |
seg_threshold: 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
name: v0_all_bs4x16
|
| 228 |
group_name: v2_${.model.name}
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
multi_gpu: true
|
| 239 |
-
device: cuda
|
| 240 |
-
log_to_wandb: true
|
| 241 |
-
num_workers: ${.run_type.num_workers}
|
| 242 |
-
update_pbar_every: ${.host.update_pbar_every}
|
| 243 |
-
country: all
|
| 244 |
-
use_lidar: ${.experiment.encoder.use_lidar}
|
| 245 |
-
use_images: ${.experiment.encoder.use_images}
|
| 246 |
-
eval:
|
| 247 |
split: val
|
| 248 |
-
pred_file: ${..output_dir}/predictions_${..country}_${.split}/${..checkpoint}.json
|
| 249 |
modes:
|
| 250 |
- iou
|
| 251 |
eval_file: results/metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
host:
|
| 2 |
+
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
+
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
run_type:
|
| 10 |
+
name: debug
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
test_subset: ${..run_type.test_subset}
|
|
|
|
| 52 |
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 53 |
vit:
|
| 54 |
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 55 |
+
checkpoint_file: ${....host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 56 |
pretrained: true
|
| 57 |
patch_size: 8
|
| 58 |
patch_feature_size: 28
|
|
|
|
| 139 |
patch_size: null
|
| 140 |
patch_overlap: 200
|
| 141 |
seg_threshold: 0.5
|
| 142 |
+
polygonization:
|
| 143 |
+
method:
|
| 144 |
+
- acm
|
| 145 |
+
common_params:
|
| 146 |
+
init_data_level: 0.5
|
| 147 |
+
simple_method:
|
| 148 |
+
data_level: 0.5
|
| 149 |
+
tolerance:
|
| 150 |
+
- 1.0
|
| 151 |
+
seg_threshold: 0.5
|
| 152 |
+
min_area: 10
|
| 153 |
+
asm_method:
|
| 154 |
+
init_method: skeleton
|
| 155 |
+
data_level: 0.5
|
| 156 |
+
loss_params:
|
| 157 |
+
coefs:
|
| 158 |
+
step_thresholds:
|
| 159 |
+
- 0
|
| 160 |
+
- 100
|
| 161 |
+
- 200
|
| 162 |
+
- 300
|
| 163 |
+
data:
|
| 164 |
+
- 1.0
|
| 165 |
+
- 0.1
|
| 166 |
+
- 0.0
|
| 167 |
+
- 0.0
|
| 168 |
+
crossfield:
|
| 169 |
+
- 0.0
|
| 170 |
+
- 0.05
|
| 171 |
+
- 0.0
|
| 172 |
+
- 0.0
|
| 173 |
+
length:
|
| 174 |
+
- 0.1
|
| 175 |
+
- 0.01
|
| 176 |
+
- 0.0
|
| 177 |
+
- 0.0
|
| 178 |
+
curvature:
|
| 179 |
+
- 0.0
|
| 180 |
+
- 0.0
|
| 181 |
+
- 1.0
|
| 182 |
+
- 0.0
|
| 183 |
+
corner:
|
| 184 |
+
- 0.0
|
| 185 |
+
- 0.0
|
| 186 |
+
- 0.5
|
| 187 |
+
- 0.0
|
| 188 |
+
junction:
|
| 189 |
+
- 0.0
|
| 190 |
+
- 0.0
|
| 191 |
+
- 0.5
|
| 192 |
+
- 0.0
|
| 193 |
+
curvature_dissimilarity_threshold: 2
|
| 194 |
+
corner_angles:
|
| 195 |
+
- 45
|
| 196 |
+
- 90
|
| 197 |
+
- 135
|
| 198 |
+
corner_angle_threshold: 22.5
|
| 199 |
+
junction_angles:
|
| 200 |
+
- 0
|
| 201 |
+
- 45
|
| 202 |
+
- 90
|
| 203 |
+
- 135
|
| 204 |
+
junction_angle_weights:
|
| 205 |
+
- 1
|
| 206 |
+
- 0.01
|
| 207 |
+
- 0.1
|
| 208 |
+
- 0.01
|
| 209 |
+
junction_angle_threshold: 22.5
|
| 210 |
+
lr: 0.1
|
| 211 |
+
gamma: 0.995
|
| 212 |
+
device: cuda
|
| 213 |
+
tolerance:
|
| 214 |
+
- 1
|
| 215 |
+
seg_threshold: 0.5
|
| 216 |
+
min_area: 10
|
| 217 |
+
acm_method:
|
| 218 |
+
steps: 500
|
| 219 |
+
data_level: 0.5
|
| 220 |
+
data_coef: 0.1
|
| 221 |
+
length_coef: 0.4
|
| 222 |
+
crossfield_coef: 0.5
|
| 223 |
+
poly_lr: 0.01
|
| 224 |
+
warmup_iters: 100
|
| 225 |
+
warmup_factor: 0.1
|
| 226 |
+
device: cuda
|
| 227 |
+
tolerance:
|
| 228 |
+
- 1
|
| 229 |
+
seg_threshold: 0.5
|
| 230 |
+
min_area: 10
|
| 231 |
name: v0_all_bs4x16
|
| 232 |
group_name: v2_${.model.name}
|
| 233 |
+
country: all
|
| 234 |
+
training:
|
| 235 |
+
save_best: true
|
| 236 |
+
save_latest: true
|
| 237 |
+
save_every: 10
|
| 238 |
+
val_every: 1
|
| 239 |
+
best_val_loss: 10000000.0
|
| 240 |
+
best_val_iou: 0.0
|
| 241 |
+
evaluation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
split: val
|
| 243 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 244 |
modes:
|
| 245 |
- iou
|
| 246 |
eval_file: results/metrics
|
| 247 |
+
experiment.name: debug
|
| 248 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 249 |
+
checkpoint: best_val_iou
|
| 250 |
+
num_workers: ${.run_type.num_workers}
|
| 251 |
+
image_file: demo_data/image0_CH_val.tif
|
| 252 |
+
lidar_file: demo_data/lidar0_CH_val.copc.laz
|
ffl/224/v0_all_bs4x16/.hydra/hydra.yaml
CHANGED
|
@@ -112,18 +112,16 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
-
|
| 116 |
-
- host=
|
| 117 |
-
-
|
| 118 |
-
- multi_gpu=true
|
| 119 |
-
- checkpoint=latest
|
| 120 |
- experiment=ffl_fusion
|
| 121 |
-
-
|
| 122 |
-
-
|
| 123 |
job:
|
| 124 |
-
name:
|
| 125 |
chdir: null
|
| 126 |
-
override_dirname:
|
| 127 |
id: ???
|
| 128 |
num: ???
|
| 129 |
config_name: config
|
|
@@ -137,26 +135,28 @@ hydra:
|
|
| 137 |
runtime:
|
| 138 |
version: 1.3.2
|
| 139 |
version_base: '1.3'
|
| 140 |
-
cwd: /
|
| 141 |
config_sources:
|
| 142 |
- path: hydra.conf
|
| 143 |
schema: pkg
|
| 144 |
provider: hydra
|
| 145 |
-
- path: /
|
| 146 |
schema: file
|
| 147 |
provider: main
|
| 148 |
- path: ''
|
| 149 |
schema: structured
|
| 150 |
provider: schema
|
| 151 |
-
output_dir: /
|
| 152 |
choices:
|
|
|
|
|
|
|
| 153 |
experiment: ffl_fusion
|
|
|
|
| 154 |
[email protected]: ffl
|
| 155 |
[email protected]: early_fusion_vit_cnn
|
| 156 |
-
dataset:
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
host: jz
|
| 160 |
hydra/env: default
|
| 161 |
hydra/callbacks: null
|
| 162 |
hydra/job_logging: default
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
+
- host=gin
|
| 117 |
+
- checkpoint=best_val_iou
|
|
|
|
|
|
|
| 118 |
- experiment=ffl_fusion
|
| 119 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 120 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
| 121 |
job:
|
| 122 |
+
name: predict_demo
|
| 123 |
chdir: null
|
| 124 |
+
override_dirname: +image_file=demo_data/image0_CH_val.tif,+lidar_file=demo_data/lidar0_CH_val.copc.laz,checkpoint=best_val_iou,experiment=ffl_fusion,host=gin,run_type=debug
|
| 125 |
id: ???
|
| 126 |
num: ???
|
| 127 |
config_name: config
|
|
|
|
| 135 |
runtime:
|
| 136 |
version: 1.3.2
|
| 137 |
version_base: '1.3'
|
| 138 |
+
cwd: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons
|
| 139 |
config_sources:
|
| 140 |
- path: hydra.conf
|
| 141 |
schema: pkg
|
| 142 |
provider: hydra
|
| 143 |
+
- path: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons/config
|
| 144 |
schema: file
|
| 145 |
provider: main
|
| 146 |
- path: ''
|
| 147 |
schema: structured
|
| 148 |
provider: schema
|
| 149 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/ffl/224/v0_all_bs4x16
|
| 150 |
choices:
|
| 151 |
+
evaluation: val
|
| 152 |
+
training: default
|
| 153 |
experiment: ffl_fusion
|
| 154 |
+
[email protected]: asm_acm
|
| 155 |
[email protected]: ffl
|
| 156 |
[email protected]: early_fusion_vit_cnn
|
| 157 |
+
dataset: p3
|
| 158 |
+
run_type: debug
|
| 159 |
+
host: gin
|
|
|
|
| 160 |
hydra/env: default
|
| 161 |
hydra/callbacks: null
|
| 162 |
hydra/job_logging: default
|
ffl/224/v0_all_bs4x16/.hydra/overrides.yaml
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
-
-
|
| 2 |
-
- host=
|
| 3 |
-
-
|
| 4 |
-
- multi_gpu=true
|
| 5 |
-
- checkpoint=latest
|
| 6 |
- experiment=ffl_fusion
|
| 7 |
-
-
|
| 8 |
-
-
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
+
- host=gin
|
| 3 |
+
- checkpoint=best_val_iou
|
|
|
|
|
|
|
| 4 |
- experiment=ffl_fusion
|
| 5 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 6 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
ffl/224/v0_all_bs4x16/predict_demo.log
ADDED
|
File without changes
|
ffl/224/v4_image_bs4x16/.hydra/config.yaml
CHANGED
|
@@ -1,149 +1,55 @@
|
|
| 1 |
host:
|
| 2 |
name: gin
|
| 3 |
-
data_root: /data/rsulzer
|
|
|
|
|
|
|
|
|
|
| 4 |
update_pbar_every: 1
|
|
|
|
| 5 |
run_type:
|
| 6 |
-
name:
|
| 7 |
batch_size: 16
|
| 8 |
-
train_subset:
|
| 9 |
-
val_subset:
|
| 10 |
-
test_subset:
|
| 11 |
-
logging:
|
| 12 |
-
num_workers:
|
| 13 |
-
log_to_wandb:
|
| 14 |
-
polygonization:
|
| 15 |
-
method:
|
| 16 |
-
- acm
|
| 17 |
-
common_params:
|
| 18 |
-
init_data_level: 0.5
|
| 19 |
-
simple_method:
|
| 20 |
-
data_level: 0.5
|
| 21 |
-
tolerance:
|
| 22 |
-
- 1.0
|
| 23 |
-
seg_threshold: 0.5
|
| 24 |
-
min_area: 10
|
| 25 |
-
asm_method:
|
| 26 |
-
init_method: skeleton
|
| 27 |
-
data_level: 0.5
|
| 28 |
-
loss_params:
|
| 29 |
-
coefs:
|
| 30 |
-
step_thresholds:
|
| 31 |
-
- 0
|
| 32 |
-
- 100
|
| 33 |
-
- 200
|
| 34 |
-
- 300
|
| 35 |
-
data:
|
| 36 |
-
- 1.0
|
| 37 |
-
- 0.1
|
| 38 |
-
- 0.0
|
| 39 |
-
- 0.0
|
| 40 |
-
crossfield:
|
| 41 |
-
- 0.0
|
| 42 |
-
- 0.05
|
| 43 |
-
- 0.0
|
| 44 |
-
- 0.0
|
| 45 |
-
length:
|
| 46 |
-
- 0.1
|
| 47 |
-
- 0.01
|
| 48 |
-
- 0.0
|
| 49 |
-
- 0.0
|
| 50 |
-
curvature:
|
| 51 |
-
- 0.0
|
| 52 |
-
- 0.0
|
| 53 |
-
- 1.0
|
| 54 |
-
- 0.0
|
| 55 |
-
corner:
|
| 56 |
-
- 0.0
|
| 57 |
-
- 0.0
|
| 58 |
-
- 0.5
|
| 59 |
-
- 0.0
|
| 60 |
-
junction:
|
| 61 |
-
- 0.0
|
| 62 |
-
- 0.0
|
| 63 |
-
- 0.5
|
| 64 |
-
- 0.0
|
| 65 |
-
curvature_dissimilarity_threshold: 2
|
| 66 |
-
corner_angles:
|
| 67 |
-
- 45
|
| 68 |
-
- 90
|
| 69 |
-
- 135
|
| 70 |
-
corner_angle_threshold: 22.5
|
| 71 |
-
junction_angles:
|
| 72 |
-
- 0
|
| 73 |
-
- 45
|
| 74 |
-
- 90
|
| 75 |
-
- 135
|
| 76 |
-
junction_angle_weights:
|
| 77 |
-
- 1
|
| 78 |
-
- 0.01
|
| 79 |
-
- 0.1
|
| 80 |
-
- 0.01
|
| 81 |
-
junction_angle_threshold: 22.5
|
| 82 |
-
lr: 0.1
|
| 83 |
-
gamma: 0.995
|
| 84 |
-
device: cuda
|
| 85 |
-
tolerance:
|
| 86 |
-
- 1
|
| 87 |
-
seg_threshold: 0.5
|
| 88 |
-
min_area: 10
|
| 89 |
-
acm_method:
|
| 90 |
-
steps: 500
|
| 91 |
-
data_level: 0.5
|
| 92 |
-
data_coef: 0.1
|
| 93 |
-
length_coef: 0.4
|
| 94 |
-
crossfield_coef: 0.5
|
| 95 |
-
poly_lr: 0.01
|
| 96 |
-
warmup_iters: 100
|
| 97 |
-
warmup_factor: 0.1
|
| 98 |
-
device: cuda
|
| 99 |
-
tolerance:
|
| 100 |
-
- 1
|
| 101 |
-
seg_threshold: 0.5
|
| 102 |
-
min_area: 10
|
| 103 |
dataset:
|
| 104 |
-
name:
|
| 105 |
size: ${..experiment.encoder.in_size}
|
| 106 |
-
path: ${host.data_root}/
|
| 107 |
annotations:
|
| 108 |
-
train: ${..path}/annotations_${...country}_train.json
|
| 109 |
-
val: ${..path}/annotations_${...country}_val.json
|
| 110 |
-
test: ${..path}/annotations_${...country}_test.json
|
| 111 |
ffl_stats:
|
| 112 |
-
train: ${..path}/ffl/train/stats-${...country}.pt
|
| 113 |
-
val: ${..path}/ffl/val/stats-${...country}.pt
|
| 114 |
-
test: ${..path}/ffl/test/stats-${...country}.pt
|
| 115 |
train_subset: ${..run_type.train_subset}
|
| 116 |
val_subset: ${..run_type.val_subset}
|
| 117 |
test_subset: ${..run_type.test_subset}
|
| 118 |
experiment:
|
| 119 |
encoder:
|
| 120 |
-
name:
|
| 121 |
use_images: true
|
| 122 |
-
use_lidar:
|
|
|
|
|
|
|
|
|
|
| 123 |
in_size: 224
|
| 124 |
in_height: ${.in_size}
|
| 125 |
in_width: ${.in_size}
|
| 126 |
-
in_voxel_size:
|
| 127 |
-
x: 8
|
| 128 |
-
'y': 8
|
| 129 |
-
z: 100
|
| 130 |
-
max_num_points_per_voxel: 64
|
| 131 |
-
max_num_voxels:
|
| 132 |
-
train: 784
|
| 133 |
-
test: 784
|
| 134 |
-
out_feature_size: ${..model.decoder.in_feature_size}
|
| 135 |
-
out_feature_height: ${.out_feature_size}
|
| 136 |
-
out_feature_width: ${.out_feature_size}
|
| 137 |
-
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 138 |
-
vit:
|
| 139 |
-
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 140 |
-
checkpoint_file: ${....host.data_root}/checkpoints/backbones/dino_deitsmall8_pretrain.pth
