update readme
Browse files
README.md
CHANGED
|
@@ -18,6 +18,7 @@ tags:
|
|
| 18 |
- pointcloud
|
| 19 |
- multimodal
|
| 20 |
---
|
|
|
|
| 21 |
<div align="center">
|
| 22 |
<h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
|
| 23 |
<h3><align="center">Raphael Sulzer<sup>1,2</sup> Liuyun Duan<sup>1</sup>
|
|
@@ -27,7 +28,7 @@ tags:
|
|
| 27 |
<b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
|
| 28 |
</div>
|
| 29 |
|
| 30 |
-
## Abstract
|
| 31 |
|
| 32 |
<div align="justify">
|
| 33 |
We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 cm. While many existing datasets primarily focus on the image modality, P<sup>3</sup> offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P<sup>3</sup> dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons.
|
|
@@ -35,28 +36,425 @@ We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for bui
|
|
| 35 |
|
| 36 |
## Highlights
|
| 37 |
|
| 38 |
-
- A global, multimodal dataset of aerial images, aerial
|
| 39 |
-
- A library for training and evaluating state-of-the-art deep learning methods on the dataset
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
## Dataset
|
| 43 |
|
| 44 |
-
### Download
|
| 45 |
-
|
| 46 |
-
You can download the dataset at [huggingface.co/datasets/rsi/PixelsPointsPolygons](https://huggingface.co/datasets/rsi/PixelsPointsPolygons) .
|
| 47 |
-
|
| 48 |
-
|
| 49 |
### Overview
|
| 50 |
|
| 51 |
<div align="left">
|
| 52 |
<img src="./worldmap.jpg" width=60% height=50%>
|
| 53 |
</div>
|
| 54 |
|
|
|
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
## Code
|
| 62 |
|
|
@@ -66,9 +464,9 @@ See [datasets preprocessing](data_preprocess) for instructions on preparing a da
|
|
| 66 |
git clone https://github.com/raphaelsulzer/PixelsPointsPolygons
|
| 67 |
```
|
| 68 |
|
| 69 |
-
###
|
| 70 |
|
| 71 |
-
To create a conda environment named `
|
| 72 |
```
|
| 73 |
bash install.sh
|
| 74 |
```
|
|
@@ -97,50 +495,75 @@ pip install .
|
|
| 97 |
| Pix2Poly |\<pix2poly>| PointPillars (PP) + ViT | \<pp_vit> | | ✅ | 0.80 | 0.88 |
|
| 98 |
| Pix2Poly |\<pix2poly>| PP+ViT \& ViT | \<fusion_vit> | ✅ |✅ | 0.78 | 0.85 | -->
|
| 99 |
|
| 100 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
To view all available options run
|
| 104 |
```
|
| 105 |
-
python train.py --help
|
| 106 |
```
|
| 107 |
|
| 108 |
-
### Training
|
| 109 |
|
| 110 |
-
Start training with the following command:
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
|
|
|
| 114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
```
|
| 116 |
|
| 117 |
-
|
| 118 |
|
| 119 |
-
|
| 120 |
-
|
|
|
|
| 121 |
|
| 122 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
-
|
| 125 |
|
| 126 |
```
|
| 127 |
-
python
|
|
|
|
|
|
|
| 128 |
```
|
| 129 |
-
<!-- ## Trained models
|
| 130 |
|
| 131 |
-
|
| 132 |
|
|
|
|
| 133 |
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
## Citation
|
| 140 |
|
| 141 |
If you find our work useful, please consider citing:
|
| 142 |
```bibtex
|
| 143 |
-
|
| 144 |
```
|
| 145 |
|
| 146 |
## Acknowledgements
|
|
|
|
| 18 |
- pointcloud
|
| 19 |
- multimodal
|
| 20 |
---
|
| 21 |
+
|
| 22 |
<div align="center">
|
| 23 |
<h1 align="center">The P<sup>3</sup> dataset: Pixels, Points and Polygons <br> for Multimodal Building Vectorization</h1>
|
| 24 |
<h3><align="center">Raphael Sulzer<sup>1,2</sup> Liuyun Duan<sup>1</sup>
|
|
|
|
| 28 |
<b>Figure 1</b>: A view of our dataset of Zurich, Switzerland
|
| 29 |
</div>
|
| 30 |
|
| 31 |
+
## Abstract
|
| 32 |
|
| 33 |
<div align="justify">
|
| 34 |
We present the P<sup>3</sup> dataset, a large-scale multimodal benchmark for building vectorization, constructed from aerial LiDAR point clouds, high-resolution aerial imagery, and vectorized 2D building outlines, collected across three continents. The dataset contains over 10 billion LiDAR points with decimeter-level accuracy and RGB images at a ground sampling distance of 25 cm. While many existing datasets primarily focus on the image modality, P<sup>3</sup> offers a complementary perspective by also incorporating dense 3D information. We demonstrate that LiDAR point clouds serve as a robust modality for predicting building polygons, both in hybrid and end-to-end learning frameworks. Moreover, fusing aerial LiDAR and imagery further improves accuracy and geometric quality of predicted polygons. The P<sup>3</sup> dataset is publicly available, along with code and pretrained weights of three state-of-the-art models for building polygon prediction at https://github.com/raphaelsulzer/PixelsPointsPolygons.