|
| 141 |
-
pretrained: true
|
| 142 |
patch_size: 8
|
| 143 |
patch_feature_size: 28
|
| 144 |
patch_feature_height: ${.patch_feature_size}
|
| 145 |
patch_feature_width: ${.patch_feature_size}
|
| 146 |
patch_feature_dim: 384
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
image_mean:
|
| 148 |
- 0.0
|
| 149 |
- 0.0
|
|
@@ -158,7 +64,6 @@ experiment:
|
|
| 158 |
- ColorJitter
|
| 159 |
- GaussNoise
|
| 160 |
- Normalize
|
| 161 |
-
max_points_per_voxel: 64
|
| 162 |
model:
|
| 163 |
name: ffl
|
| 164 |
compute_seg: true
|
|
@@ -224,33 +129,113 @@ experiment:
|
|
| 224 |
patch_size: null
|
| 225 |
patch_overlap: 200
|
| 226 |
seg_threshold: 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
name: v4_image_bs4x16
|
| 228 |
group_name: v2_${.model.name}
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
multi_gpu: false
|
| 239 |
-
device: cuda
|
| 240 |
-
log_to_wandb: false
|
| 241 |
-
num_workers: ${.run_type.num_workers}
|
| 242 |
-
update_pbar_every: ${.host.update_pbar_every}
|
| 243 |
-
country: Switzerland
|
| 244 |
-
use_lidar: ${.experiment.encoder.use_lidar}
|
| 245 |
-
use_images: ${.experiment.encoder.use_images}
|
| 246 |
-
eval:
|
| 247 |
split: val
|
| 248 |
-
pred_file: ${..output_dir}/predictions_${..country}_${.split}/${..checkpoint}.json
|
| 249 |
modes:
|
| 250 |
-
- ldof
|
| 251 |
-
- coco
|
| 252 |
- iou
|
| 253 |
-
- polis
|
| 254 |
-
- mta
|
| 255 |
eval_file: results/metrics
|
| 256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
host:
|
| 2 |
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
run_type:
|
| 10 |
+
name: debug
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
test_subset: ${..run_type.test_subset}
|
| 33 |
experiment:
|
| 34 |
encoder:
|
| 35 |
+
name: vit_cnn
|
| 36 |
use_images: true
|
| 37 |
+
use_lidar: false
|
| 38 |
+
type: vit_small_patch${.patch_size}_${.in_size}.dino
|
| 39 |
+
checkpoint_file: ${...host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 40 |
+
pretrained: true
|
| 41 |
in_size: 224
|
| 42 |
in_height: ${.in_size}
|
| 43 |
in_width: ${.in_size}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
patch_size: 8
|
| 45 |
patch_feature_size: 28
|
| 46 |
patch_feature_height: ${.patch_feature_size}
|
| 47 |
patch_feature_width: ${.patch_feature_size}
|
| 48 |
patch_feature_dim: 384
|
| 49 |
+
out_feature_size: ${..model.decoder.in_feature_size}
|
| 50 |
+
out_feature_height: ${.out_feature_size}
|
| 51 |
+
out_feature_width: ${.out_feature_size}
|
| 52 |
+
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 53 |
image_mean:
|
| 54 |
- 0.0
|
| 55 |
- 0.0
|
|
|
|
| 64 |
- ColorJitter
|
| 65 |
- GaussNoise
|
| 66 |
- Normalize
|
|
|
|
| 67 |
model:
|
| 68 |
name: ffl
|
| 69 |
compute_seg: true
|
|
|
|
| 129 |
patch_size: null
|
| 130 |
patch_overlap: 200
|
| 131 |
seg_threshold: 0.5
|
| 132 |
+
polygonization:
|
| 133 |
+
method:
|
| 134 |
+
- acm
|
| 135 |
+
common_params:
|
| 136 |
+
init_data_level: 0.5
|
| 137 |
+
simple_method:
|
| 138 |
+
data_level: 0.5
|
| 139 |
+
tolerance:
|
| 140 |
+
- 1.0
|
| 141 |
+
seg_threshold: 0.5
|
| 142 |
+
min_area: 10
|
| 143 |
+
asm_method:
|
| 144 |
+
init_method: skeleton
|
| 145 |
+
data_level: 0.5
|
| 146 |
+
loss_params:
|
| 147 |
+
coefs:
|
| 148 |
+
step_thresholds:
|
| 149 |
+
- 0
|
| 150 |
+
- 100
|
| 151 |
+
- 200
|
| 152 |
+
- 300
|
| 153 |
+
data:
|
| 154 |
+
- 1.0
|
| 155 |
+
- 0.1
|
| 156 |
+
- 0.0
|
| 157 |
+
- 0.0
|
| 158 |
+
crossfield:
|
| 159 |
+
- 0.0
|
| 160 |
+
- 0.05
|
| 161 |
+
- 0.0
|
| 162 |
+
- 0.0
|
| 163 |
+
length:
|
| 164 |
+
- 0.1
|
| 165 |
+
- 0.01
|
| 166 |
+
- 0.0
|
| 167 |
+
- 0.0
|
| 168 |
+
curvature:
|
| 169 |
+
- 0.0
|
| 170 |
+
- 0.0
|
| 171 |
+
- 1.0
|
| 172 |
+
- 0.0
|
| 173 |
+
corner:
|
| 174 |
+
- 0.0
|
| 175 |
+
- 0.0
|
| 176 |
+
- 0.5
|
| 177 |
+
- 0.0
|
| 178 |
+
junction:
|
| 179 |
+
- 0.0
|
| 180 |
+
- 0.0
|
| 181 |
+
- 0.5
|
| 182 |
+
- 0.0
|
| 183 |
+
curvature_dissimilarity_threshold: 2
|
| 184 |
+
corner_angles:
|
| 185 |
+
- 45
|
| 186 |
+
- 90
|
| 187 |
+
- 135
|
| 188 |
+
corner_angle_threshold: 22.5
|
| 189 |
+
junction_angles:
|
| 190 |
+
- 0
|
| 191 |
+
- 45
|
| 192 |
+
- 90
|
| 193 |
+
- 135
|
| 194 |
+
junction_angle_weights:
|
| 195 |
+
- 1
|
| 196 |
+
- 0.01
|
| 197 |
+
- 0.1
|
| 198 |
+
- 0.01
|
| 199 |
+
junction_angle_threshold: 22.5
|
| 200 |
+
lr: 0.1
|
| 201 |
+
gamma: 0.995
|
| 202 |
+
device: cuda
|
| 203 |
+
tolerance:
|
| 204 |
+
- 1
|
| 205 |
+
seg_threshold: 0.5
|
| 206 |
+
min_area: 10
|
| 207 |
+
acm_method:
|
| 208 |
+
steps: 500
|
| 209 |
+
data_level: 0.5
|
| 210 |
+
data_coef: 0.1
|
| 211 |
+
length_coef: 0.4
|
| 212 |
+
crossfield_coef: 0.5
|
| 213 |
+
poly_lr: 0.01
|
| 214 |
+
warmup_iters: 100
|
| 215 |
+
warmup_factor: 0.1
|
| 216 |
+
device: cuda
|
| 217 |
+
tolerance:
|
| 218 |
+
- 1
|
| 219 |
+
seg_threshold: 0.5
|
| 220 |
+
min_area: 10
|
| 221 |
name: v4_image_bs4x16
|
| 222 |
group_name: v2_${.model.name}
|
| 223 |
+
country: CH
|
| 224 |
+
training:
|
| 225 |
+
save_best: true
|
| 226 |
+
save_latest: true
|
| 227 |
+
save_every: 10
|
| 228 |
+
val_every: 1
|
| 229 |
+
best_val_loss: 10000000.0
|
| 230 |
+
best_val_iou: 0.0
|
| 231 |
+
evaluation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
split: val
|
| 233 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 234 |
modes:
|
|
|
|
|
|
|
| 235 |
- iou
|
|
|
|
|
|
|
| 236 |
eval_file: results/metrics
|
| 237 |
+
experiment.name: debug
|
| 238 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 239 |
+
checkpoint: best_val_iou
|
| 240 |
+
num_workers: ${.run_type.num_workers}
|
| 241 |
+
lidar_file: demo_data/lidar0_CH_val.copc.laz
|
ffl/224/v4_image_bs4x16/.hydra/hydra.yaml
CHANGED
|
@@ -112,19 +112,15 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
- run_type=
|
| 116 |
- host=gin
|
| 117 |
-
- device=cuda
|
| 118 |
-
- log_to_wandb=false
|
| 119 |
-
- multi_gpu=false
|
| 120 |
- checkpoint=best_val_iou
|
| 121 |
-
-
|
| 122 |
-
-
|
| 123 |
-
- experiment.name=v4_image_bs4x16
|
| 124 |
job:
|
| 125 |
-
name:
|
| 126 |
chdir: null
|
| 127 |
-
override_dirname: checkpoint=best_val_iou,
|
| 128 |
id: ???
|
| 129 |
num: ???
|
| 130 |
config_name: config
|
|
@@ -149,14 +145,16 @@ hydra:
|
|
| 149 |
- path: ''
|
| 150 |
schema: structured
|
| 151 |
provider: schema
|
| 152 |
-
output_dir: /data/rsulzer/
|
| 153 |
choices:
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
| 155 |
[email protected]: ffl
|
| 156 |
-
[email protected]:
|
| 157 |
dataset: p3
|
| 158 |
-
|
| 159 |
-
run_type: release
|
| 160 |
host: gin
|
| 161 |
hydra/env: default
|
| 162 |
hydra/callbacks: null
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
- host=gin
|
|
|
|
|
|
|
|
|
|
| 117 |
- checkpoint=best_val_iou
|
| 118 |
+
- experiment=ffl_image
|
| 119 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
|
| 120 |
job:
|
| 121 |
+
name: predict_demo
|
| 122 |
chdir: null
|
| 123 |
+
override_dirname: +lidar_file=demo_data/lidar0_CH_val.copc.laz,checkpoint=best_val_iou,experiment=ffl_image,host=gin,run_type=debug
|
| 124 |
id: ???
|
| 125 |
num: ???
|
| 126 |
config_name: config
|
|
|
|
| 145 |
- path: ''
|
| 146 |
schema: structured
|
| 147 |
provider: schema
|
| 148 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/ffl/224/v4_image_bs4x16
|
| 149 |
choices:
|
| 150 |
+
evaluation: val
|
| 151 |
+
training: default
|
| 152 |
+
experiment: ffl_image
|
| 153 |
+
[email protected]: asm_acm
|
| 154 |
[email protected]: ffl
|
| 155 |
+
[email protected]: vit_cnn
|
| 156 |
dataset: p3
|
| 157 |
+
run_type: debug
|
|
|
|
| 158 |
host: gin
|
| 159 |
hydra/env: default
|
| 160 |
hydra/callbacks: null
|
ffl/224/v4_image_bs4x16/.hydra/overrides.yaml
CHANGED
|
@@ -1,9 +1,5 @@
|
|
| 1 |
-
- run_type=
|
| 2 |
- host=gin
|
| 3 |
-
- device=cuda
|
| 4 |
-
- log_to_wandb=false
|
| 5 |
-
- multi_gpu=false
|
| 6 |
- checkpoint=best_val_iou
|
| 7 |
-
-
|
| 8 |
-
-
|
| 9 |
-
- experiment.name=v4_image_bs4x16
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
- host=gin
|
|
|
|
|
|
|
|
|
|
| 3 |
- checkpoint=best_val_iou
|
| 4 |
+
- experiment=ffl_image
|
| 5 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
ffl/224/v4_image_bs4x16/predict_demo.log
ADDED
|
File without changes
|
ffl/224/v5_lidar_bs2x16_mnv64/.hydra/config.yaml
CHANGED
|
@@ -1,118 +1,35 @@
|
|
| 1 |
host:
|
| 2 |
-
name:
|
| 3 |
-
data_root: /
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
run_type:
|
| 6 |
-
name:
|
| 7 |
batch_size: 16
|
| 8 |
-
train_subset:
|
| 9 |
-
val_subset:
|
| 10 |
-
test_subset:
|
| 11 |
-
logging:
|
| 12 |
-
num_workers:
|
| 13 |
-
log_to_wandb:
|
| 14 |
-
polygonization:
|
| 15 |
-
method:
|
| 16 |
-
- acm
|
| 17 |
-
common_params:
|
| 18 |
-
init_data_level: 0.5
|
| 19 |
-
simple_method:
|
| 20 |
-
data_level: 0.5
|
| 21 |
-
tolerance:
|
| 22 |
-
- 1.0
|
| 23 |
-
seg_threshold: 0.5
|
| 24 |
-
min_area: 10
|
| 25 |
-
asm_method:
|
| 26 |
-
init_method: skeleton
|
| 27 |
-
data_level: 0.5
|
| 28 |
-
loss_params:
|
| 29 |
-
coefs:
|
| 30 |
-
step_thresholds:
|
| 31 |
-
- 0
|
| 32 |
-
- 100
|
| 33 |
-
- 200
|
| 34 |
-
- 300
|
| 35 |
-
data:
|
| 36 |
-
- 1.0
|
| 37 |
-
- 0.1
|
| 38 |
-
- 0.0
|
| 39 |
-
- 0.0
|
| 40 |
-
crossfield:
|
| 41 |
-
- 0.0
|
| 42 |
-
- 0.05
|
| 43 |
-
- 0.0
|
| 44 |
-
- 0.0
|
| 45 |
-
length:
|
| 46 |
-
- 0.1
|
| 47 |
-
- 0.01
|
| 48 |
-
- 0.0
|
| 49 |
-
- 0.0
|
| 50 |
-
curvature:
|
| 51 |
-
- 0.0
|
| 52 |
-
- 0.0
|
| 53 |
-
- 1.0
|
| 54 |
-
- 0.0
|
| 55 |
-
corner:
|
| 56 |
-
- 0.0
|
| 57 |
-
- 0.0
|
| 58 |
-
- 0.5
|
| 59 |
-
- 0.0
|
| 60 |
-
junction:
|
| 61 |
-
- 0.0
|
| 62 |
-
- 0.0
|
| 63 |
-
- 0.5
|
| 64 |
-
- 0.0
|
| 65 |
-
curvature_dissimilarity_threshold: 2
|
| 66 |
-
corner_angles:
|
| 67 |
-
- 45
|
| 68 |
-
- 90
|
| 69 |
-
- 135
|
| 70 |
-
corner_angle_threshold: 22.5
|
| 71 |
-
junction_angles:
|
| 72 |
-
- 0
|
| 73 |
-
- 45
|
| 74 |
-
- 90
|
| 75 |
-
- 135
|
| 76 |
-
junction_angle_weights:
|
| 77 |
-
- 1
|
| 78 |
-
- 0.01
|
| 79 |
-
- 0.1
|
| 80 |
-
- 0.01
|
| 81 |
-
junction_angle_threshold: 22.5
|
| 82 |
-
lr: 0.1
|
| 83 |
-
gamma: 0.995
|
| 84 |
-
device: cuda
|
| 85 |
-
tolerance:
|
| 86 |
-
- 1
|
| 87 |
-
seg_threshold: 0.5
|
| 88 |
-
min_area: 10
|
| 89 |
-
acm_method:
|
| 90 |
-
steps: 500
|
| 91 |
-
data_level: 0.5
|
| 92 |
-
data_coef: 0.1
|
| 93 |
-
length_coef: 0.4
|
| 94 |
-
crossfield_coef: 0.5
|
| 95 |
-
poly_lr: 0.01
|
| 96 |
-
warmup_iters: 100
|
| 97 |
-
warmup_factor: 0.1
|
| 98 |
-
device: cuda
|
| 99 |
-
tolerance:
|
| 100 |
-
- 1
|
| 101 |
-
seg_threshold: 0.5
|
| 102 |
-
min_area: 10
|
| 103 |
dataset:
|
| 104 |
-
name:
|
| 105 |
size: ${..experiment.encoder.in_size}
|
| 106 |
-
path: ${host.data_root}/${.
|
| 107 |
annotations:
|
| 108 |
-
train: ${..path}/annotations_${...country}_train.json
|
| 109 |
-
val: ${..path}/annotations_${...country}_val.json
|
| 110 |
-
test: ${..path}/annotations_${...country}_test.json
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
train_subset: ${..run_type.train_subset}
|
| 112 |
val_subset: ${..run_type.val_subset}
|
| 113 |
test_subset: ${..run_type.test_subset}
|
| 114 |
-
augmentations:
|
| 115 |
-
- D4
|
| 116 |
experiment:
|
| 117 |
encoder:
|
| 118 |
name: pointpillars_vit_cnn
|
|
@@ -135,7 +52,7 @@ experiment:
|
|
| 135 |
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 136 |
vit:
|
| 137 |
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 138 |
-
checkpoint_file: ${....host.
|
| 139 |
pretrained: true
|
| 140 |
patch_size: 8
|
| 141 |
patch_feature_size: 28
|
|
@@ -144,6 +61,7 @@ experiment:
|
|
| 144 |
patch_feature_dim: 384
|
| 145 |
augmentations:
|
| 146 |
- D4
|
|
|
|
| 147 |
model:
|
| 148 |
name: ffl
|
| 149 |
compute_seg: true
|
|
@@ -209,28 +127,113 @@ experiment:
|
|
| 209 |
patch_size: null
|
| 210 |
patch_overlap: 200
|
| 211 |
seg_threshold: 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
name: v5_lidar_bs2x16_mnv64
|
| 213 |
group_name: v2_${.model.name}
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
multi_gpu: true
|
| 224 |
-
device: cuda
|
| 225 |
-
log_to_wandb: true
|
| 226 |
-
num_workers: ${.run_type.num_workers}
|
| 227 |
-
update_pbar_every: ${.host.update_pbar_every}
|
| 228 |
-
country: Switzerland
|
| 229 |
-
use_lidar: ${.experiment.encoder.use_lidar}
|
| 230 |
-
use_images: ${.experiment.encoder.use_images}
|
| 231 |
-
eval:
|
| 232 |
split: val
|
| 233 |
-
pred_file: ${..output_dir}/
|
| 234 |
modes:
|
| 235 |
- iou
|
| 236 |
eval_file: results/metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
host:
|
| 2 |
+
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
+
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
run_type:
|
| 10 |
+
name: debug
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
+
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
test_subset: ${..run_type.test_subset}
|
|
|
|
|
|
|
| 33 |
experiment:
|
| 34 |
encoder:
|
| 35 |
name: pointpillars_vit_cnn
|
|
|
|
| 52 |
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 53 |
vit:
|
| 54 |
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 55 |
+
checkpoint_file: ${....host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 56 |
pretrained: true
|
| 57 |
patch_size: 8
|
| 58 |
patch_feature_size: 28
|
|
|
|
| 61 |
patch_feature_dim: 384
|
| 62 |
augmentations:
|
| 63 |
- D4
|
| 64 |
+
max_points_per_voxel: 64
|
| 65 |
model:
|
| 66 |
name: ffl
|
| 67 |
compute_seg: true
|
|
|
|
| 127 |
patch_size: null
|
| 128 |
patch_overlap: 200
|
| 129 |
seg_threshold: 0.5
|
| 130 |
+
polygonization:
|
| 131 |
+
method:
|
| 132 |
+
- acm
|
| 133 |
+
common_params:
|
| 134 |
+
init_data_level: 0.5
|
| 135 |
+
simple_method:
|
| 136 |
+
data_level: 0.5
|
| 137 |
+
tolerance:
|
| 138 |
+
- 1.0
|
| 139 |
+
seg_threshold: 0.5
|
| 140 |
+
min_area: 10
|
| 141 |
+
asm_method:
|
| 142 |
+
init_method: skeleton
|
| 143 |
+
data_level: 0.5
|
| 144 |
+
loss_params:
|
| 145 |
+
coefs:
|
| 146 |
+
step_thresholds:
|
| 147 |
+
- 0
|
| 148 |
+
- 100
|
| 149 |
+
- 200
|
| 150 |
+
- 300
|
| 151 |
+
data:
|
| 152 |
+
- 1.0
|
| 153 |
+
- 0.1
|
| 154 |
+
- 0.0
|
| 155 |
+
- 0.0
|
| 156 |
+
crossfield:
|
| 157 |
+
- 0.0
|
| 158 |
+
- 0.05
|
| 159 |
+
- 0.0
|
| 160 |
+
- 0.0
|
| 161 |
+
length:
|
| 162 |
+
- 0.1
|
| 163 |
+
- 0.01
|
| 164 |
+
- 0.0
|
| 165 |
+
- 0.0
|
| 166 |
+
curvature:
|
| 167 |
+
- 0.0
|
| 168 |
+
- 0.0
|
| 169 |
+
- 1.0
|
| 170 |
+
- 0.0
|
| 171 |
+
corner:
|
| 172 |
+
- 0.0
|
| 173 |
+
- 0.0
|
| 174 |
+
- 0.5
|
| 175 |
+
- 0.0
|
| 176 |
+
junction:
|
| 177 |
+
- 0.0
|
| 178 |
+
- 0.0
|
| 179 |
+
- 0.5
|
| 180 |
+
- 0.0
|
| 181 |
+
curvature_dissimilarity_threshold: 2
|
| 182 |
+
corner_angles:
|
| 183 |
+
- 45
|
| 184 |
+
- 90
|
| 185 |
+
- 135
|
| 186 |
+
corner_angle_threshold: 22.5
|
| 187 |
+
junction_angles:
|
| 188 |
+
- 0
|
| 189 |
+
- 45
|
| 190 |
+
- 90
|
| 191 |
+
- 135
|
| 192 |
+
junction_angle_weights:
|
| 193 |
+
- 1
|
| 194 |
+
- 0.01
|
| 195 |
+
- 0.1
|
| 196 |
+
- 0.01
|
| 197 |
+
junction_angle_threshold: 22.5
|
| 198 |
+
lr: 0.1
|
| 199 |
+
gamma: 0.995
|
| 200 |
+
device: cuda
|
| 201 |
+
tolerance:
|
| 202 |
+
- 1
|
| 203 |
+
seg_threshold: 0.5
|
| 204 |
+
min_area: 10
|
| 205 |
+
acm_method:
|
| 206 |
+
steps: 500
|
| 207 |
+
data_level: 0.5
|
| 208 |
+
data_coef: 0.1
|
| 209 |
+
length_coef: 0.4
|
| 210 |
+
crossfield_coef: 0.5
|
| 211 |
+
poly_lr: 0.01
|
| 212 |
+
warmup_iters: 100
|
| 213 |
+
warmup_factor: 0.1
|
| 214 |
+
device: cuda
|
| 215 |
+
tolerance:
|
| 216 |
+
- 1
|
| 217 |
+
seg_threshold: 0.5
|
| 218 |
+
min_area: 10
|
| 219 |
name: v5_lidar_bs2x16_mnv64
|
| 220 |
group_name: v2_${.model.name}
|
| 221 |
+
country: CH
|
| 222 |
+
training:
|
| 223 |
+
save_best: true
|
| 224 |
+
save_latest: true
|
| 225 |
+
save_every: 10
|
| 226 |
+
val_every: 1
|
| 227 |
+
best_val_loss: 10000000.0
|
| 228 |
+
best_val_iou: 0.0
|
| 229 |
+
evaluation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
split: val
|
| 231 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 232 |
modes:
|
| 233 |
- iou
|
| 234 |
eval_file: results/metrics
|
| 235 |
+
experiment.name: debug
|
| 236 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 237 |
+
checkpoint: best_val_iou
|
| 238 |
+
num_workers: ${.run_type.num_workers}
|
| 239 |
+
lidar_file: demo_data/lidar0_CH_val.copc.laz
|
ffl/224/v5_lidar_bs2x16_mnv64/.hydra/hydra.yaml
CHANGED
|
@@ -112,16 +112,15 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
-
|
| 116 |
-
- host=
|
| 117 |
-
-
|
| 118 |
-
-
|
| 119 |
-
-
|
| 120 |
-
- experiment=lidar_density_ablation64
|
| 121 |
job:
|
| 122 |
-
name:
|
| 123 |
chdir: null
|
| 124 |
-
override_dirname: checkpoint=
|
| 125 |
id: ???
|
| 126 |
num: ???
|
| 127 |
config_name: config
|
|
@@ -135,26 +134,28 @@ hydra:
|
|
| 135 |
runtime:
|
| 136 |
version: 1.3.2
|
| 137 |
version_base: '1.3'
|
| 138 |
-
cwd: /home/rsulzer/
|
| 139 |
config_sources:
|
| 140 |
- path: hydra.conf
|
| 141 |
schema: pkg
|
| 142 |
provider: hydra
|
| 143 |
-
- path: /home/rsulzer/
|
| 144 |
schema: file
|
| 145 |
provider: main
|
| 146 |
- path: ''
|
| 147 |
schema: structured
|
| 148 |
provider: schema
|
| 149 |
-
output_dir: /
|
| 150 |
choices:
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
| 152 |
[email protected]: ffl
|
| 153 |
[email protected]: pointpillars_vit_cnn
|
| 154 |
-
dataset:
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
host: g5k
|
| 158 |
hydra/env: default
|
| 159 |
hydra/callbacks: null
|
| 160 |
hydra/job_logging: default
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
+
- host=gin
|
| 117 |
+
- checkpoint=best_val_iou
|
| 118 |
+
- experiment=ffl_lidar
|
| 119 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
|
| 120 |
job:
|
| 121 |
+
name: predict_demo
|
| 122 |
chdir: null
|
| 123 |
+
override_dirname: +lidar_file=demo_data/lidar0_CH_val.copc.laz,checkpoint=best_val_iou,experiment=ffl_lidar,host=gin,run_type=debug
|
| 124 |
id: ???
|
| 125 |
num: ???
|
| 126 |
config_name: config
|
|
|
|
| 134 |
runtime:
|
| 135 |
version: 1.3.2
|
| 136 |
version_base: '1.3'
|
| 137 |
+
cwd: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons
|
| 138 |
config_sources:
|
| 139 |
- path: hydra.conf
|
| 140 |
schema: pkg
|
| 141 |
provider: hydra
|
| 142 |
+
- path: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons/config
|
| 143 |
schema: file
|
| 144 |
provider: main
|
| 145 |
- path: ''
|
| 146 |
schema: structured
|
| 147 |
provider: schema
|
| 148 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/ffl/224/v5_lidar_bs2x16_mnv64
|
| 149 |
choices:
|
| 150 |
+
evaluation: val
|
| 151 |
+
training: default
|
| 152 |
+
experiment: ffl_lidar
|
| 153 |
+
[email protected]: asm_acm
|
| 154 |
[email protected]: ffl
|
| 155 |
[email protected]: pointpillars_vit_cnn
|
| 156 |
+
dataset: p3
|
| 157 |
+
run_type: debug
|
| 158 |
+
host: gin
|
|
|
|
| 159 |
hydra/env: default
|
| 160 |
hydra/callbacks: null
|
| 161 |
hydra/job_logging: default
|
ffl/224/v5_lidar_bs2x16_mnv64/.hydra/overrides.yaml
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
-
-
|
| 2 |
-
- host=
|
| 3 |
-
-
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
- experiment=lidar_density_ablation64
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
+
- host=gin
|
| 3 |
+
- checkpoint=best_val_iou
|
| 4 |
+
- experiment=ffl_lidar
|
| 5 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
ffl/224/v5_lidar_bs2x16_mnv64/predict_demo.log
ADDED
|
File without changes
|
hisup/224/early_fusion_vit_cnn_bs2x16_mnv64/.hydra/config.yaml
CHANGED
|
@@ -1,117 +1,32 @@
|
|
| 1 |
host:
|
| 2 |
name: gin
|
| 3 |
-
data_root: /data/rsulzer
|
|
|
|
|
|
|
|
|
|
| 4 |
update_pbar_every: 1
|
|
|
|
| 5 |
run_type:
|
| 6 |
-
name:
|
| 7 |
batch_size: 16
|
| 8 |
-
train_subset:
|
| 9 |
-
val_subset:
|
| 10 |
-
test_subset:
|
| 11 |
-
logging:
|
| 12 |
-
num_workers:
|
| 13 |
-
log_to_wandb:
|
| 14 |
-
polygonization:
|
| 15 |
-
method:
|
| 16 |
-
- acm
|
| 17 |
-
common_params:
|
| 18 |
-
init_data_level: 0.5
|
| 19 |
-
simple_method:
|
| 20 |
-
data_level: 0.5
|
| 21 |
-
tolerance:
|
| 22 |
-
- 1.0
|
| 23 |
-
seg_threshold: 0.5
|
| 24 |
-
min_area: 10
|
| 25 |
-
asm_method:
|
| 26 |
-
init_method: skeleton
|
| 27 |
-
data_level: 0.5
|
| 28 |
-
loss_params:
|
| 29 |
-
coefs:
|
| 30 |
-
step_thresholds:
|
| 31 |
-
- 0
|
| 32 |
-
- 100
|
| 33 |
-
- 200
|
| 34 |
-
- 300
|
| 35 |
-
data:
|
| 36 |
-
- 1.0
|
| 37 |
-
- 0.1
|
| 38 |
-
- 0.0
|
| 39 |
-
- 0.0
|
| 40 |
-
crossfield:
|
| 41 |
-
- 0.0
|
| 42 |
-
- 0.05
|
| 43 |
-
- 0.0
|
| 44 |
-
- 0.0
|
| 45 |
-
length:
|
| 46 |
-
- 0.1
|
| 47 |
-
- 0.01
|
| 48 |
-
- 0.0
|
| 49 |
-
- 0.0
|
| 50 |
-
curvature:
|
| 51 |
-
- 0.0
|
| 52 |
-
- 0.0
|
| 53 |
-
- 1.0
|
| 54 |
-
- 0.0
|
| 55 |
-
corner:
|
| 56 |
-
- 0.0
|
| 57 |
-
- 0.0
|
| 58 |
-
- 0.5
|
| 59 |
-
- 0.0
|
| 60 |
-
junction:
|
| 61 |
-
- 0.0
|
| 62 |
-
- 0.0
|
| 63 |
-
- 0.5
|
| 64 |
-
- 0.0
|
| 65 |
-
curvature_dissimilarity_threshold: 2
|
| 66 |
-
corner_angles:
|
| 67 |
-
- 45
|
| 68 |
-
- 90
|
| 69 |
-
- 135
|
| 70 |
-
corner_angle_threshold: 22.5
|
| 71 |
-
junction_angles:
|
| 72 |
-
- 0
|
| 73 |
-
- 45
|
| 74 |
-
- 90
|
| 75 |
-
- 135
|
| 76 |
-
junction_angle_weights:
|
| 77 |
-
- 1
|
| 78 |
-
- 0.01
|
| 79 |
-
- 0.1
|
| 80 |
-
- 0.01
|
| 81 |
-
junction_angle_threshold: 22.5
|
| 82 |
-
lr: 0.1
|
| 83 |
-
gamma: 0.995
|
| 84 |
-
device: cuda
|
| 85 |
-
tolerance:
|
| 86 |
-
- 1
|
| 87 |
-
seg_threshold: 0.5
|
| 88 |
-
min_area: 10
|
| 89 |
-
acm_method:
|
| 90 |
-
steps: 500
|
| 91 |
-
data_level: 0.5
|
| 92 |
-
data_coef: 0.1
|
| 93 |
-
length_coef: 0.4
|
| 94 |
-
crossfield_coef: 0.5
|
| 95 |
-
poly_lr: 0.01
|
| 96 |
-
warmup_iters: 100
|
| 97 |
-
warmup_factor: 0.1
|
| 98 |
-
device: cuda
|
| 99 |
-
tolerance:
|
| 100 |
-
- 1
|
| 101 |
-
seg_threshold: 0.5
|
| 102 |
-
min_area: 10
|
| 103 |
dataset:
|
| 104 |
-
name:
|
| 105 |
size: ${..experiment.encoder.in_size}
|
| 106 |
-
path: ${host.data_root}/
|
| 107 |
annotations:
|
| 108 |
-
train: ${..path}/annotations_${...country}_train.json
|
| 109 |
-
val: ${..path}/annotations_${...country}_val.json
|
| 110 |
-
test: ${..path}/annotations_${...country}_test.json
|
| 111 |
ffl_stats:
|
| 112 |
-
train: ${..path}/ffl/train/stats-${...country}.pt
|
| 113 |
-
val: ${..path}/ffl/val/stats-${...country}.pt
|
| 114 |
-
test: ${..path}/ffl/test/stats-${...country}.pt
|
| 115 |
train_subset: ${..run_type.train_subset}
|
| 116 |
val_subset: ${..run_type.val_subset}
|
| 117 |
test_subset: ${..run_type.test_subset}
|
|
@@ -137,7 +52,7 @@ experiment:
|
|
| 137 |
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 138 |
vit:
|
| 139 |
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 140 |
-
checkpoint_file: ${....host.