|
|
|
|
| 36 |
|
| 37 |
## Highlights
|
| 38 |
|
| 39 |
+
- A global, multimodal dataset of aerial images, aerial LiDAR point clouds and building outline polygons, available at [huggingface.co/datasets/rsi/PixelsPointsPolygons](https://huggingface.co/datasets/rsi/PixelsPointsPolygons)
|
| 40 |
+
- A library for training and evaluating state-of-the-art deep learning methods on the dataset, available at [github.com/raphaelsulzer/PixelsPointsPolygons](https://github.com/raphaelsulzer/PixelsPointsPolygons)
|
| 41 |
+
- Pretrained model weights, available at [huggingface.co/rsi/PixelsPointsPolygons](https://huggingface.co/rsi/PixelsPointsPolygons)
|
| 42 |
|
| 43 |
|
| 44 |
## Dataset
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
### Overview
|
| 47 |
|
| 48 |
<div align="left">
|
| 49 |
<img src="./worldmap.jpg" width=60% height=50%>
|
| 50 |
</div>
|
| 51 |
|
| 52 |
+
### Download
|
| 53 |
|
| 54 |
+
```
|
| 55 |
+
git lfs install
|
| 56 |
+
git clone https://huggingface.co/datasets/rsi/PixelsPointsPolygons $DATA_ROOT
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
### Structure
|
| 60 |
+
|
| 61 |
+
<details>
|
| 62 |
+
<summary>📁 Click to expand folder structure</summary -->
|
| 63 |
+
|
| 64 |
+
```text
|
| 65 |
+
PixelsPointsPolygons/data/224
|
| 66 |
+
├── annotations
|
| 67 |
+
│ ├── annotations_all_test.json
|
| 68 |
+
│ ├── annotations_all_train.json
|
| 69 |
+
│ └── annotations_all_val.json
|
| 70 |
+
│ ... (24 files total)
|
| 71 |
+
├── images
|
| 72 |
+
│ ├── train
|
| 73 |
+
│ │ ├── CH
|
| 74 |
+
│ │ │ ├── 0
|
| 75 |
+
│ │ │ │ ├── image0_CH_train.tif
|
| 76 |
+
│ │ │ │ ├── image1000_CH_train.tif
|
| 77 |
+
│ │ │ │ └── image1001_CH_train.tif
|
| 78 |
+
│ │ │ │ ... (5000 files total)
|
| 79 |
+
│ │ │ ├── 5000
|
| 80 |
+
│ │ │ │ ├── image5000_CH_train.tif
|
| 81 |
+
│ │ │ │ ├── image5001_CH_train.tif
|
| 82 |
+
│ │ │ │ └── image5002_CH_train.tif
|
| 83 |
+
│ │ │ │ ... (5000 files total)
|
| 84 |
+
│ │ │ └── 10000
|
| 85 |
+
│ │ │ ├── image10000_CH_train.tif
|
| 86 |
+
│ │ │ ├── image10001_CH_train.tif
|
| 87 |
+
│ │ │ └── image10002_CH_train.tif
|
| 88 |
+
│ │ │ ... (5000 files total)
|
| 89 |
+
│ │ │ ... (11 dirs total)
|
| 90 |
+
│ │ ├── NY
|
| 91 |
+
│ │ │ ├── 0
|
| 92 |
+
│ │ │ │ ├── image0_NY_train.tif
|
| 93 |
+
│ │ │ │ ├── image1000_NY_train.tif
|
| 94 |
+
│ │ │ │ └── image1001_NY_train.tif
|
| 95 |
+
│ │ │ │ ... (5000 files total)
|
| 96 |
+
│ │ │ ├── 5000
|
| 97 |
+
│ │ │ │ ├── image5000_NY_train.tif
|
| 98 |
+
│ │ │ │ ├── image5001_NY_train.tif
|
| 99 |
+
│ │ │ │ └── image5002_NY_train.tif
|
| 100 |
+
│ │ │ │ ... (5000 files total)
|
| 101 |
+
│ │ │ └── 10000
|
| 102 |
+
│ │ │ ├── image10000_NY_train.tif
|
| 103 |
+
│ │ │ ├── image10001_NY_train.tif
|
| 104 |
+
│ │ │ └── image10002_NY_train.tif
|
| 105 |
+
│ │ │ ... (5000 files total)
|
| 106 |
+
│ │ │ ... (11 dirs total)
|
| 107 |
+
│ │ └── NZ
|
| 108 |
+
│ │ ├── 0
|
| 109 |
+
│ │ │ ├── image0_NZ_train.tif
|
| 110 |
+
│ │ │ ├── image1000_NZ_train.tif
|
| 111 |
+
│ │ │ └── image1001_NZ_train.tif
|
| 112 |
+
│ │ │ ... (5000 files total)
|
| 113 |
+
│ │ ├── 5000
|
| 114 |
+
│ │ │ ├── image5000_NZ_train.tif
|
| 115 |
+
│ │ │ ├── image5001_NZ_train.tif
|
| 116 |
+
│ │ │ └── image5002_NZ_train.tif
|
| 117 |
+
│ │ │ ... (5000 files total)
|
| 118 |
+
│ │ └── 10000
|
| 119 |
+
│ │ ├── image10000_NZ_train.tif
|
| 120 |
+
│ │ ├── image10001_NZ_train.tif
|
| 121 |
+
│ │ └── image10002_NZ_train.tif
|
| 122 |
+
│ │ ... (5000 files total)
|
| 123 |
+
│ │ ... (11 dirs total)
|
| 124 |
+
│ ├── val
|
| 125 |
+
│ │ ├── CH
|
| 126 |
+
│ │ │ └── 0
|
| 127 |
+
│ │ │ ├── image0_CH_val.tif
|
| 128 |
+
│ │ │ ├── image100_CH_val.tif
|
| 129 |
+
│ │ │ └── image101_CH_val.tif
|
| 130 |
+
│ │ │ ... (529 files total)
|
| 131 |
+
│ │ ├── NY
|
| 132 |
+
│ │ │ └── 0
|
| 133 |
+
│ │ │ ├── image0_NY_val.tif
|
| 134 |
+
│ │ │ ├── image100_NY_val.tif
|
| 135 |
+
│ │ │ └── image101_NY_val.tif
|
| 136 |
+
│ │ │ ... (529 files total)
|
| 137 |
+
│ │ └── NZ
|
| 138 |
+
│ │ └── 0
|
| 139 |
+
│ │ ├── image0_NZ_val.tif
|
| 140 |
+
│ │ ├── image100_NZ_val.tif
|
| 141 |
+
│ │ └── image101_NZ_val.tif
|
| 142 |
+
│ │ ... (529 files total)
|
| 143 |
+
│ └── test
|
| 144 |
+
│ ├── CH
|
| 145 |
+
│ │ ├── 0
|
| 146 |
+
│ │ │ ├── image0_CH_test.tif
|
| 147 |
+
│ │ │ ├── image1000_CH_test.tif
|
| 148 |
+
│ │ │ └── image1001_CH_test.tif
|
| 149 |
+
│ │ │ ... (5000 files total)
|
| 150 |
+
│ │ ├── 5000
|
| 151 |
+
│ │ │ ├── image5000_CH_test.tif
|
| 152 |
+
│ │ │ ├── image5001_CH_test.tif
|
| 153 |
+
│ │ │ └── image5002_CH_test.tif
|
| 154 |
+
│ │ │ ... (5000 files total)
|
| 155 |
+
│ │ └── 10000
|
| 156 |
+
│ │ ├── image10000_CH_test.tif
|
| 157 |
+
│ │ ├── image10001_CH_test.tif
|
| 158 |
+
│ │ └── image10002_CH_test.tif
|
| 159 |
+
│ │ ... (4400 files total)
|
| 160 |
+
│ ├── NY
|
| 161 |
+
│ │ ├── 0
|
| 162 |
+
│ │ │ ├── image0_NY_test.tif
|
| 163 |
+
│ │ │ ├── image1000_NY_test.tif
|
| 164 |
+
│ │ │ └── image1001_NY_test.tif
|
| 165 |
+
│ │ │ ... (5000 files total)
|
| 166 |
+
│ │ ├── 5000
|
| 167 |
+
│ │ │ ├── image5000_NY_test.tif
|
| 168 |
+
│ │ │ ├── image5001_NY_test.tif
|
| 169 |
+
│ │ │ └── image5002_NY_test.tif
|
| 170 |
+
│ │ │ ... (5000 files total)
|
| 171 |
+
│ │ └── 10000
|
| 172 |
+
│ │ ├── image10000_NY_test.tif
|
| 173 |
+
│ │ ├── image10001_NY_test.tif
|
| 174 |
+
│ │ └── image10002_NY_test.tif
|
| 175 |
+
│ │ ... (4400 files total)
|
| 176 |
+
│ └── NZ
|
| 177 |
+
│ ├── 0
|
| 178 |
+
│ │ ├── image0_NZ_test.tif
|
| 179 |
+
│ │ ├── image1000_NZ_test.tif
|
| 180 |
+
│ │ └── image1001_NZ_test.tif
|
| 181 |
+
│ │ ... (5000 files total)
|
| 182 |
+
│ ├── 5000
|
| 183 |
+
│ │ ├── image5000_NZ_test.tif
|
| 184 |
+
│ │ ├── image5001_NZ_test.tif
|
| 185 |
+
│ │ └── image5002_NZ_test.tif
|
| 186 |
+
│ │ ... (5000 files total)
|
| 187 |
+
│ └── 10000
|
| 188 |
+
│ ├── image10000_NZ_test.tif
|
| 189 |
+
│ ├── image10001_NZ_test.tif
|
| 190 |
+
│ └── image10002_NZ_test.tif
|
| 191 |
+
│ ... (4400 files total)
|
| 192 |
+
├── lidar
|
| 193 |
+
│ ├── train
|
| 194 |
+
│ │ ├── CH
|
| 195 |
+
│ │ │ ├── 0
|
| 196 |
+
│ │ │ │ ├── lidar0_CH_train.copc.laz
|
| 197 |
+
│ │ │ │ ├── lidar1000_CH_train.copc.laz
|
| 198 |
+
│ │ │ │ └── lidar1001_CH_train.copc.laz
|
| 199 |
+
│ │ │ │ ... (5000 files total)
|
| 200 |
+
│ │ │ ├── 5000
|
| 201 |
+
│ │ │ │ ├── lidar5000_CH_train.copc.laz
|
| 202 |
+
│ │ │ │ ├── lidar5001_CH_train.copc.laz
|
| 203 |
+
│ │ │ │ └── lidar5002_CH_train.copc.laz
|
| 204 |
+
│ │ │ │ ... (5000 files total)
|
| 205 |
+
│ │ │ └── 10000
|
| 206 |
+
│ │ │ ├── lidar10000_CH_train.copc.laz
|
| 207 |
+
│ │ │ ├── lidar10001_CH_train.copc.laz
|
| 208 |
+
│ │ │ └── lidar10002_CH_train.copc.laz
|
| 209 |
+