|
| 141 |
pretrained: true
|
| 142 |
patch_size: 8
|
| 143 |
patch_feature_size: 28
|
|
@@ -188,31 +103,23 @@ experiment:
|
|
| 188 |
loss_remask: 1.0
|
| 189 |
name: early_fusion_vit_cnn_bs2x16_mnv64
|
| 190 |
group_name: v2_${.model.name}
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
multi_gpu: false
|
| 201 |
-
device: cuda
|
| 202 |
-
log_to_wandb: false
|
| 203 |
-
num_workers: ${.run_type.num_workers}
|
| 204 |
-
update_pbar_every: ${.host.update_pbar_every}
|
| 205 |
-
country: CH
|
| 206 |
-
use_lidar: ${.experiment.encoder.use_lidar}
|
| 207 |
-
use_images: ${.experiment.encoder.use_images}
|
| 208 |
-
eval:
|
| 209 |
split: val
|
| 210 |
-
pred_file: ${..output_dir}/predictions_${..country}_${.split}/${..checkpoint}.json
|
| 211 |
modes:
|
| 212 |
-
- ldof
|
| 213 |
-
- coco
|
| 214 |
- iou
|
| 215 |
-
- polis
|
| 216 |
-
- mta
|
| 217 |
eval_file: results/metrics
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
host:
|
| 2 |
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
run_type:
|
| 10 |
+
name: debug
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
test_subset: ${..run_type.test_subset}
|
|
|
|
| 52 |
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 53 |
vit:
|
| 54 |
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 55 |
+
checkpoint_file: ${....host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 56 |
pretrained: true
|
| 57 |
patch_size: 8
|
| 58 |
patch_feature_size: 28
|
|
|
|
| 103 |
loss_remask: 1.0
|
| 104 |
name: early_fusion_vit_cnn_bs2x16_mnv64
|
| 105 |
group_name: v2_${.model.name}
|
| 106 |
+
country: all
|
| 107 |
+
training:
|
| 108 |
+
save_best: true
|
| 109 |
+
save_latest: true
|
| 110 |
+
save_every: 10
|
| 111 |
+
val_every: 1
|
| 112 |
+
best_val_loss: 10000000.0
|
| 113 |
+
best_val_iou: 0.0
|
| 114 |
+
evaluation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
split: val
|
| 116 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 117 |
modes:
|
|
|
|
|
|
|
| 118 |
- iou
|
|
|
|
|
|
|
| 119 |
eval_file: results/metrics
|
| 120 |
+
experiment.name: debug
|
| 121 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 122 |
+
checkpoint: best_val_iou
|
| 123 |
+
num_workers: ${.run_type.num_workers}
|
| 124 |
+
image_file: demo_data/image0_CH_val.tif
|
| 125 |
+
lidar_file: demo_data/lidar0_CH_val.copc.laz
|
hisup/224/early_fusion_vit_cnn_bs2x16_mnv64/.hydra/hydra.yaml
CHANGED
|
@@ -112,19 +112,16 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
- run_type=
|
| 116 |
- host=gin
|
| 117 |
-
- device=cuda
|
| 118 |
-
- log_to_wandb=false
|
| 119 |
-
- multi_gpu=false
|
| 120 |
- checkpoint=best_val_iou
|
| 121 |
-
- eval.split=val
|
| 122 |
- experiment=hisup_fusion
|
| 123 |
-
-
|
|
|
|
| 124 |
job:
|
| 125 |
-
name:
|
| 126 |
chdir: null
|
| 127 |
-
override_dirname:
|
| 128 |
id: ???
|
| 129 |
num: ???
|
| 130 |
config_name: config
|
|
@@ -149,14 +146,15 @@ hydra:
|
|
| 149 |
- path: ''
|
| 150 |
schema: structured
|
| 151 |
provider: schema
|
| 152 |
-
output_dir: /data/rsulzer/
|
| 153 |
choices:
|
|
|
|
|
|
|
| 154 |
experiment: hisup_fusion
|
| 155 |
[email protected]: hisup
|
| 156 |
[email protected]: early_fusion_vit_cnn
|
| 157 |
dataset: p3
|
| 158 |
-
|
| 159 |
-
run_type: release
|
| 160 |
host: gin
|
| 161 |
hydra/env: default
|
| 162 |
hydra/callbacks: null
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
- host=gin
|
|
|
|
|
|
|
|
|
|
| 117 |
- checkpoint=best_val_iou
|
|
|
|
| 118 |
- experiment=hisup_fusion
|
| 119 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 120 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
| 121 |
job:
|
| 122 |
+
name: predict_demo
|
| 123 |
chdir: null
|
| 124 |
+
override_dirname: +image_file=demo_data/image0_CH_val.tif,+lidar_file=demo_data/lidar0_CH_val.copc.laz,checkpoint=best_val_iou,experiment=hisup_fusion,host=gin,run_type=debug
|
| 125 |
id: ???
|
| 126 |
num: ???
|
| 127 |
config_name: config
|
|
|
|
| 146 |
- path: ''
|
| 147 |
schema: structured
|
| 148 |
provider: schema
|
| 149 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/hisup/224/early_fusion_vit_cnn_bs2x16_mnv64
|
| 150 |
choices:
|
| 151 |
+
evaluation: val
|
| 152 |
+
training: default
|
| 153 |
experiment: hisup_fusion
|
| 154 |
[email protected]: hisup
|
| 155 |
[email protected]: early_fusion_vit_cnn
|
| 156 |
dataset: p3
|
| 157 |
+
run_type: debug
|
|
|
|
| 158 |
host: gin
|
| 159 |
hydra/env: default
|
| 160 |
hydra/callbacks: null
|
hisup/224/early_fusion_vit_cnn_bs2x16_mnv64/.hydra/overrides.yaml
CHANGED
|
@@ -1,9 +1,6 @@
|
|
| 1 |
-
- run_type=
|
| 2 |
- host=gin
|
| 3 |
-
- device=cuda
|
| 4 |
-
- log_to_wandb=false
|
| 5 |
-
- multi_gpu=false
|
| 6 |
- checkpoint=best_val_iou
|
| 7 |
-
- eval.split=val
|
| 8 |
- experiment=hisup_fusion
|
| 9 |
-
-
|
|
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
- host=gin
|
|
|
|
|
|
|
|
|
|
| 3 |
- checkpoint=best_val_iou
|
|
|
|
| 4 |
- experiment=hisup_fusion
|
| 5 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 6 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
hisup/224/early_fusion_vit_cnn_bs2x16_mnv64/predict_demo.log
ADDED
|
File without changes
|
hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64/.hydra/config.yaml
CHANGED
|
@@ -1,211 +1,112 @@
|
|
| 1 |
-
|
| 2 |
-
name:
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
z: 100
|
| 12 |
-
max_num_points_per_voxel: 64
|
| 13 |
-
max_num_voxels:
|
| 14 |
-
train: 784
|
| 15 |
-
test: 784
|
| 16 |
-
out_feature_size: ${..model.decoder.in_feature_size}
|
| 17 |
-
out_feature_height: ${.out_feature_size}
|
| 18 |
-
out_feature_width: ${.out_feature_size}
|
| 19 |
-
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 20 |
-
vit:
|
| 21 |
-
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 22 |
-
checkpoint_file: ${...host.data_root}/checkpoints/backbones/dino_deitsmall8_pretrain.pth
|
| 23 |
-
pretrained: true
|
| 24 |
-
patch_size: 8
|
| 25 |
-
patch_feature_size: 28
|
| 26 |
-
patch_feature_height: ${.patch_feature_size}
|
| 27 |
-
patch_feature_width: ${.patch_feature_size}
|
| 28 |
-
patch_feature_dim: 384
|
| 29 |
-
augmentations:
|
| 30 |
-
- D4
|
| 31 |
-
model:
|
| 32 |
-
name: hisup
|
| 33 |
-
decoder:
|
| 34 |
-
in_feature_size: 224
|
| 35 |
-
in_feature_width: ${.in_feature_size}
|
| 36 |
-
in_feature_height: ${.in_feature_size}
|
| 37 |
-
in_feature_dim: 256
|
| 38 |
-
point_pillars:
|
| 39 |
-
out_channels:
|
| 40 |
-
- 128
|
| 41 |
-
- 128
|
| 42 |
-
- 128
|
| 43 |
-
upsample_strides:
|
| 44 |
-
- 1
|
| 45 |
-
- 2
|
| 46 |
-
- 4
|
| 47 |
batch_size: 16
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
loss_joff: 0.25
|
| 55 |
-
loss_jloc: 8.0
|
| 56 |
-
loss_mask: 1.0
|
| 57 |
-
loss_afm: 0.1
|
| 58 |
-
loss_remask: 1.0
|
| 59 |
-
polygonization:
|
| 60 |
-
method:
|
| 61 |
-
- acm
|
| 62 |
-
common_params:
|
| 63 |
-
init_data_level: 0.5
|
| 64 |
-
simple_method:
|
| 65 |
-
data_level: 0.5
|
| 66 |
-
tolerance:
|
| 67 |
-
- 1.0
|
| 68 |
-
seg_threshold: 0.5
|
| 69 |
-
min_area: 10
|
| 70 |
-
asm_method:
|
| 71 |
-
init_method: skeleton
|
| 72 |
-
data_level: 0.5
|
| 73 |
-
loss_params:
|
| 74 |
-
coefs:
|
| 75 |
-
step_thresholds:
|
| 76 |
-
- 0
|
| 77 |
-
- 100
|
| 78 |
-
- 200
|
| 79 |
-
- 300
|
| 80 |
-
data:
|
| 81 |
-
- 1.0
|
| 82 |
-
- 0.1
|
| 83 |
-
- 0.0
|
| 84 |
-
- 0.0
|
| 85 |
-
crossfield:
|
| 86 |
-
- 0.0
|
| 87 |
-
- 0.05
|
| 88 |
-
- 0.0
|
| 89 |
-
- 0.0
|
| 90 |
-
length:
|
| 91 |
-
- 0.1
|
| 92 |
-
- 0.01
|
| 93 |
-
- 0.0
|
| 94 |
-
- 0.0
|
| 95 |
-
curvature:
|
| 96 |
-
- 0.0
|
| 97 |
-
- 0.0
|
| 98 |
-
- 1.0
|
| 99 |
-
- 0.0
|
| 100 |
-
corner:
|
| 101 |
-
- 0.0
|
| 102 |
-
- 0.0
|
| 103 |
-
- 0.5
|
| 104 |
-
- 0.0
|
| 105 |
-
junction:
|
| 106 |
-
- 0.0
|
| 107 |
-
- 0.0
|
| 108 |
-
- 0.5
|
| 109 |
-
- 0.0
|
| 110 |
-
curvature_dissimilarity_threshold: 2
|
| 111 |
-
corner_angles:
|
| 112 |
-
- 45
|
| 113 |
-
- 90
|
| 114 |
-
- 135
|
| 115 |
-
corner_angle_threshold: 22.5
|
| 116 |
-
junction_angles:
|
| 117 |
-
- 0
|
| 118 |
-
- 45
|
| 119 |
-
- 90
|
| 120 |
-
- 135
|
| 121 |
-
junction_angle_weights:
|
| 122 |
-
- 1
|
| 123 |
-
- 0.01
|
| 124 |
-
- 0.1
|
| 125 |
-
- 0.01
|
| 126 |
-
junction_angle_threshold: 22.5
|
| 127 |
-
lr: 0.1
|
| 128 |
-
gamma: 0.995
|
| 129 |
-
device: cuda
|
| 130 |
-
tolerance:
|
| 131 |
-
- 1
|
| 132 |
-
seg_threshold: 0.5
|
| 133 |
-
min_area: 10
|
| 134 |
-
acm_method:
|
| 135 |
-
steps: 500
|
| 136 |
-
data_level: 0.5
|
| 137 |
-
data_coef: 0.1
|
| 138 |
-
length_coef: 0.4
|
| 139 |
-
crossfield_coef: 0.5
|
| 140 |
-
poly_lr: 0.01
|
| 141 |
-
warmup_iters: 100
|
| 142 |
-
warmup_factor: 0.1
|
| 143 |
-
device: cuda
|
| 144 |
-
tolerance:
|
| 145 |
-
- 1
|
| 146 |
-
seg_threshold: 0.5
|
| 147 |
-
min_area: 10
|
| 148 |
dataset:
|
| 149 |
-
name:
|
| 150 |
-
size: ${..encoder.in_size}
|
| 151 |
-
path: ${host.data_root}/${.
|
| 152 |
annotations:
|
| 153 |
-
train: ${..path}/
|
| 154 |
-
val: ${..path}/
|
| 155 |
-
test: ${..path}/
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
train_subset: ${..run_type.train_subset}
|
| 157 |
val_subset: ${..run_type.val_subset}
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
modes:
|
| 194 |
- iou
|
| 195 |
-
experiments:
|
| 196 |
-
- model: ffl
|
| 197 |
-
experiment_name:
|
| 198 |
-
- 224/v3_image_vit_cnn_bs4x16
|
| 199 |
-
- 224/v3_lidar_pp_vit_cnn_bs2x16
|
| 200 |
-
- 224/fusion_vit_cnn_bs16
|
| 201 |
-
- model: hisup
|
| 202 |
-
experiment_name:
|
| 203 |
-
- 224/v3_image_hrnet224_bs4x16
|
| 204 |
-
- 224/v3_lidar_pp_vit_cnn_bs2x16
|
| 205 |
-
- 224/early_fusion_vit_cnn_bs16
|
| 206 |
-
- model: pix2poly
|
| 207 |
-
experiment_name:
|
| 208 |
-
- 224/image_only_bs4x16
|
| 209 |
-
- 224/lidar_only_bs2x16
|
| 210 |
-
- 224/fusion_bs2x16
|
| 211 |
eval_file: results/metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
host:
|
| 2 |
+
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
+
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
+
run_type:
|
| 10 |
+
name: debug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
+
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
+
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
+
test_subset: ${..run_type.test_subset}
|
| 33 |
+
experiment:
|
| 34 |
+
encoder:
|
| 35 |
+
name: pointpillars_vit_cnn
|
| 36 |
+
use_images: false
|
| 37 |
+
use_lidar: true
|
| 38 |
+
in_size: 224
|
| 39 |
+
in_height: ${.in_size}
|
| 40 |
+
in_width: ${.in_size}
|
| 41 |
+
in_voxel_size:
|
| 42 |
+
x: 8
|
| 43 |
+
'y': 8
|
| 44 |
+
z: 100
|
| 45 |
+
max_num_points_per_voxel: 64
|
| 46 |
+
max_num_voxels:
|
| 47 |
+
train: 784
|
| 48 |
+
test: 784
|
| 49 |
+
out_feature_size: ${..model.decoder.in_feature_size}
|
| 50 |
+
out_feature_height: ${.out_feature_size}
|
| 51 |
+
out_feature_width: ${.out_feature_size}
|
| 52 |
+
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 53 |
+
vit:
|
| 54 |
+
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 55 |
+
checkpoint_file: ${....host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 56 |
+
pretrained: true
|
| 57 |
+
patch_size: 8
|
| 58 |
+
patch_feature_size: 28
|
| 59 |
+
patch_feature_height: ${.patch_feature_size}
|
| 60 |
+
patch_feature_width: ${.patch_feature_size}
|
| 61 |
+
patch_feature_dim: 384
|
| 62 |
+
augmentations:
|
| 63 |
+
- D4
|
| 64 |
+
model:
|
| 65 |
+
name: hisup
|
| 66 |
+
decoder:
|
| 67 |
+
in_feature_size: 224
|
| 68 |
+
in_feature_width: ${.in_feature_size}
|
| 69 |
+
in_feature_height: ${.in_feature_size}
|
| 70 |
+
in_feature_dim: 256
|
| 71 |
+
point_pillars:
|
| 72 |
+
out_channels:
|
| 73 |
+
- 128
|
| 74 |
+
- 128
|
| 75 |
+
- 128
|
| 76 |
+
upsample_strides:
|
| 77 |
+
- 1
|
| 78 |
+
- 2
|
| 79 |
+
- 4
|
| 80 |
+
batch_size: ${...run_type.batch_size}
|
| 81 |
+
start_epoch: 0
|
| 82 |
+
num_epochs: 200
|
| 83 |
+
milestone: 0
|
| 84 |
+
learning_rate: 0.0001
|
| 85 |
+
weight_decay: 0.0001
|
| 86 |
+
loss_weights:
|
| 87 |
+
loss_joff: 0.25
|
| 88 |
+
loss_jloc: 8.0
|
| 89 |
+
loss_mask: 1.0
|
| 90 |
+
loss_afm: 0.1
|
| 91 |
+
loss_remask: 1.0
|
| 92 |
+
name: lidar_pp_vit_cnn_bs2x16_mnv64
|
| 93 |
+
group_name: v2_${.model.name}
|
| 94 |
+
country: CH
|
| 95 |
+
training:
|
| 96 |
+
save_best: true
|
| 97 |
+
save_latest: true
|
| 98 |
+
save_every: 10
|
| 99 |
+
val_every: 1
|
| 100 |
+
best_val_loss: 10000000.0
|
| 101 |
+
best_val_iou: 0.0
|
| 102 |
+
evaluation:
|
| 103 |
+
split: val
|
| 104 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 105 |
modes:
|
| 106 |
- iou
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
eval_file: results/metrics
|
| 108 |
+
experiment.name: debug
|
| 109 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 110 |
+
checkpoint: best_val_iou
|
| 111 |
+
num_workers: ${.run_type.num_workers}
|
| 112 |
+
lidar_file: demo_data/lidar0_CH_val.copc.laz
|
hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64/.hydra/hydra.yaml
CHANGED
|
@@ -112,19 +112,15 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
-
|
| 116 |
-
- host=
|
| 117 |
-
-
|
| 118 |
-
-
|
| 119 |
-
-
|
| 120 |
-
- checkpoint=null
|
| 121 |
-
- model.batch_size=16
|
| 122 |
-
- encoder=pointpillars_vit_cnn
|
| 123 |
-
- model=hisup
|
| 124 |
job:
|
| 125 |
-
name:
|
| 126 |
chdir: null
|
| 127 |
-
override_dirname:
|
| 128 |
id: ???
|
| 129 |
num: ???
|
| 130 |
config_name: config
|
|
@@ -138,25 +134,27 @@ hydra:
|
|
| 138 |
runtime:
|
| 139 |
version: 1.3.2
|
| 140 |
version_base: '1.3'
|
| 141 |
-
cwd: /home/rsulzer/
|
| 142 |
config_sources:
|
| 143 |
- path: hydra.conf
|
| 144 |
schema: pkg
|
| 145 |
provider: hydra
|
| 146 |
-
- path: /home/rsulzer/
|
| 147 |
schema: file
|
| 148 |
provider: main
|
| 149 |
- path: ''
|
| 150 |
schema: structured
|
| 151 |
provider: schema
|
| 152 |
-
output_dir: /
|
| 153 |
choices:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
| 160 |
hydra/env: default
|
| 161 |
hydra/callbacks: null
|
| 162 |
hydra/job_logging: default
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
+
- host=gin
|
| 117 |
+
- checkpoint=best_val_iou
|
| 118 |
+
- experiment=hisup_lidar
|
| 119 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
job:
|
| 121 |
+
name: predict_demo
|
| 122 |
chdir: null
|
| 123 |
+
override_dirname: +lidar_file=demo_data/lidar0_CH_val.copc.laz,checkpoint=best_val_iou,experiment=hisup_lidar,host=gin,run_type=debug
|
| 124 |
id: ???
|
| 125 |
num: ???
|
| 126 |
config_name: config
|
|
|
|
| 134 |
runtime:
|
| 135 |
version: 1.3.2
|
| 136 |
version_base: '1.3'
|
| 137 |
+
cwd: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons
|
| 138 |
config_sources:
|
| 139 |
- path: hydra.conf
|
| 140 |
schema: pkg
|
| 141 |
provider: hydra
|
| 142 |
+
- path: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons/config
|
| 143 |
schema: file
|
| 144 |
provider: main
|
| 145 |
- path: ''
|
| 146 |
schema: structured
|
| 147 |
provider: schema
|
| 148 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64
|
| 149 |
choices:
|
| 150 |
+
evaluation: val
|
| 151 |
+
training: default
|
| 152 |
+
experiment: hisup_lidar
|
| 153 |
+
[email protected]: hisup
|
| 154 |
+
[email protected]: pointpillars_vit_cnn
|
| 155 |
+
dataset: p3
|
| 156 |
+
run_type: debug
|
| 157 |
+
host: gin
|
| 158 |
hydra/env: default
|
| 159 |
hydra/callbacks: null
|
| 160 |
hydra/job_logging: default
|
hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64/.hydra/overrides.yaml
CHANGED
|
@@ -1,9 +1,5 @@
|
|
| 1 |
-
-
|
| 2 |
-
- host=
|
| 3 |
-
-
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
- checkpoint=null
|
| 7 |
-
- model.batch_size=16
|
| 8 |
-
- encoder=pointpillars_vit_cnn
|
| 9 |
-
- model=hisup
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
+
- host=gin
|
| 3 |
+
- checkpoint=best_val_iou
|
| 4 |
+
- experiment=hisup_lidar
|
| 5 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
|
|
|
|
|
|
|
|
|
hisup/224/lidar_pp_vit_cnn_bs2x16_mnv64/predict_demo.log
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
[2025-05-21 19:42:57,731][timm.models._helpers][ERROR] - No checkpoint found at '/data/rsulzer/PixelsPointsPolygons/checkpoints/backbones/dino_deitsmall8_pretrain.pth'
|
hisup/224/v3_image_vit_cnn_bs4x12/.hydra/config.yaml
CHANGED
|
@@ -1,214 +1,115 @@
|
|
| 1 |
-
|
| 2 |
-
name:
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
out_feature_width: ${.out_feature_size}
|
| 19 |
-
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 20 |
-
image_mean:
|
| 21 |
-
- 0.0
|
| 22 |
-
- 0.0
|
| 23 |
-
- 0.0
|
| 24 |
-
image_std:
|
| 25 |
-
- 1.0
|
| 26 |
-
- 1.0
|
| 27 |
-
- 1.0
|
| 28 |
-
image_max_pixel_value: 255.0
|
| 29 |
-
augmentations:
|
| 30 |
-
- D4
|
| 31 |
-
- ColorJitter
|
| 32 |
-
- GaussNoise
|
| 33 |
-
- Normalize
|
| 34 |
-
model:
|
| 35 |
-
name: hisup
|
| 36 |
-
decoder:
|
| 37 |
-
in_feature_size: 224
|
| 38 |
-
in_feature_width: ${.in_feature_size}
|
| 39 |
-
in_feature_height: ${.in_feature_size}
|
| 40 |
-
in_feature_dim: 256
|
| 41 |
-
point_pillars:
|
| 42 |
-
out_channels:
|
| 43 |
-
- 128
|
| 44 |
-
- 128
|
| 45 |
-
- 128
|
| 46 |
-
upsample_strides:
|
| 47 |
-
- 1
|
| 48 |
-
- 2
|
| 49 |
-
- 4
|
| 50 |
-
batch_size: 12
|
| 51 |
-
start_epoch: 0
|
| 52 |
-
num_epochs: 200
|
| 53 |
-
milestone: 0
|
| 54 |
-
learning_rate: 0.0001
|
| 55 |
-
weight_decay: 0.0001
|
| 56 |
-
loss_weights:
|
| 57 |
-
loss_joff: 0.25
|
| 58 |
-
loss_jloc: 8.0
|
| 59 |
-
loss_mask: 1.0
|
| 60 |
-
loss_afm: 0.1
|
| 61 |
-
loss_remask: 1.0
|
| 62 |
-
polygonization:
|
| 63 |
-
method:
|
| 64 |
-
- acm
|
| 65 |
-
common_params:
|
| 66 |
-
init_data_level: 0.5
|
| 67 |
-
simple_method:
|
| 68 |
-
data_level: 0.5
|
| 69 |
-
tolerance:
|
| 70 |
-
- 1.0
|
| 71 |
-
seg_threshold: 0.5
|
| 72 |
-
min_area: 10
|
| 73 |
-
asm_method:
|
| 74 |
-
init_method: skeleton
|
| 75 |
-
data_level: 0.5
|
| 76 |
-
loss_params:
|
| 77 |
-
coefs:
|
| 78 |
-
step_thresholds:
|
| 79 |
-
- 0
|
| 80 |
-
- 100
|
| 81 |
-
- 200
|
| 82 |
-
- 300
|
| 83 |
-
data:
|
| 84 |
-
- 1.0
|
| 85 |
-
- 0.1
|
| 86 |
-
- 0.0
|
| 87 |
-
- 0.0
|
| 88 |
-
crossfield:
|
| 89 |
-
- 0.0
|
| 90 |
-
- 0.05
|
| 91 |
-
- 0.0
|
| 92 |
-
- 0.0
|
| 93 |
-
length:
|
| 94 |
-
- 0.1
|
| 95 |
-
- 0.01
|
| 96 |
-
- 0.0
|
| 97 |
-
- 0.0
|
| 98 |
-
curvature:
|
| 99 |
-
- 0.0
|
| 100 |
-
- 0.0
|
| 101 |
-
- 1.0
|
| 102 |
-
- 0.0
|
| 103 |
-
corner:
|
| 104 |
-
- 0.0
|
| 105 |
-
- 0.0
|
| 106 |
-
- 0.5
|
| 107 |
-
- 0.0
|
| 108 |
-
junction:
|
| 109 |
-
- 0.0
|
| 110 |
-
- 0.0
|
| 111 |
-
- 0.5
|
| 112 |
-
- 0.0
|
| 113 |
-
curvature_dissimilarity_threshold: 2
|
| 114 |
-
corner_angles:
|
| 115 |
-
- 45
|
| 116 |
-
- 90
|
| 117 |
-
- 135
|
| 118 |
-
corner_angle_threshold: 22.5
|
| 119 |
-
junction_angles:
|
| 120 |
-
- 0
|
| 121 |
-
- 45
|
| 122 |
-
- 90
|
| 123 |
-
- 135
|
| 124 |
-
junction_angle_weights:
|
| 125 |
-
- 1
|
| 126 |
-
- 0.01
|
| 127 |
-
- 0.1
|
| 128 |
-
- 0.01
|
| 129 |
-
junction_angle_threshold: 22.5
|
| 130 |
-
lr: 0.1
|
| 131 |
-
gamma: 0.995
|
| 132 |
-
device: cuda
|
| 133 |
-
tolerance:
|
| 134 |
-
- 1
|
| 135 |
-
seg_threshold: 0.5
|
| 136 |
-
min_area: 10
|
| 137 |
-
acm_method:
|
| 138 |
-
steps: 500
|
| 139 |
-
data_level: 0.5
|
| 140 |
-
data_coef: 0.1
|
| 141 |
-
length_coef: 0.4
|
| 142 |
-
crossfield_coef: 0.5
|
| 143 |
-
poly_lr: 0.01
|
| 144 |
-
warmup_iters: 100
|
| 145 |
-
warmup_factor: 0.1
|
| 146 |
-
device: cuda
|
| 147 |
-
tolerance:
|
| 148 |
-
- 1
|
| 149 |
-
seg_threshold: 0.5
|
| 150 |
-
min_area: 10
|
| 151 |
dataset:
|
| 152 |
-
name:
|
| 153 |
-
size: ${..encoder.in_size}
|
| 154 |
-
path: ${host.data_root}/${.
|
| 155 |
annotations:
|
| 156 |
-
train: ${..path}/
|
| 157 |
-
val: ${..path}/
|
| 158 |
-
test: ${..path}/
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
train_subset: ${..run_type.train_subset}
|
| 160 |
val_subset: ${..run_type.val_subset}
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
modes:
|
| 197 |
- iou
|
| 198 |
-
experiments:
|
| 199 |
-
- model: ffl
|
| 200 |
-
experiment_name:
|
| 201 |
-
- 224/v3_image_vit_cnn_bs4x16
|
| 202 |
-
- 224/v3_lidar_pp_vit_cnn_bs2x16
|
| 203 |
-
- 224/fusion_vit_cnn_bs16
|
| 204 |
-
- model: hisup
|
| 205 |
-
experiment_name:
|
| 206 |
-
- 224/v3_image_hrnet224_bs4x16
|
| 207 |
-
- 224/v3_lidar_pp_vit_cnn_bs2x16
|
| 208 |
-
- 224/early_fusion_vit_cnn_bs16
|
| 209 |
-
- model: pix2poly
|
| 210 |
-
experiment_name:
|
| 211 |
-
- 224/image_only_bs4x16
|
| 212 |
-
- 224/lidar_only_bs2x16
|
| 213 |
-
- 224/fusion_bs2x16
|
| 214 |
eval_file: results/metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
host:
|
| 2 |
+
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
+
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
+
run_type:
|
| 10 |
+
name: debug
|
| 11 |
+
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
+
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
+
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
+
test_subset: ${..run_type.test_subset}
|
| 33 |
+
experiment:
|
| 34 |
+
encoder:
|
| 35 |
+
name: vit_cnn
|
| 36 |
+
use_images: true
|
| 37 |
+
use_lidar: false
|
| 38 |
+
type: vit_small_patch${.patch_size}_${.in_size}.dino
|
| 39 |
+
checkpoint_file: ${...host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 40 |
+
pretrained: true
|
| 41 |
+
in_size: 224
|
| 42 |
+
in_height: ${.in_size}
|
| 43 |
+
in_width: ${.in_size}
|
| 44 |
+
patch_size: 8
|
| 45 |
+
patch_feature_size: 28
|
| 46 |
+
patch_feature_height: ${.patch_feature_size}
|
| 47 |
+
patch_feature_width: ${.patch_feature_size}
|
| 48 |
+
patch_feature_dim: 384
|
| 49 |
+
out_feature_size: ${..model.decoder.in_feature_size}
|
| 50 |
+
out_feature_height: ${.out_feature_size}
|
| 51 |
+
out_feature_width: ${.out_feature_size}
|
| 52 |
+
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 53 |
+
image_mean:
|
| 54 |
+
- 0.0
|
| 55 |
+
- 0.0
|
| 56 |
+
- 0.0
|
| 57 |
+
image_std:
|
| 58 |
+
- 1.0
|
| 59 |
+
- 1.0
|
| 60 |
+
- 1.0
|
| 61 |
+
image_max_pixel_value: 255.0
|
| 62 |
+
augmentations:
|
| 63 |
+
- D4
|
| 64 |
+
- ColorJitter
|
| 65 |
+
- GaussNoise
|
| 66 |
+
- Normalize
|
| 67 |
+
model:
|
| 68 |
+
name: hisup
|
| 69 |
+
decoder:
|
| 70 |
+
in_feature_size: 224
|
| 71 |
+
in_feature_width: ${.in_feature_size}
|
| 72 |
+
in_feature_height: ${.in_feature_size}
|
| 73 |
+
in_feature_dim: 256
|
| 74 |
+
point_pillars:
|
| 75 |
+
out_channels:
|
| 76 |
+
- 128
|
| 77 |
+
- 128
|
| 78 |
+
- 128
|
| 79 |
+
upsample_strides:
|
| 80 |
+
- 1
|
| 81 |
+
- 2
|
| 82 |
+
- 4
|
| 83 |
+
batch_size: ${...run_type.batch_size}
|
| 84 |
+
start_epoch: 0
|
| 85 |
+
num_epochs: 200
|
| 86 |
+
milestone: 0
|
| 87 |
+
learning_rate: 0.0001
|
| 88 |
+
weight_decay: 0.0001
|
| 89 |
+
loss_weights:
|
| 90 |
+
loss_joff: 0.25
|
| 91 |
+
loss_jloc: 8.0
|
| 92 |
+
loss_mask: 1.0
|
| 93 |
+
loss_afm: 0.1
|
| 94 |
+
loss_remask: 1.0
|
| 95 |
+
name: v3_image_vit_cnn_bs4x12
|
| 96 |
+
group_name: v2_${.model.name}
|
| 97 |
+
country: CH
|
| 98 |
+
training:
|
| 99 |
+
save_best: true
|
| 100 |
+
save_latest: true
|
| 101 |
+
save_every: 10
|
| 102 |
+
val_every: 1
|
| 103 |
+
best_val_loss: 10000000.0
|
| 104 |
+
best_val_iou: 0.0
|
| 105 |
+
evaluation:
|
| 106 |
+
split: val
|
| 107 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 108 |
modes:
|
| 109 |
- iou
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
eval_file: results/metrics
|
| 111 |
+
experiment.name: debug
|
| 112 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 113 |
+
checkpoint: best_val_iou
|
| 114 |
+
num_workers: ${.run_type.num_workers}
|
| 115 |
+
image_file: demo_data/image0_CH_val.tif
|
hisup/224/v3_image_vit_cnn_bs4x12/.hydra/hydra.yaml
CHANGED
|
@@ -112,19 +112,15 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
-
|
| 116 |
-
- host=
|
| 117 |
-
-
|
| 118 |
-
-
|
| 119 |
-
-
|
| 120 |
-
- model.batch_size=12
|
| 121 |
-
- experiment_name=v3_image_vit_cnn_bs4x12
|
| 122 |
-
- model=hisup
|
| 123 |
-
- encoder=vit_cnn
|
| 124 |
job:
|
| 125 |
-
name:
|
| 126 |
chdir: null
|
| 127 |
-
override_dirname:
|
| 128 |
id: ???