│ │ │ ... (5000 files total)
|
| 210 |
+
│ │ │ ... (11 dirs total)
|
| 211 |
+
│ │ ├── NY
|
| 212 |
+
│ │ │ ├── 0
|
| 213 |
+
│ │ │ │ ├── lidar0_NY_train.copc.laz
|
| 214 |
+
│ │ │ │ ├── lidar10_NY_train.copc.laz
|
| 215 |
+
│ │ │ │ └── lidar1150_NY_train.copc.laz
|
| 216 |
+
│ │ │ │ ... (1071 files total)
|
| 217 |
+
│ │ │ ├── 5000
|
| 218 |
+
│ │ │ │ ├── lidar5060_NY_train.copc.laz
|
| 219 |
+
│ │ │ │ ├── lidar5061_NY_train.copc.laz
|
| 220 |
+
│ │ │ │ └── lidar5062_NY_train.copc.laz
|
| 221 |
+
│ │ │ │ ... (2235 files total)
|
| 222 |
+
│ │ │ └── 10000
|
| 223 |
+
│ │ │ ├── lidar10000_NY_train.copc.laz
|
| 224 |
+
│ │ │ ├── lidar10001_NY_train.copc.laz
|
| 225 |
+
│ │ │ └── lidar10002_NY_train.copc.laz
|
| 226 |
+
│ │ │ ... (4552 files total)
|
| 227 |
+
│ │ │ ... (11 dirs total)
|
| 228 |
+
│ │ └── NZ
|
| 229 |
+
│ │ ├── 0
|
| 230 |
+
│ │ │ ├── lidar0_NZ_train.copc.laz
|
| 231 |
+
│ │ │ ├── lidar1000_NZ_train.copc.laz
|
| 232 |
+
│ │ │ └── lidar1001_NZ_train.copc.laz
|
| 233 |
+
│ │ │ ... (5000 files total)
|
| 234 |
+
│ │ ├── 5000
|
| 235 |
+
│ │ │ ├── lidar5000_NZ_train.copc.laz
|
| 236 |
+
│ │ │ ├── lidar5001_NZ_train.copc.laz
|
| 237 |
+
│ │ │ └── lidar5002_NZ_train.copc.laz
|
| 238 |
+
│ │ │ ... (5000 files total)
|
| 239 |
+
│ │ └── 10000
|
| 240 |
+
│ │ ├── lidar10000_NZ_train.copc.laz
|
| 241 |
+
│ │ ├── lidar10001_NZ_train.copc.laz
|
| 242 |
+
│ │ └── lidar10002_NZ_train.copc.laz
|
| 243 |
+
│ │ ... (4999 files total)
|
| 244 |
+
│ │ ... (11 dirs total)
|
| 245 |
+
│ ├── val
|
| 246 |
+
│ │ ├── CH
|
| 247 |
+
│ │ │ └── 0
|
| 248 |
+
│ │ │ ├── lidar0_CH_val.copc.laz
|
| 249 |
+
│ │ │ ├── lidar100_CH_val.copc.laz
|
| 250 |
+
│ │ │ └── lidar101_CH_val.copc.laz
|
| 251 |
+
│ │ │ ... (529 files total)
|
| 252 |
+
│ │ ├── NY
|
| 253 |
+
│ │ │ └── 0
|
| 254 |
+
│ │ │ ├── lidar0_NY_val.copc.laz
|
| 255 |
+
│ │ │ ├── lidar100_NY_val.copc.laz
|
| 256 |
+
│ │ │ └── lidar101_NY_val.copc.laz
|
| 257 |
+
│ │ │ ... (529 files total)
|
| 258 |
+
│ │ └── NZ
|
| 259 |
+
│ │ └── 0
|
| 260 |
+
│ │ ├── lidar0_NZ_val.copc.laz
|
| 261 |
+
│ │ ├── lidar100_NZ_val.copc.laz
|
| 262 |
+
│ │ └── lidar101_NZ_val.copc.laz
|
| 263 |
+
│ │ ... (529 files total)
|
| 264 |
+
│ └── test
|
| 265 |
+
│ ├── CH
|
| 266 |
+
│ │ ├── 0
|
| 267 |
+
│ │ │ ├── lidar0_CH_test.copc.laz
|
| 268 |
+
│ │ │ ├── lidar1000_CH_test.copc.laz
|
| 269 |
+
│ │ │ └── lidar1001_CH_test.copc.laz
|
| 270 |
+
│ │ │ ... (5000 files total)
|
| 271 |
+
│ │ ├── 5000
|
| 272 |
+
│ │ │ ├── lidar5000_CH_test.copc.laz
|
| 273 |
+
│ │ │ ├── lidar5001_CH_test.copc.laz
|
| 274 |
+
│ │ │ └── lidar5002_CH_test.copc.laz
|
| 275 |
+
│ │ │ ... (5000 files total)
|
| 276 |
+
│ │ └── 10000
|
| 277 |
+
│ │ ├── lidar10000_CH_test.copc.laz
|
| 278 |
+
│ │ ├── lidar10001_CH_test.copc.laz
|
| 279 |
+
│ │ └── lidar10002_CH_test.copc.laz
|
| 280 |
+
│ │ ... (4400 files total)
|
| 281 |
+
│ ├── NY
|
| 282 |
+
│ │ ├── 0
|
| 283 |
+
│ │ │ ├── lidar0_NY_test.copc.laz
|
| 284 |
+
│ │ │ ├── lidar1000_NY_test.copc.laz
|
| 285 |
+
│ │ │ └── lidar1001_NY_test.copc.laz
|
| 286 |
+
│ │ │ ... (4964 files total)
|
| 287 |
+
│ │ ├── 5000
|
| 288 |
+
│ │ │ ├── lidar5000_NY_test.copc.laz
|
| 289 |
+
│ │ │ ├── lidar5001_NY_test.copc.laz
|
| 290 |
+
│ │ │ └── lidar5002_NY_test.copc.laz
|
| 291 |
+
│ │ │ ... (4953 files total)
|
| 292 |
+
│ │ └── 10000
|
| 293 |
+