|
| 129 |
num: ???
|
| 130 |
config_name: config
|
|
@@ -138,25 +134,27 @@ hydra:
|
|
| 138 |
runtime:
|
| 139 |
version: 1.3.2
|
| 140 |
version_base: '1.3'
|
| 141 |
-
cwd: /
|
| 142 |
config_sources:
|
| 143 |
- path: hydra.conf
|
| 144 |
schema: pkg
|
| 145 |
provider: hydra
|
| 146 |
-
- path: /
|
| 147 |
schema: file
|
| 148 |
provider: main
|
| 149 |
- path: ''
|
| 150 |
schema: structured
|
| 151 |
provider: schema
|
| 152 |
-
output_dir: /
|
| 153 |
choices:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
| 160 |
hydra/env: default
|
| 161 |
hydra/callbacks: null
|
| 162 |
hydra/job_logging: default
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
+
- host=gin
|
| 117 |
+
- checkpoint=best_val_iou
|
| 118 |
+
- experiment=hisup_image
|
| 119 |
+
- +image_file=demo_data/image0_CH_val.tif
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
job:
|
| 121 |
+
name: predict_demo
|
| 122 |
chdir: null
|
| 123 |
+
override_dirname: +image_file=demo_data/image0_CH_val.tif,checkpoint=best_val_iou,experiment=hisup_image,host=gin,run_type=debug
|
| 124 |
id: ???
|
| 125 |
num: ???
|
| 126 |
config_name: config
|
|
|
|
| 134 |
runtime:
|
| 135 |
version: 1.3.2
|
| 136 |
version_base: '1.3'
|
| 137 |
+
cwd: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons
|
| 138 |
config_sources:
|
| 139 |
- path: hydra.conf
|
| 140 |
schema: pkg
|
| 141 |
provider: hydra
|
| 142 |
+
- path: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons/config
|
| 143 |
schema: file
|
| 144 |
provider: main
|
| 145 |
- path: ''
|
| 146 |
schema: structured
|
| 147 |
provider: schema
|
| 148 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/hisup/224/v3_image_vit_cnn_bs4x12
|
| 149 |
choices:
|
| 150 |
+
evaluation: val
|
| 151 |
+
training: default
|
| 152 |
+
experiment: hisup_image
|
| 153 |
+
[email protected]: hisup
|
| 154 |
+
[email protected]: vit_cnn
|
| 155 |
+
dataset: p3
|
| 156 |
+
run_type: debug
|
| 157 |
+
host: gin
|
| 158 |
hydra/env: default
|
| 159 |
hydra/callbacks: null
|
| 160 |
hydra/job_logging: default
|
hisup/224/v3_image_vit_cnn_bs4x12/.hydra/overrides.yaml
CHANGED
|
@@ -1,9 +1,5 @@
|
|
| 1 |
-
-
|
| 2 |
-
- host=
|
| 3 |
-
-
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
- model.batch_size=12
|
| 7 |
-
- experiment_name=v3_image_vit_cnn_bs4x12
|
| 8 |
-
- model=hisup
|
| 9 |
-
- encoder=vit_cnn
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
+
- host=gin
|
| 3 |
+
- checkpoint=best_val_iou
|
| 4 |
+
- experiment=hisup_image
|
| 5 |
+
- +image_file=demo_data/image0_CH_val.tif
|
|
|
|
|
|
|
|
|
|
|
|
hisup/224/v3_image_vit_cnn_bs4x12/predict_demo.log
ADDED
|
File without changes
|
pix2poly/224/early_fusion_bs2x16_mnv64/.hydra/config.yaml
CHANGED
|
@@ -1,220 +1,122 @@
|
|
| 1 |
-
|
| 2 |
-
name:
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
z: 100
|
| 12 |
-
max_num_points_per_voxel: 64
|
| 13 |
-
max_num_voxels:
|
| 14 |
-
train: 784
|
| 15 |
-
test: 784
|
| 16 |
-
out_feature_width: 28
|
| 17 |
-
out_feature_height: 28
|
| 18 |
-
vit:
|
| 19 |
-
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 20 |
-
checkpoint_file: ${...host.data_root}/checkpoints/backbones/dino_deitsmall8_pretrain.pth
|
| 21 |
-
pretrained: true
|
| 22 |
-
patch_size: 8
|
| 23 |
-
patch_feature_size: 28
|
| 24 |
-
patch_feature_height: ${.patch_feature_size}
|
| 25 |
-
patch_feature_width: ${.patch_feature_size}
|
| 26 |
-
patch_feature_dim: 384
|
| 27 |
-
num_patches: 784
|
| 28 |
-
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 29 |
-
image_mean:
|
| 30 |
-
- 0.0
|
| 31 |
-
- 0.0
|
| 32 |
-
- 0.0
|
| 33 |
-
image_std:
|
| 34 |
-
- 1.0
|
| 35 |
-
- 1.0
|
| 36 |
-
- 1.0
|
| 37 |
-
image_max_pixel_value: 255.0
|
| 38 |
-
augmentations:
|
| 39 |
-
- D4
|
| 40 |
-
- ColorJitter
|
| 41 |
-
- GaussNoise
|
| 42 |
-
- Normalize
|
| 43 |
-
model:
|
| 44 |
-
name: pix2poly
|
| 45 |
-
decoder:
|
| 46 |
-
in_feature_size: ${...encoder.patch_feature_size}
|
| 47 |
-
in_feature_width: ${.in_feature_size}
|
| 48 |
-
in_feature_height: ${.in_feature_size}
|
| 49 |
-
in_feature_dim: 256
|
| 50 |
-
tokenizer:
|
| 51 |
-
num_bins: ${...encoder.in_size}
|
| 52 |
-
shuffle_tokens: false
|
| 53 |
-
n_vertices: 192
|
| 54 |
-
max_len: null
|
| 55 |
-
pad_idx: null
|
| 56 |
-
generation_steps: null
|
| 57 |
-
fusion: patch_concat
|
| 58 |
-
sinkhorn_iterations: 100
|
| 59 |
-
label_smoothing: 0.0
|
| 60 |
-
vertex_loss_weight: 1.0
|
| 61 |
-
perm_loss_weight: 10.0
|
| 62 |
batch_size: 16
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
method:
|
| 70 |
-
- acm
|
| 71 |
-
common_params:
|
| 72 |
-
init_data_level: 0.5
|
| 73 |
-
simple_method:
|
| 74 |
-
data_level: 0.5
|
| 75 |
-
tolerance:
|
| 76 |
-
- 1.0
|
| 77 |
-
seg_threshold: 0.5
|
| 78 |
-
min_area: 10
|
| 79 |
-
asm_method:
|
| 80 |
-
init_method: skeleton
|
| 81 |
-
data_level: 0.5
|
| 82 |
-
loss_params:
|
| 83 |
-
coefs:
|
| 84 |
-
step_thresholds:
|
| 85 |
-
- 0
|
| 86 |
-
- 100
|
| 87 |
-
- 200
|
| 88 |
-
- 300
|
| 89 |
-
data:
|
| 90 |
-
- 1.0
|
| 91 |
-
- 0.1
|
| 92 |
-
- 0.0
|
| 93 |
-
- 0.0
|
| 94 |
-
crossfield:
|
| 95 |
-
- 0.0
|
| 96 |
-
- 0.05
|
| 97 |
-
- 0.0
|
| 98 |
-
- 0.0
|
| 99 |
-
length:
|
| 100 |
-
- 0.1
|
| 101 |
-
- 0.01
|
| 102 |
-
- 0.0
|
| 103 |
-
- 0.0
|
| 104 |
-
curvature:
|
| 105 |
-
- 0.0
|
| 106 |
-
- 0.0
|
| 107 |
-
- 1.0
|
| 108 |
-
- 0.0
|
| 109 |
-
corner:
|
| 110 |
-
- 0.0
|
| 111 |
-
- 0.0
|
| 112 |
-
- 0.5
|
| 113 |
-
- 0.0
|
| 114 |
-
junction:
|
| 115 |
-
- 0.0
|
| 116 |
-
- 0.0
|
| 117 |
-
- 0.5
|
| 118 |
-
- 0.0
|
| 119 |
-
curvature_dissimilarity_threshold: 2
|
| 120 |
-
corner_angles:
|
| 121 |
-
- 45
|
| 122 |
-
- 90
|
| 123 |
-
- 135
|
| 124 |
-
corner_angle_threshold: 22.5
|
| 125 |
-
junction_angles:
|
| 126 |
-
- 0
|
| 127 |
-
- 45
|
| 128 |
-
- 90
|
| 129 |
-
- 135
|
| 130 |
-
junction_angle_weights:
|
| 131 |
-
- 1
|
| 132 |
-
- 0.01
|
| 133 |
-
- 0.1
|
| 134 |
-
- 0.01
|
| 135 |
-
junction_angle_threshold: 22.5
|
| 136 |
-
lr: 0.1
|
| 137 |
-
gamma: 0.995
|
| 138 |
-
device: cuda
|
| 139 |
-
tolerance:
|
| 140 |
-
- 1
|
| 141 |
-
seg_threshold: 0.5
|
| 142 |
-
min_area: 10
|
| 143 |
-
acm_method:
|
| 144 |
-
steps: 500
|
| 145 |
-
data_level: 0.5
|
| 146 |
-
data_coef: 0.1
|
| 147 |
-
length_coef: 0.4
|
| 148 |
-
crossfield_coef: 0.5
|
| 149 |
-
poly_lr: 0.01
|
| 150 |
-
warmup_iters: 100
|
| 151 |
-
warmup_factor: 0.1
|
| 152 |
-
device: cuda
|
| 153 |
-
tolerance:
|
| 154 |
-
- 1
|
| 155 |
-
seg_threshold: 0.5
|
| 156 |
-
min_area: 10
|
| 157 |
dataset:
|
| 158 |
-
name:
|
| 159 |
-
size: ${..encoder.in_size}
|
| 160 |
-
path: ${host.data_root}/${.
|
| 161 |
annotations:
|
| 162 |
-
train: ${..path}/
|
| 163 |
-
val: ${..path}/
|
| 164 |
-
test: ${..path}/
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
train_subset: ${..run_type.train_subset}
|
| 166 |
val_subset: ${..run_type.val_subset}
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
modes:
|
| 203 |
- iou
|
| 204 |
-
experiments:
|
| 205 |
-
- model: ffl
|
| 206 |
-
experiment_name:
|
| 207 |
-
- 224/v3_image_vit_cnn_bs4x16
|
| 208 |
-
- 224/v3_lidar_pp_vit_cnn_bs2x16
|
| 209 |
-
- 224/fusion_vit_cnn_bs16
|
| 210 |
-
- model: hisup
|
| 211 |
-
experiment_name:
|
| 212 |
-
- 224/v3_image_hrnet224_bs4x16
|
| 213 |
-
- 224/v3_lidar_pp_vit_cnn_bs2x16
|
| 214 |
-
- 224/early_fusion_vit_cnn_bs16
|
| 215 |
-
- model: pix2poly
|
| 216 |
-
experiment_name:
|
| 217 |
-
- 224/image_only_bs4x16
|
| 218 |
-
- 224/lidar_only_bs2x16
|
| 219 |
-
- 224/fusion_bs2x16
|
| 220 |
eval_file: results/metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
host:
|
| 2 |
+
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
+
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
+
run_type:
|
| 10 |
+
name: debug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
+
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
+
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
+
test_subset: ${..run_type.test_subset}
|
| 33 |
+
experiment:
|
| 34 |
+
encoder:
|
| 35 |
+
name: early_fusion_vit
|
| 36 |
+
use_images: true
|
| 37 |
+
use_lidar: true
|
| 38 |
+
in_size: 224
|
| 39 |
+
in_height: ${.in_size}
|
| 40 |
+
in_width: ${.in_size}
|
| 41 |
+
in_voxel_size:
|
| 42 |
+
x: 8
|
| 43 |
+
'y': 8
|
| 44 |
+
z: 100
|
| 45 |
+
max_num_points_per_voxel: 64
|
| 46 |
+
max_num_voxels:
|
| 47 |
+
train: 784
|
| 48 |
+
test: 784
|
| 49 |
+
out_feature_width: 28
|
| 50 |
+
out_feature_height: 28
|
| 51 |
+
vit:
|
| 52 |
+
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 53 |
+
checkpoint_file: ${....host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 54 |
+
pretrained: true
|
| 55 |
+
patch_size: 8
|
| 56 |
+
patch_feature_size: 28
|
| 57 |
+
patch_feature_height: ${.patch_feature_size}
|
| 58 |
+
patch_feature_width: ${.patch_feature_size}
|
| 59 |
+
patch_feature_dim: 384
|
| 60 |
+
num_patches: 784
|
| 61 |
+
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 62 |
+
image_mean:
|
| 63 |
+
- 0.0
|
| 64 |
+
- 0.0
|
| 65 |
+
- 0.0
|
| 66 |
+
image_std:
|
| 67 |
+
- 1.0
|
| 68 |
+
- 1.0
|
| 69 |
+
- 1.0
|
| 70 |
+
image_max_pixel_value: 255.0
|
| 71 |
+
augmentations:
|
| 72 |
+
- D4
|
| 73 |
+
- ColorJitter
|
| 74 |
+
- GaussNoise
|
| 75 |
+
- Normalize
|
| 76 |
+
model:
|
| 77 |
+
name: pix2poly
|
| 78 |
+
decoder:
|
| 79 |
+
in_feature_size: ${...encoder.patch_feature_size}
|
| 80 |
+
in_feature_width: ${.in_feature_size}
|
| 81 |
+
in_feature_height: ${.in_feature_size}
|
| 82 |
+
in_feature_dim: 256
|
| 83 |
+
tokenizer:
|
| 84 |
+
num_bins: ${...encoder.in_size}
|
| 85 |
+
shuffle_tokens: false
|
| 86 |
+
n_vertices: 192
|
| 87 |
+
max_len: null
|
| 88 |
+
pad_idx: null
|
| 89 |
+
generation_steps: null
|
| 90 |
+
fusion: patch_concat
|
| 91 |
+
sinkhorn_iterations: 100
|
| 92 |
+
label_smoothing: 0.0
|
| 93 |
+
vertex_loss_weight: 1.0
|
| 94 |
+
perm_loss_weight: 10.0
|
| 95 |
+
batch_size: ${...run_type.batch_size}
|
| 96 |
+
start_epoch: 0
|
| 97 |
+
num_epochs: 200
|
| 98 |
+
milestone: 0
|
| 99 |
+
learning_rate: 0.0003
|
| 100 |
+
weight_decay: 0.0001
|
| 101 |
+
name: early_fusion_bs2x16_mnv64
|
| 102 |
+
group_name: v2_${.model.name}
|
| 103 |
+
country: all
|
| 104 |
+
training:
|
| 105 |
+
save_best: true
|
| 106 |
+
save_latest: true
|
| 107 |
+
save_every: 10
|
| 108 |
+
val_every: 1
|
| 109 |
+
best_val_loss: 10000000.0
|
| 110 |
+
best_val_iou: 0.0
|
| 111 |
+
evaluation:
|
| 112 |
+
split: val
|
| 113 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 114 |
modes:
|
| 115 |
- iou
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
eval_file: results/metrics
|
| 117 |
+
experiment.name: debug
|
| 118 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 119 |
+
checkpoint: best_val_iou
|
| 120 |
+
num_workers: ${.run_type.num_workers}
|
| 121 |
+
image_file: demo_data/image0_CH_val.tif
|
| 122 |
+
lidar_file: demo_data/lidar0_CH_val.copc.laz
|
pix2poly/224/early_fusion_bs2x16_mnv64/.hydra/hydra.yaml
CHANGED
|
@@ -112,19 +112,16 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
-
|
| 116 |
-
- host=
|
| 117 |
-
-
|
| 118 |
-
-
|
| 119 |
-
-
|
| 120 |
-
-
|
| 121 |
-
- model.batch_size=16
|
| 122 |
-
- encoder=early_fusion_vit
|
| 123 |
-
- model=pix2poly
|
| 124 |
job:
|
| 125 |
-
name:
|
| 126 |
chdir: null
|
| 127 |
-
override_dirname:
|
| 128 |
id: ???
|
| 129 |
num: ???