│ │ ├── lidar10000_NY_test.copc.laz
|
| 294 |
+
│ │ ├── lidar10001_NY_test.copc.laz
|
| 295 |
+
│ │ └── lidar10002_NY_test.copc.laz
|
| 296 |
+
│ │ ... (4396 files total)
|
| 297 |
+
│ └── NZ
|
| 298 |
+
│ ├── 0
|
| 299 |
+
│ │ ├── lidar0_NZ_test.copc.laz
|
| 300 |
+
│ │ ├── lidar1000_NZ_test.copc.laz
|
| 301 |
+
│ │ └── lidar1001_NZ_test.copc.laz
|
| 302 |
+
│ │ ... (5000 files total)
|
| 303 |
+
│ ├── 5000
|
| 304 |
+
│ │ ├── lidar5000_NZ_test.copc.laz
|
| 305 |
+
│ │ ├── lidar5001_NZ_test.copc.laz
|
| 306 |
+
│ │ └── lidar5002_NZ_test.copc.laz
|
| 307 |
+
│ │ ... (5000 files total)
|
| 308 |
+
│ └── 10000
|
| 309 |
+
│ ├── lidar10000_NZ_test.copc.laz
|
| 310 |
+
│ ├── lidar10001_NZ_test.copc.laz
|
| 311 |
+
│ └── lidar10002_NZ_test.copc.laz
|
| 312 |
+
│ ... (4400 files total)
|
| 313 |
+
└── ffl
|
| 314 |
+
├── train
|
| 315 |
+
│ ├── CH
|
| 316 |
+
│ │ ├── 0
|
| 317 |
+
│ │ │ ├── image0_CH_train.pt
|
| 318 |
+
│ │ │ ├── image1000_CH_train.pt
|
| 319 |
+
│ │ │ └── image1001_CH_train.pt
|
| 320 |
+
│ │ │ ... (5000 files total)
|
| 321 |
+
│ │ ├── 5000
|
| 322 |
+
│ │ │ ├── image5000_CH_train.pt
|
| 323 |
+
│ │ │ ├── image5001_CH_train.pt
|
| 324 |
+
│ │ │ └── image5002_CH_train.pt
|
| 325 |
+
│ │ │ ... (5000 files total)
|
| 326 |
+
│ │ └── 10000
|
| 327 |
+
│ │ ├── image10000_CH_train.pt
|
| 328 |
+
│ │ ├── image10001_CH_train.pt
|
| 329 |
+
│ │ └── image10002_CH_train.pt
|
| 330 |
+
│ │ ... (5000 files total)
|
| 331 |
+
│ │ ... (11 dirs total)
|
| 332 |
+
│ ├── NY
|
| 333 |
+
│ │ ├── 0
|
| 334 |
+
│ │ │ ├── image0_NY_train.pt
|
| 335 |
+
│ │ │ ├── image1000_NY_train.pt
|
| 336 |
+
│ │ │ └── image1001_NY_train.pt
|
| 337 |
+
│ │ │ ... (5000 files total)
|
| 338 |
+
│ │ ├── 5000
|
| 339 |
+
│ │ │ ├── image5000_NY_train.pt
|
| 340 |
+
│ │ │ ├── image5001_NY_train.pt
|
| 341 |
+
│ │ │ └── image5002_NY_train.pt
|
| 342 |
+
│ │ │ ... (5000 files total)
|
| 343 |
+
│ │ └── 10000
|
| 344 |
+
│ │ ├── image10000_NY_train.pt
|
| 345 |
+
│ │ ├── image10001_NY_train.pt
|
| 346 |
+
│ │ └── image10002_NY_train.pt
|
| 347 |
+
│ │ ... (5000 files total)
|
| 348 |
+
│ │ ... (11 dirs total)
|
| 349 |
+
│ ├── NZ
|
| 350 |
+
│ │ ├── 0
|
| 351 |
+
│ │ │ ├── image0_NZ_train.pt
|
| 352 |
+
│ │ │ ├── image1000_NZ_train.pt
|
| 353 |
+
│ │ │ └── image1001_NZ_train.pt
|
| 354 |
+
│ │ │ ... (5000 files total)
|
| 355 |
+
│ │ ├── 5000
|
| 356 |
+
│ │ │ ├── image5000_NZ_train.pt
|
| 357 |
+
│ │ │ ├── image5001_NZ_train.pt
|
| 358 |
+
│ │ │ └── image5002_NZ_train.pt
|
| 359 |
+
│ │ │ ... (5000 files total)
|
| 360 |
+
│ │ └── 10000
|
| 361 |
+
│ │ ├── image10000_NZ_train.pt
|
| 362 |
+
│ │ ├── image10001_NZ_train.pt
|
| 363 |
+
│ │ └── image10002_NZ_train.pt
|
| 364 |
+
│ │ ... (5000 files total)
|
| 365 |
+
│ │ ... (11 dirs total)
|
| 366 |
+
│ ├── processed-flag-all
|
| 367 |
+
│ ├── processed-flag-CH
|
| 368 |
+
│ └── processed-flag-NY
|
| 369 |
+
│ ... (8 files total)
|
| 370 |
+
├── val
|
| 371 |
+
│ ├── CH
|
| 372 |
+
│ │ └── 0
|
| 373 |
+
│ │ ├── image0_CH_val.pt
|
| 374 |
+
│ │ ├── image100_CH_val.pt
|
| 375 |
+
│ │ └── image101_CH_val.pt
|
| 376 |
+
│ │ ... (529 files total)
|
| 377 |
+
│ ├── NY
|
| 378 |
+
│ │ └── 0
|
| 379 |
+
│ │ ├── image0_NY_val.pt
|
| 380 |
+
│ │ ├── image100_NY_val.pt
|
| 381 |
+
│ │ └── image101_NY_val.pt
|
| 382 |
+
│ │ ... (529 files total)
|
| 383 |
+
│ ├── NZ
|
| 384 |
+
│ │ └── 0
|
| 385 |
+
│ │ ├── image0_NZ_val.pt
|
| 386 |
+
│ │ ├── image100_NZ_val.pt
|
| 387 |
+
│ │ └── image101_NZ_val.pt
|
| 388 |
+
│ │ ... (529 files total)
|
| 389 |
+
│ ├── processed-flag-all
|
| 390 |
+
│ ├── processed-flag-CH
|
| 391 |
+
│ └── processed-flag-NY
|
| 392 |
+
│ ... (8 files total)
|
| 393 |
+
└── test
|
| 394 |
+
├── CH
|
| 395 |
+
│ ├── 0
|
| 396 |
+
│ │ ├── image0_CH_test.pt
|
| 397 |
+
│ │ ├── image1000_CH_test.pt
|
| 398 |
+
│ │ └── image1001_CH_test.pt
|
| 399 |
+
│ │ ... (5000 files total)
|
| 400 |
+
│ ├── 5000
|
| 401 |
+
│ │ ├── image5000_CH_test.pt
|
| 402 |
+
│ │ ├── image5001_CH_test.pt
|
| 403 |
+
│ │ └── image5002_CH_test.pt
|
| 404 |
+
│ │ ... (5000 files total)
|
| 405 |
+
│ └── 10000
|
| 406 |
+
│ ├── image10000_CH_test.pt
|
| 407 |
+
│ ├── image10001_CH_test.pt
|
| 408 |
+
│ └── image10002_CH_test.pt
|
| 409 |
+
│ ... (4400 files total)
|
| 410 |
+
├── NY
|
| 411 |
+
│ ├── 0
|
| 412 |
+
│ │ ├── image0_NY_test.pt
|
| 413 |
+
│ │ ├── image1000_NY_test.pt
|
| 414 |
+
│ │ └── image1001_NY_test.pt
|
| 415 |
+
│ │ ... (5000 files total)
|
| 416 |
+
│ ├── 5000
|
| 417 |
+
│ │ ├── image5000_NY_test.pt
|
| 418 |
+
│ │ ├── image5001_NY_test.pt
|
| 419 |
+
│ │ └── image5002_NY_test.pt
|
| 420 |
+
│ │ ... (5000 files total)
|
| 421 |
+
│ └── 10000
|
| 422 |
+
│ ├── image10000_NY_test.pt
|
| 423 |
+
│ ├── image10001_NY_test.pt
|
| 424 |
+
│ └── image10002_NY_test.pt
|
| 425 |
+
│ ... (4400 files total)
|
| 426 |
+
├── NZ
|
| 427 |
+
│ ├── 0
|
| 428 |
+
│ │ ├── image0_NZ_test.pt
|
| 429 |
+
│ │ ├── image1000_NZ_test.pt
|
| 430 |
+
│ │ └── image1001_NZ_test.pt
|
| 431 |
+
│ │ ... (5000 files total)
|
| 432 |
+
│ ├── 5000
|
| 433 |
+
│ │ ├── image5000_NZ_test.pt
|
| 434 |
+
│ │ ├── image5001_NZ_test.pt
|
| 435 |
+
│ │ └── image5002_NZ_test.pt
|
| 436 |
+
│ │ ... (5000 files total)
|
| 437 |
+
│ └── 10000
|
| 438 |
+
│ ├── image10000_NZ_test.pt
|
| 439 |
+
│ ├── image10001_NZ_test.pt
|
| 440 |
+
│ └── image10002_NZ_test.pt
|
| 441 |
+
│ ... (4400 files total)
|
| 442 |
+
├── processed-flag-all
|
| 443 |
+
├── processed-flag-CH
|
| 444 |
+
└── processed-flag-NY
|
| 445 |
+
... (8 files total)
|
| 446 |
+
```
|
| 447 |
|
| 448 |
+
</details>
|
| 449 |
+
|
| 450 |
+
## Pretrained model weights
|
| 451 |
+
|
| 452 |
+
### Download
|
| 453 |
|
| 454 |
+
```
|
| 455 |
+
git lfs install
|
| 456 |
+
git clone https://huggingface.co/rsi/PixelsPointsPolygons $MODEL_ROOT
|
| 457 |
+
```
|
| 458 |
|
| 459 |
## Code
|
| 460 |
|
|
|
|
| 464 |
git clone https://github.com/raphaelsulzer/PixelsPointsPolygons
|
| 465 |
```
|
| 466 |
|
| 467 |
+
### Installation
|
| 468 |
|
| 469 |
+
To create a conda environment named `p3` and install the repository as a python package with all dependencies run
|
| 470 |
```
|
| 471 |
bash install.sh
|
| 472 |
```
|
|
|
|
| 495 |
| Pix2Poly |\<pix2poly>| PointPillars (PP) + ViT | \<pp_vit> | | ✅ | 0.80 | 0.88 |
|
| 496 |
| Pix2Poly |\<pix2poly>| PP+ViT \& ViT | \<fusion_vit> | ✅ |✅ | 0.78 | 0.85 | -->
|
| 497 |
|
| 498 |
+
### Setup
|
| 499 |
+
|
| 500 |
+
The project supports hydra configuration which allows to modify any parameter either from a `.yaml` file of directly from the command line.
|
| 501 |
+
|
| 502 |
+
To setup the project structure we recommend to specify your `$DATA_ROOT` and `$MODEL_ROOT` in `config/host/default.yaml`.