|
| 130 |
config_name: config
|
|
@@ -138,25 +135,27 @@ hydra:
|
|
| 138 |
runtime:
|
| 139 |
version: 1.3.2
|
| 140 |
version_base: '1.3'
|
| 141 |
-
cwd: /home/rsulzer/
|
| 142 |
config_sources:
|
| 143 |
- path: hydra.conf
|
| 144 |
schema: pkg
|
| 145 |
provider: hydra
|
| 146 |
-
- path: /home/rsulzer/
|
| 147 |
schema: file
|
| 148 |
provider: main
|
| 149 |
- path: ''
|
| 150 |
schema: structured
|
| 151 |
provider: schema
|
| 152 |
-
output_dir: /
|
| 153 |
choices:
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
| 160 |
hydra/env: default
|
| 161 |
hydra/callbacks: null
|
| 162 |
hydra/job_logging: default
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
+
- host=gin
|
| 117 |
+
- checkpoint=best_val_iou
|
| 118 |
+
- experiment=p2p_fusion
|
| 119 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 120 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
|
|
|
|
|
|
|
| 121 |
job:
|
| 122 |
+
name: predict_demo
|
| 123 |
chdir: null
|
| 124 |
+
override_dirname: +image_file=demo_data/image0_CH_val.tif,+lidar_file=demo_data/lidar0_CH_val.copc.laz,checkpoint=best_val_iou,experiment=p2p_fusion,host=gin,run_type=debug
|
| 125 |
id: ???
|
| 126 |
num: ???
|
| 127 |
config_name: config
|
|
|
|
| 135 |
runtime:
|
| 136 |
version: 1.3.2
|
| 137 |
version_base: '1.3'
|
| 138 |
+
cwd: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons
|
| 139 |
config_sources:
|
| 140 |
- path: hydra.conf
|
| 141 |
schema: pkg
|
| 142 |
provider: hydra
|
| 143 |
+
- path: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons/config
|
| 144 |
schema: file
|
| 145 |
provider: main
|
| 146 |
- path: ''
|
| 147 |
schema: structured
|
| 148 |
provider: schema
|
| 149 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/pix2poly/224/early_fusion_bs2x16_mnv64
|
| 150 |
choices:
|
| 151 |
+
evaluation: val
|
| 152 |
+
training: default
|
| 153 |
+
experiment: p2p_fusion
|
| 154 |
+
[email protected]: pix2poly
|
| 155 |
+
[email protected]: early_fusion_vit
|
| 156 |
+
dataset: p3
|
| 157 |
+
run_type: debug
|
| 158 |
+
host: gin
|
| 159 |
hydra/env: default
|
| 160 |
hydra/callbacks: null
|
| 161 |
hydra/job_logging: default
|
pix2poly/224/early_fusion_bs2x16_mnv64/.hydra/overrides.yaml
CHANGED
|
@@ -1,9 +1,6 @@
|
|
| 1 |
-
-
|
| 2 |
-
- host=
|
| 3 |
-
-
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
- model.batch_size=16
|
| 8 |
-
- encoder=early_fusion_vit
|
| 9 |
-
- model=pix2poly
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
+
- host=gin
|
| 3 |
+
- checkpoint=best_val_iou
|
| 4 |
+
- experiment=p2p_fusion
|
| 5 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 6 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
|
|
|
|
|
|
pix2poly/224/early_fusion_bs2x16_mnv64/predict_demo.log
ADDED
|
File without changes
|
pix2poly/224/lidar_pp_vit_bs2x16_mnv64/.hydra/config.yaml
CHANGED
|
@@ -1,220 +1,121 @@
|
|
| 1 |
-
|
| 2 |
-
name:
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
z: 100
|
| 12 |
-
max_num_points_per_voxel: 64
|
| 13 |
-
max_num_voxels:
|
| 14 |
-
train: 784
|
| 15 |
-
test: 784
|
| 16 |
-
out_feature_width: 28
|
| 17 |
-
out_feature_height: 28
|
| 18 |
-
vit:
|
| 19 |
-
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 20 |
-
checkpoint_file: ${...host.data_root}/checkpoints/backbones/dino_deitsmall8_pretrain.pth
|
| 21 |
-
pretrained: true
|
| 22 |
-
patch_size: 8
|
| 23 |
-
patch_feature_size: 28
|
| 24 |
-
patch_feature_height: ${.patch_feature_size}
|
| 25 |
-
patch_feature_width: ${.patch_feature_size}
|
| 26 |
-
patch_feature_dim: 384
|
| 27 |
-
num_patches: 784
|
| 28 |
-
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 29 |
-
image_mean:
|
| 30 |
-
- 0.0
|
| 31 |
-
- 0.0
|
| 32 |
-
- 0.0
|
| 33 |
-
image_std:
|
| 34 |
-
- 1.0
|
| 35 |
-
- 1.0
|
| 36 |
-
- 1.0
|
| 37 |
-
image_max_pixel_value: 255.0
|
| 38 |
-
augmentations:
|
| 39 |
-
- D4
|
| 40 |
-
- ColorJitter
|
| 41 |
-
- GaussNoise
|
| 42 |
-
- Normalize
|
| 43 |
-
model:
|
| 44 |
-
name: pix2poly
|
| 45 |
-
decoder:
|
| 46 |
-
in_feature_size: ${...encoder.patch_feature_size}
|
| 47 |
-
in_feature_width: ${.in_feature_size}
|
| 48 |
-
in_feature_height: ${.in_feature_size}
|
| 49 |
-
in_feature_dim: 256
|
| 50 |
-
tokenizer:
|
| 51 |
-
num_bins: ${...encoder.in_size}
|
| 52 |
-
shuffle_tokens: false
|
| 53 |
-
n_vertices: 192
|
| 54 |
-
max_len: null
|
| 55 |
-
pad_idx: null
|
| 56 |
-
generation_steps: null
|
| 57 |
-
fusion: patch_concat
|
| 58 |
-
sinkhorn_iterations: 100
|
| 59 |
-
label_smoothing: 0.0
|
| 60 |
-
vertex_loss_weight: 1.0
|
| 61 |
-
perm_loss_weight: 10.0
|
| 62 |
batch_size: 16
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
method:
|
| 70 |
-
- acm
|
| 71 |
-
common_params:
|
| 72 |
-
init_data_level: 0.5
|
| 73 |
-
simple_method:
|
| 74 |
-
data_level: 0.5
|
| 75 |
-
tolerance:
|
| 76 |
-
- 1.0
|
| 77 |
-
seg_threshold: 0.5
|
| 78 |
-
min_area: 10
|
| 79 |
-
asm_method:
|
| 80 |
-
init_method: skeleton
|
| 81 |
-
data_level: 0.5
|
| 82 |
-
loss_params:
|
| 83 |
-
coefs:
|
| 84 |
-
step_thresholds:
|
| 85 |
-
- 0
|
| 86 |
-
- 100
|
| 87 |
-
- 200
|
| 88 |
-
- 300
|
| 89 |
-
data:
|
| 90 |
-
- 1.0
|
| 91 |
-
- 0.1
|
| 92 |
-
- 0.0
|
| 93 |
-
- 0.0
|
| 94 |
-
crossfield:
|
| 95 |
-
- 0.0
|
| 96 |
-
- 0.05
|
| 97 |
-
- 0.0
|
| 98 |
-
- 0.0
|
| 99 |
-
length:
|
| 100 |
-
- 0.1
|
| 101 |
-
- 0.01
|
| 102 |
-
- 0.0
|
| 103 |
-
- 0.0
|
| 104 |
-
curvature:
|
| 105 |
-
- 0.0
|
| 106 |
-
- 0.0
|
| 107 |
-
- 1.0
|
| 108 |
-
- 0.0
|
| 109 |
-
corner:
|
| 110 |
-
- 0.0
|
| 111 |
-
- 0.0
|
| 112 |
-
- 0.5
|
| 113 |
-
- 0.0
|
| 114 |
-
junction:
|
| 115 |
-
- 0.0
|
| 116 |
-
- 0.0
|
| 117 |
-
- 0.5
|
| 118 |
-
- 0.0
|
| 119 |
-
curvature_dissimilarity_threshold: 2
|
| 120 |
-
corner_angles:
|
| 121 |
-
- 45
|
| 122 |
-
- 90
|
| 123 |
-
- 135
|
| 124 |
-
corner_angle_threshold: 22.5
|
| 125 |
-
junction_angles:
|
| 126 |
-
- 0
|
| 127 |
-
- 45
|
| 128 |
-
- 90
|
| 129 |
-
- 135
|
| 130 |
-
junction_angle_weights:
|
| 131 |
-
- 1
|
| 132 |
-
- 0.01
|
| 133 |
-
- 0.1
|
| 134 |
-
- 0.01
|
| 135 |
-
junction_angle_threshold: 22.5
|
| 136 |
-
lr: 0.1
|
| 137 |
-
gamma: 0.995
|
| 138 |
-
device: cuda
|
| 139 |
-
tolerance:
|
| 140 |
-
- 1
|
| 141 |
-
seg_threshold: 0.5
|
| 142 |
-
min_area: 10
|
| 143 |
-
acm_method:
|
| 144 |
-
steps: 500
|
| 145 |
-
data_level: 0.5
|
| 146 |
-
data_coef: 0.1
|
| 147 |
-
length_coef: 0.4
|
| 148 |
-
crossfield_coef: 0.5
|
| 149 |
-
poly_lr: 0.01
|
| 150 |
-
warmup_iters: 100
|
| 151 |
-
warmup_factor: 0.1
|
| 152 |
-
device: cuda
|
| 153 |
-
tolerance:
|
| 154 |
-
- 1
|
| 155 |
-
seg_threshold: 0.5
|
| 156 |
-
min_area: 10
|
| 157 |
dataset:
|
| 158 |
-
name:
|
| 159 |
-
size: ${..encoder.in_size}
|
| 160 |
-
path: ${host.data_root}/${.
|
| 161 |
annotations:
|
| 162 |
-
train: ${..path}/
|
| 163 |
-
val: ${..path}/
|
| 164 |
-
test: ${..path}/
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
train_subset: ${..run_type.train_subset}
|
| 166 |
val_subset: ${..run_type.val_subset}
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
modes:
|
| 203 |
- iou
|
| 204 |
-
experiments:
|
| 205 |
-
- model: ffl
|
| 206 |
-
experiment_name:
|
| 207 |
-
- 224/v3_image_vit_cnn_bs4x16
|
| 208 |
-
- 224/v3_lidar_pp_vit_cnn_bs2x16
|
| 209 |
-
- 224/fusion_vit_cnn_bs16
|
| 210 |
-
- model: hisup
|
| 211 |
-
experiment_name:
|
| 212 |
-
- 224/v3_image_hrnet224_bs4x16
|
| 213 |
-
- 224/v3_lidar_pp_vit_cnn_bs2x16
|
| 214 |
-
- 224/early_fusion_vit_cnn_bs16
|
| 215 |
-
- model: pix2poly
|
| 216 |
-
experiment_name:
|
| 217 |
-
- 224/image_only_bs4x16
|
| 218 |
-
- 224/lidar_only_bs2x16
|
| 219 |
-
- 224/fusion_bs2x16
|
| 220 |
eval_file: results/metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
host:
|
| 2 |
+
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
+
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
+
run_type:
|
| 10 |
+
name: debug
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
+
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
+
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
+
test_subset: ${..run_type.test_subset}
|
| 33 |
+
experiment:
|
| 34 |
+
encoder:
|
| 35 |
+
name: pointpillars_vit
|
| 36 |
+
use_images: false
|
| 37 |
+
use_lidar: true
|
| 38 |
+
in_size: 224
|
| 39 |
+
in_height: ${.in_size}
|
| 40 |
+
in_width: ${.in_size}
|
| 41 |
+
in_voxel_size:
|
| 42 |
+
x: 8
|
| 43 |
+
'y': 8
|
| 44 |
+
z: 100
|
| 45 |
+
max_num_points_per_voxel: 64
|
| 46 |
+
max_num_voxels:
|
| 47 |
+
train: 784
|
| 48 |
+
test: 784
|
| 49 |
+
out_feature_width: 28
|
| 50 |
+
out_feature_height: 28
|
| 51 |
+
vit:
|
| 52 |
+
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 53 |
+
checkpoint_file: ${....host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 54 |
+
pretrained: true
|
| 55 |
+
patch_size: 8
|
| 56 |
+
patch_feature_size: 28
|
| 57 |
+
patch_feature_height: ${.patch_feature_size}
|
| 58 |
+
patch_feature_width: ${.patch_feature_size}
|
| 59 |
+
patch_feature_dim: 384
|
| 60 |
+
num_patches: 784
|
| 61 |
+
out_feature_dim: ${..model.decoder.in_feature_dim}
|
| 62 |
+
image_mean:
|
| 63 |
+
- 0.0
|
| 64 |
+
- 0.0
|
| 65 |
+
- 0.0
|
| 66 |
+
image_std:
|
| 67 |
+
- 1.0
|
| 68 |
+
- 1.0
|
| 69 |
+
- 1.0
|
| 70 |
+
image_max_pixel_value: 255.0
|
| 71 |
+
augmentations:
|
| 72 |
+
- D4
|
| 73 |
+
- ColorJitter
|
| 74 |
+
- GaussNoise
|
| 75 |
+
- Normalize
|
| 76 |
+
model:
|
| 77 |
+
name: pix2poly
|
| 78 |
+
decoder:
|
| 79 |
+
in_feature_size: ${...encoder.patch_feature_size}
|
| 80 |
+
in_feature_width: ${.in_feature_size}
|
| 81 |
+
in_feature_height: ${.in_feature_size}
|
| 82 |
+
in_feature_dim: 256
|
| 83 |
+
tokenizer:
|
| 84 |
+
num_bins: ${...encoder.in_size}
|
| 85 |
+
shuffle_tokens: false
|
| 86 |
+
n_vertices: 192
|
| 87 |
+
max_len: null
|
| 88 |
+
pad_idx: null
|
| 89 |
+
generation_steps: null
|
| 90 |
+
fusion: patch_concat
|
| 91 |
+
sinkhorn_iterations: 100
|
| 92 |
+
label_smoothing: 0.0
|
| 93 |
+
vertex_loss_weight: 1.0
|
| 94 |
+
perm_loss_weight: 10.0
|
| 95 |
+
batch_size: ${...run_type.batch_size}
|
| 96 |
+
start_epoch: 0
|
| 97 |
+
num_epochs: 200
|
| 98 |
+
milestone: 0
|
| 99 |
+
learning_rate: 0.0003
|
| 100 |
+
weight_decay: 0.0001
|
| 101 |
+
name: lidar_pp_vit_bs2x16_mnv64
|
| 102 |
+
group_name: v2_${.model.name}
|
| 103 |
+
country: CH
|
| 104 |
+
training:
|
| 105 |
+
save_best: true
|
| 106 |
+
save_latest: true
|
| 107 |
+
save_every: 10
|
| 108 |
+
val_every: 1
|
| 109 |
+
best_val_loss: 10000000.0
|
| 110 |
+
best_val_iou: 0.0
|
| 111 |
+
evaluation:
|
| 112 |
+
split: val
|
| 113 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 114 |
modes:
|
| 115 |
- iou
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
eval_file: results/metrics
|
| 117 |
+
experiment.name: debug
|
| 118 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 119 |
+
checkpoint: best_val_iou
|
| 120 |
+
num_workers: ${.run_type.num_workers}
|
| 121 |
+
lidar_file: demo_data/lidar0_CH_val.copc.laz
|
pix2poly/224/lidar_pp_vit_bs2x16_mnv64/.hydra/hydra.yaml
CHANGED
|
@@ -112,20 +112,15 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
-
|
| 116 |
-
- host=
|
| 117 |
-
-
|
| 118 |
-
-
|
| 119 |
-
-
|
| 120 |
-
- checkpoint=null
|
| 121 |
-
- model.batch_size=16
|
| 122 |
-
- encoder=pointpillars_vit
|
| 123 |
-
- model=pix2poly
|
| 124 |
-
- model.num_epochs=200
|
| 125 |
job:
|
| 126 |
-
name:
|
| 127 |
chdir: null
|
| 128 |
-
override_dirname:
|
| 129 |
id: ???
|
| 130 |
num: ???
|
| 131 |
config_name: config
|
|
@@ -139,25 +134,27 @@ hydra:
|
|
| 139 |
runtime:
|
| 140 |
version: 1.3.2
|
| 141 |
version_base: '1.3'
|
| 142 |
-
cwd: /home/rsulzer/
|
| 143 |
config_sources:
|
| 144 |
- path: hydra.conf
|
| 145 |
schema: pkg
|
| 146 |
provider: hydra
|
| 147 |
-
- path: /home/rsulzer/
|
| 148 |
schema: file
|
| 149 |
provider: main
|
| 150 |
- path: ''
|
| 151 |
schema: structured
|
| 152 |
provider: schema
|
| 153 |
-
output_dir: /
|
| 154 |
choices:
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
| 161 |
hydra/env: default
|
| 162 |
hydra/callbacks: null
|
| 163 |
hydra/job_logging: default
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
+
- host=gin
|
| 117 |
+
- checkpoint=best_val_iou
|
| 118 |
+
- experiment=p2p_lidar
|
| 119 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
job:
|
| 121 |
+
name: predict_demo
|
| 122 |
chdir: null
|
| 123 |
+
override_dirname: +lidar_file=demo_data/lidar0_CH_val.copc.laz,checkpoint=best_val_iou,experiment=p2p_lidar,host=gin,run_type=debug
|
| 124 |
id: ???