|
| 503 |
|
| 504 |
+
To view all available configuration options run
|
|
|
|
| 505 |
```
|
| 506 |
+
python scripts/train.py --help
|
| 507 |
```
|
| 508 |
|
|
|
|
| 509 |
|
|
|
|
| 510 |
|
| 511 |
+
<!-- The most important parameters are described below:
|
| 512 |
+
<details>
|
| 513 |
+
<summary>CLI Parameters</summary>
|
| 514 |
|
| 515 |
+
```text
|
| 516 |
+
├── processed-flag-all
|
| 517 |
+
├── processed-flag-CH
|
| 518 |
+
└── processed-flag-NY
|
| 519 |
+
... (8 files total)
|
| 520 |
```
|
| 521 |
|
| 522 |
+
</details> -->
|
| 523 |
|
| 524 |
+
### Predict a single tile
|
| 525 |
+
|
| 526 |
+
TODO
|
| 527 |
|
| 528 |
```
|
| 529 |
+
python scripts/predict_demo.py
|
| 530 |
+
```
|
| 531 |
+
|
| 532 |
+
### Reproduce paper results
|
| 533 |
|
| 534 |
+
To reproduce the results from the paper you can run any of the following commands
|
| 535 |
|
| 536 |
```
|
| 537 |
+
python scripts/modality_ablation.py
|
| 538 |
+
python scripts/lidar_density_ablation.py
|
| 539 |
+
python scripts/all_countries.py
|
| 540 |
```
|
|
|
|
| 541 |
|
| 542 |
+
### Custom training, prediction and evaluation
|
| 543 |
|
| 544 |
+
We recommend to first setup a custom `$EXP_FILE` in `config/experiment` following the structure of one of the existing experiment files, e.g. `ffl_fusion.yaml`. You can then run:
|
| 545 |
|
| 546 |
+
```
|
| 547 |
+
# train your model (on multiple GPUs)
|
| 548 |
+
torchrun --nproc_per_node=$NUM_GPU scripts/train.py experiment=$EXP_FILE
|
| 549 |
+
# predict the test set with your model (on multiple GPUs)
|
| 550 |
+
torchrun --nproc_per_node=$NUM_GPU scripts/predict.py evaluation=test checkpoint=best_val_iou
|
| 551 |
+
# evaluate your prediction of the test set
|
| 552 |
+
python scripts/evaluate.py model=<model> evaluation=test checkpoint=best_val_iou
|
| 553 |
+
```
|
| 554 |
|
| 555 |
+
You could also continue training from a provided pretrained model with
|
| 556 |
|
| 557 |
+
```
|
| 558 |
+
# train your model (on a single GPU)
|
| 559 |
+
python scripts/train.py experiment=p2p_fusion checkpoint=latest
|
| 560 |
+
```
|
| 561 |
|
| 562 |
## Citation
|
| 563 |
|
| 564 |
If you find our work useful, please consider citing:
|
| 565 |
```bibtex
|
| 566 |
+
TODO
|
| 567 |
```
|
| 568 |
|
| 569 |
## Acknowledgements
|
pix2poly/224/v0_all_bs4x16/.hydra/config.yaml
CHANGED
|
@@ -1,117 +1,32 @@
|
|
| 1 |
host:
|
| 2 |
-
name:
|
| 3 |
-
data_root: /
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
run_type:
|
| 6 |
-
name:
|
| 7 |
batch_size: 16
|
| 8 |
-
train_subset:
|
| 9 |
-
val_subset:
|
| 10 |
-
test_subset:
|
| 11 |
-
logging:
|
| 12 |
-
num_workers:
|
| 13 |
-
log_to_wandb:
|
| 14 |
-
polygonization:
|
| 15 |
-
method:
|
| 16 |
-
- acm
|
| 17 |
-
common_params:
|
| 18 |
-
init_data_level: 0.5
|
| 19 |
-
simple_method:
|
| 20 |
-
data_level: 0.5
|
| 21 |
-
tolerance:
|
| 22 |
-
- 1.0
|
| 23 |
-
seg_threshold: 0.5
|
| 24 |
-
min_area: 10
|
| 25 |
-
asm_method:
|
| 26 |
-
init_method: skeleton
|
| 27 |
-
data_level: 0.5
|
| 28 |
-
loss_params:
|
| 29 |
-
coefs:
|
| 30 |
-
step_thresholds:
|
| 31 |
-
- 0
|
| 32 |
-
- 100
|
| 33 |
-
- 200
|
| 34 |
-
- 300
|
| 35 |
-
data:
|
| 36 |
-
- 1.0
|
| 37 |
-
- 0.1
|
| 38 |
-
- 0.0
|
| 39 |
-
- 0.0
|
| 40 |
-
crossfield:
|
| 41 |
-
- 0.0
|
| 42 |
-
- 0.05
|
| 43 |
-
- 0.0
|
| 44 |
-
- 0.0
|
| 45 |
-
length:
|
| 46 |
-
- 0.1
|
| 47 |
-
- 0.01
|
| 48 |
-
- 0.0
|
| 49 |
-
- 0.0
|
| 50 |
-
curvature:
|
| 51 |
-
- 0.0
|
| 52 |
-
- 0.0
|
| 53 |
-
- 1.0
|
| 54 |
-
- 0.0
|
| 55 |
-
corner:
|
| 56 |
-
- 0.0
|
| 57 |
-
- 0.0
|
| 58 |
-
- 0.5
|
| 59 |
-
- 0.0
|
| 60 |
-
junction:
|
| 61 |
-
- 0.0
|
| 62 |
-
- 0.0
|
| 63 |
-
- 0.5
|
| 64 |
-
- 0.0
|
| 65 |
-
curvature_dissimilarity_threshold: 2
|
| 66 |
-