|
| 125 |
num: ???
|
| 126 |
config_name: config
|
|
|
|
| 134 |
runtime:
|
| 135 |
version: 1.3.2
|
| 136 |
version_base: '1.3'
|
| 137 |
+
cwd: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons
|
| 138 |
config_sources:
|
| 139 |
- path: hydra.conf
|
| 140 |
schema: pkg
|
| 141 |
provider: hydra
|
| 142 |
+
- path: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons/config
|
| 143 |
schema: file
|
| 144 |
provider: main
|
| 145 |
- path: ''
|
| 146 |
schema: structured
|
| 147 |
provider: schema
|
| 148 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/pix2poly/224/lidar_pp_vit_bs2x16_mnv64
|
| 149 |
choices:
|
| 150 |
+
evaluation: val
|
| 151 |
+
training: default
|
| 152 |
+
experiment: p2p_lidar
|
| 153 |
+
[email protected]: pix2poly
|
| 154 |
+
[email protected]: pointpillars_vit
|
| 155 |
+
dataset: p3
|
| 156 |
+
run_type: debug
|
| 157 |
+
host: gin
|
| 158 |
hydra/env: default
|
| 159 |
hydra/callbacks: null
|
| 160 |
hydra/job_logging: default
|
pix2poly/224/lidar_pp_vit_bs2x16_mnv64/.hydra/overrides.yaml
CHANGED
|
@@ -1,10 +1,5 @@
|
|
| 1 |
-
-
|
| 2 |
-
- host=
|
| 3 |
-
-
|
| 4 |
-
-
|
| 5 |
-
-
|
| 6 |
-
- checkpoint=null
|
| 7 |
-
- model.batch_size=16
|
| 8 |
-
- encoder=pointpillars_vit
|
| 9 |
-
- model=pix2poly
|
| 10 |
-
- model.num_epochs=200
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
+
- host=gin
|
| 3 |
+
- checkpoint=best_val_iou
|
| 4 |
+
- experiment=p2p_lidar
|
| 5 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pix2poly/224/lidar_pp_vit_bs2x16_mnv64/predict_demo.log
ADDED
|
File without changes
|
pix2poly/224/v0_all_bs4x16/.hydra/config.yaml
CHANGED
|
@@ -118,3 +118,5 @@ experiment.name: debug
|
|
| 118 |
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 119 |
checkpoint: null
|
| 120 |
num_workers: ${.run_type.num_workers}
|
|
|
|
|
|
|
|
|
| 118 |
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 119 |
checkpoint: null
|
| 120 |
num_workers: ${.run_type.num_workers}
|
| 121 |
+
image_file: demo_data/image0_CH_val.tif
|
| 122 |
+
lidar_file: demo_data/lidar0_CH_val.copc.laz
|
pix2poly/224/v0_all_bs4x16/.hydra/hydra.yaml
CHANGED
|
@@ -114,11 +114,12 @@ hydra:
|
|
| 114 |
task:
|
| 115 |
- run_type=debug
|
| 116 |
- host=gin
|
| 117 |
-
-
|
|
|
|
| 118 |
job:
|
| 119 |
-
name:
|
| 120 |
chdir: null
|
| 121 |
-
override_dirname: host=gin,run_type
|
| 122 |
id: ???
|
| 123 |
num: ???
|
| 124 |
config_name: config
|
|
|
|
| 114 |
task:
|
| 115 |
- run_type=debug
|
| 116 |
- host=gin
|
| 117 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 118 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
| 119 |
job:
|
| 120 |
+
name: predict_demo
|
| 121 |
chdir: null
|
| 122 |
+
override_dirname: +image_file=demo_data/image0_CH_val.tif,+lidar_file=demo_data/lidar0_CH_val.copc.laz,host=gin,run_type=debug
|
| 123 |
id: ???
|
| 124 |
num: ???
|
| 125 |
config_name: config
|
pix2poly/224/v0_all_bs4x16/.hydra/overrides.yaml
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
- run_type=debug
|
| 2 |
- host=gin
|
| 3 |
-
-
|
|
|
|
|
|
| 1 |
- run_type=debug
|
| 2 |
- host=gin
|
| 3 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 4 |
+
- +lidar_file=demo_data/lidar0_CH_val.copc.laz
|
pix2poly/224/v0_all_bs4x16/predict_demo.log
ADDED
|
File without changes
|
pix2poly/224/v4_image_vit_bs4x16/.hydra/config.yaml
CHANGED
|
@@ -1,125 +1,42 @@
|
|
| 1 |
host:
|
| 2 |
-
name:
|
| 3 |
-
data_root: /
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
run_type:
|
| 6 |
-
name:
|
| 7 |
batch_size: 16
|
| 8 |
-
train_subset:
|
| 9 |
-
val_subset:
|
| 10 |
-
test_subset:
|
| 11 |
-
logging:
|
| 12 |
-
num_workers:
|
| 13 |
-
log_to_wandb:
|
| 14 |
-
polygonization:
|
| 15 |
-
method:
|
| 16 |
-
- acm
|
| 17 |
-
common_params:
|
| 18 |
-
init_data_level: 0.5
|
| 19 |
-
simple_method:
|
| 20 |
-
data_level: 0.5
|
| 21 |
-
tolerance:
|
| 22 |
-
- 1.0
|
| 23 |
-
seg_threshold: 0.5
|
| 24 |
-
min_area: 10
|
| 25 |
-
asm_method:
|
| 26 |
-
init_method: skeleton
|
| 27 |
-
data_level: 0.5
|
| 28 |
-
loss_params:
|
| 29 |
-
coefs:
|
| 30 |
-
step_thresholds:
|
| 31 |
-
- 0
|
| 32 |
-
- 100
|
| 33 |
-
- 200
|
| 34 |
-
- 300
|
| 35 |
-
data:
|
| 36 |
-
- 1.0
|
| 37 |
-
- 0.1
|
| 38 |
-
- 0.0
|
| 39 |
-
- 0.0
|
| 40 |
-
crossfield:
|
| 41 |
-
- 0.0
|
| 42 |
-
- 0.05
|
| 43 |
-
- 0.0
|
| 44 |
-
- 0.0
|
| 45 |
-
length:
|
| 46 |
-
- 0.1
|
| 47 |
-
- 0.01
|
| 48 |
-
- 0.0
|
| 49 |
-
- 0.0
|
| 50 |
-
curvature:
|
| 51 |
-
- 0.0
|
| 52 |
-
- 0.0
|
| 53 |
-
- 1.0
|
| 54 |
-
- 0.0
|
| 55 |
-
corner:
|
| 56 |
-
- 0.0
|
| 57 |
-
- 0.0
|
| 58 |
-
- 0.5
|
| 59 |
-
- 0.0
|
| 60 |
-
junction:
|
| 61 |
-
- 0.0
|
| 62 |
-
- 0.0
|
| 63 |
-
- 0.5
|
| 64 |
-
- 0.0
|
| 65 |
-
curvature_dissimilarity_threshold: 2
|
| 66 |
-
corner_angles:
|
| 67 |
-
- 45
|
| 68 |
-
- 90
|
| 69 |
-
- 135
|
| 70 |
-
corner_angle_threshold: 22.5
|
| 71 |
-
junction_angles:
|
| 72 |
-
- 0
|
| 73 |
-
- 45
|
| 74 |
-
- 90
|
| 75 |
-
- 135
|
| 76 |
-
junction_angle_weights:
|
| 77 |
-
- 1
|
| 78 |
-
- 0.01
|
| 79 |
-
- 0.1
|
| 80 |
-
- 0.01
|
| 81 |
-
junction_angle_threshold: 22.5
|
| 82 |
-
lr: 0.1
|
| 83 |
-
gamma: 0.995
|
| 84 |
-
device: cuda
|
| 85 |
-
tolerance:
|
| 86 |
-
- 1
|
| 87 |
-
seg_threshold: 0.5
|
| 88 |
-
min_area: 10
|
| 89 |
-
acm_method:
|
| 90 |
-
steps: 500
|
| 91 |
-
data_level: 0.5
|
| 92 |
-
data_coef: 0.1
|
| 93 |
-
length_coef: 0.4
|
| 94 |
-
crossfield_coef: 0.5
|
| 95 |
-
poly_lr: 0.01
|
| 96 |
-
warmup_iters: 100
|
| 97 |
-
warmup_factor: 0.1
|
| 98 |
-
device: cuda
|
| 99 |
-
tolerance:
|
| 100 |
-
- 1
|
| 101 |
-
seg_threshold: 0.5
|
| 102 |
-
min_area: 10
|
| 103 |
dataset:
|
| 104 |
-
name:
|
| 105 |
size: ${..experiment.encoder.in_size}
|
| 106 |
-
path: ${host.data_root}/${.
|
| 107 |
annotations:
|
| 108 |
-
train: ${..path}/annotations_${...country}_train.json
|
| 109 |
-
val: ${..path}/annotations_${...country}_val.json
|
| 110 |
-
test: ${..path}/annotations_${...country}_test.json
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
train_subset: ${..run_type.train_subset}
|
| 112 |
val_subset: ${..run_type.val_subset}
|
| 113 |
test_subset: ${..run_type.test_subset}
|
| 114 |
-
augmentations:
|
| 115 |
-
- D4
|
| 116 |
experiment:
|
| 117 |
encoder:
|
| 118 |
name: vit
|
| 119 |
use_images: true
|
| 120 |
use_lidar: false
|
| 121 |
type: vit_small_patch${.patch_size}_${.in_size}.dino
|
| 122 |
-
checkpoint_file: ${...host.
|
| 123 |
pretrained: true
|
| 124 |
in_size: 224
|
| 125 |
in_height: ${.in_size}
|
|
@@ -172,28 +89,22 @@ experiment:
|
|
| 172 |
weight_decay: 0.0001
|
| 173 |
name: v4_image_vit_bs4x16
|
| 174 |
group_name: v2_${.model.name}
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
use_lidar: ${.experiment.encoder.use_lidar}
|
| 185 |
-
use_images: ${.experiment.encoder.use_images}
|
| 186 |
-
save_best: true
|
| 187 |
-
save_latest: true
|
| 188 |
-
save_every: 10
|
| 189 |
-
val_every: 1
|
| 190 |
-
best_val_loss: 10000000.0
|
| 191 |
-
best_val_iou: 0.0
|
| 192 |
-
eval:
|
| 193 |
split: val
|
| 194 |
-
pred_file: ${..output_dir}/
|
| 195 |
modes:
|
| 196 |
- iou
|
| 197 |
-
- polis
|
| 198 |
-
- mta
|
| 199 |
eval_file: results/metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
host:
|
| 2 |
+
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
+
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
run_type:
|
| 10 |
+
name: debug
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
+
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
test_subset: ${..run_type.test_subset}
|
|
|
|
|
|
|
| 33 |
experiment:
|
| 34 |
encoder:
|
| 35 |
name: vit
|
| 36 |
use_images: true
|
| 37 |
use_lidar: false
|
| 38 |
type: vit_small_patch${.patch_size}_${.in_size}.dino
|
| 39 |
+
checkpoint_file: ${...host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 40 |
pretrained: true
|
| 41 |
in_size: 224
|
| 42 |
in_height: ${.in_size}
|
|
|
|
| 89 |
weight_decay: 0.0001
|
| 90 |
name: v4_image_vit_bs4x16
|
| 91 |
group_name: v2_${.model.name}
|
| 92 |
+
country: CH
|
| 93 |
+
training:
|
| 94 |
+
save_best: true
|
| 95 |
+
save_latest: true
|
| 96 |
+
save_every: 10
|
| 97 |
+
val_every: 1
|
| 98 |
+
best_val_loss: 10000000.0
|
| 99 |
+
best_val_iou: 0.0
|
| 100 |
+
evaluation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
split: val
|
| 102 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 103 |
modes:
|
| 104 |
- iou
|
|
|
|
|
|
|
| 105 |
eval_file: results/metrics
|
| 106 |
+
experiment.name: debug
|
| 107 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 108 |
+
checkpoint: best_val_iou
|
| 109 |
+
num_workers: ${.run_type.num_workers}
|
| 110 |
+
image_file: demo_data/image0_CH_val.tif
|
pix2poly/224/v4_image_vit_bs4x16/.hydra/hydra.yaml
CHANGED
|
@@ -112,16 +112,15 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
-
|
| 116 |
-
- host=
|
| 117 |
-
-
|
| 118 |
-
- multi_gpu=true
|
| 119 |
-
- checkpoint=null
|
| 120 |
- experiment=p2p_image
|
|
|
|
| 121 |
job:
|
| 122 |
-
name:
|
| 123 |
chdir: null
|
| 124 |
-
override_dirname: checkpoint=
|
| 125 |
id: ???
|
| 126 |
num: ???
|
| 127 |
config_name: config
|
|
@@ -135,26 +134,27 @@ hydra:
|
|
| 135 |
runtime:
|
| 136 |
version: 1.3.2
|
| 137 |
version_base: '1.3'
|
| 138 |
-
cwd: /
|
| 139 |
config_sources:
|
| 140 |
- path: hydra.conf
|
| 141 |
schema: pkg
|
| 142 |
provider: hydra
|
| 143 |
-
- path: /
|
| 144 |
schema: file
|
| 145 |
provider: main
|
| 146 |
- path: ''
|
| 147 |
schema: structured
|
| 148 |
provider: schema
|
| 149 |
-
output_dir: /
|
| 150 |
choices:
|
|
|
|
|
|
|
| 151 |
experiment: p2p_image
|
| 152 |
[email protected]: pix2poly
|
| 153 |
[email protected]: vit
|
| 154 |
-
dataset:
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
host: jz
|
| 158 |
hydra/env: default
|
| 159 |
hydra/callbacks: null
|
| 160 |
hydra/job_logging: default
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
+
- host=gin
|
| 117 |
+
- checkpoint=best_val_iou
|
|
|
|
|
|
|
| 118 |
- experiment=p2p_image
|
| 119 |
+
- +image_file=demo_data/image0_CH_val.tif
|
| 120 |
job:
|
| 121 |
+
name: predict_demo
|
| 122 |
chdir: null
|
| 123 |
+
override_dirname: +image_file=demo_data/image0_CH_val.tif,checkpoint=best_val_iou,experiment=p2p_image,host=gin,run_type=debug
|
| 124 |
id: ???
|
| 125 |
num: ???
|
| 126 |
config_name: config
|
|
|
|
| 134 |
runtime:
|
| 135 |
version: 1.3.2
|
| 136 |
version_base: '1.3'
|
| 137 |
+
cwd: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons
|
| 138 |
config_sources:
|
| 139 |
- path: hydra.conf
|
| 140 |
schema: pkg
|
| 141 |
provider: hydra
|
| 142 |
+
- path: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons/config
|
| 143 |
schema: file
|
| 144 |
provider: main
|
| 145 |
- path: ''
|
| 146 |
schema: structured
|
| 147 |
provider: schema
|
| 148 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/pix2poly/224/v4_image_vit_bs4x16
|
| 149 |
choices:
|
| 150 |
+
evaluation: val
|
| 151 |
+
training: default
|
| 152 |
experiment: p2p_image
|
| 153 |
[email protected]: pix2poly
|
| 154 |
[email protected]: vit
|
| 155 |
+
dataset: p3
|
| 156 |
+
run_type: debug
|
| 157 |
+
host: gin
|
|
|
|
| 158 |
hydra/env: default
|
| 159 |
hydra/callbacks: null
|
| 160 |
hydra/job_logging: default
|
pix2poly/224/v4_image_vit_bs4x16/.hydra/overrides.yaml
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
-
-
|
| 2 |
-
- host=
|
| 3 |
-
-
|
| 4 |
-
- multi_gpu=true
|
| 5 |
-
- checkpoint=null
|
| 6 |
- experiment=p2p_image
|
|
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
+
- host=gin
|
| 3 |
+
- checkpoint=best_val_iou
|
|
|
|
|
|
|
| 4 |
- experiment=p2p_image
|
| 5 |
+
- +image_file=demo_data/image0_CH_val.tif
|
pix2poly/224/v4_image_vit_bs4x16/predict_demo.log
ADDED
|
File without changes
|