corner_angles:
|
| 67 |
-
- 45
|
| 68 |
-
- 90
|
| 69 |
-
- 135
|
| 70 |
-
corner_angle_threshold: 22.5
|
| 71 |
-
junction_angles:
|
| 72 |
-
- 0
|
| 73 |
-
- 45
|
| 74 |
-
- 90
|
| 75 |
-
- 135
|
| 76 |
-
junction_angle_weights:
|
| 77 |
-
- 1
|
| 78 |
-
- 0.01
|
| 79 |
-
- 0.1
|
| 80 |
-
- 0.01
|
| 81 |
-
junction_angle_threshold: 22.5
|
| 82 |
-
lr: 0.1
|
| 83 |
-
gamma: 0.995
|
| 84 |
-
device: cuda
|
| 85 |
-
tolerance:
|
| 86 |
-
- 1
|
| 87 |
-
seg_threshold: 0.5
|
| 88 |
-
min_area: 10
|
| 89 |
-
acm_method:
|
| 90 |
-
steps: 500
|
| 91 |
-
data_level: 0.5
|
| 92 |
-
data_coef: 0.1
|
| 93 |
-
length_coef: 0.4
|
| 94 |
-
crossfield_coef: 0.5
|
| 95 |
-
poly_lr: 0.01
|
| 96 |
-
warmup_iters: 100
|
| 97 |
-
warmup_factor: 0.1
|
| 98 |
-
device: cuda
|
| 99 |
-
tolerance:
|
| 100 |
-
- 1
|
| 101 |
-
seg_threshold: 0.5
|
| 102 |
-
min_area: 10
|
| 103 |
dataset:
|
| 104 |
-
name:
|
| 105 |
size: ${..experiment.encoder.in_size}
|
| 106 |
-
path: ${host.data_root}/${.
|
| 107 |
annotations:
|
| 108 |
-
train: ${..path}/annotations_${...country}_train.json
|
| 109 |
-
val: ${..path}/annotations_${...country}_val.json
|
| 110 |
-
test: ${..path}/annotations_${...country}_test.json
|
| 111 |
ffl_stats:
|
| 112 |
-
train: ${..path}/ffl/train/stats-${...country}.pt
|
| 113 |
-
val: ${..path}/ffl/val/stats-${...country}.pt
|
| 114 |
-
test: ${..path}/ffl/test/stats-${...country}.pt
|
| 115 |
train_subset: ${..run_type.train_subset}
|
| 116 |
val_subset: ${..run_type.val_subset}
|
| 117 |
test_subset: ${..run_type.test_subset}
|
|
@@ -135,7 +50,7 @@ experiment:
|
|
| 135 |
out_feature_height: 28
|
| 136 |
vit:
|
| 137 |
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 138 |
-
checkpoint_file: ${....host.
|
| 139 |
pretrained: true
|
| 140 |
patch_size: 8
|
| 141 |
patch_feature_size: 28
|
|
@@ -185,26 +100,21 @@ experiment:
|
|
| 185 |
weight_decay: 0.0001
|
| 186 |
name: v0_all_bs4x16
|
| 187 |
group_name: v2_${.model.name}
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
multi_gpu: true
|
| 198 |
-
device: cuda
|
| 199 |
-
log_to_wandb: true
|
| 200 |
-
num_workers: ${.run_type.num_workers}
|
| 201 |
-
update_pbar_every: ${.host.update_pbar_every}
|
| 202 |
-
country: all
|
| 203 |
-
use_lidar: ${.experiment.encoder.use_lidar}
|
| 204 |
-
use_images: ${.experiment.encoder.use_images}
|
| 205 |
-
eval:
|
| 206 |
split: val
|
| 207 |
-
pred_file: ${..output_dir}/predictions_${..country}_${.split}/${..checkpoint}.json
|
| 208 |
modes:
|
| 209 |
- iou
|
| 210 |
eval_file: results/metrics
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
host:
|
| 2 |
+
name: gin
|
| 3 |
+
data_root: /data/rsulzer/${..dataset.name}
|
| 4 |
+
model_root: /data/rsulzer/${..dataset.name}_output
|
| 5 |
+
multi_gpu: false
|
| 6 |
+
device: cuda
|
| 7 |
+
update_pbar_every: 1
|
| 8 |
+
ldof_exe: /user/rsulzer/home/cpp/line-DOF-metric/build/calculate_DoF
|
| 9 |
run_type:
|
| 10 |
+
name: debug
|
| 11 |
batch_size: 16
|
| 12 |
+
train_subset: 256
|
| 13 |
+
val_subset: 32
|
| 14 |
+
test_subset: 32
|
| 15 |
+
logging: DEBUG
|
| 16 |
+
num_workers: 0
|
| 17 |
+
log_to_wandb: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
dataset:
|
| 19 |
+
name: PixelsPointsPolygons
|
| 20 |
size: ${..experiment.encoder.in_size}
|
| 21 |
+
path: ${host.data_root}/data/${.size}
|
| 22 |
annotations:
|
| 23 |
+
train: ${..path}/annotations/annotations_${...experiment.country}_train.json
|
| 24 |
+
val: ${..path}/annotations/annotations_${...experiment.country}_val.json
|
| 25 |
+
test: ${..path}/annotations/annotations_${...experiment.country}_test.json
|
| 26 |
ffl_stats:
|
| 27 |
+
train: ${..path}/ffl/train/stats-${...experiment.country}.pt
|
| 28 |
+
val: ${..path}/ffl/val/stats-${...experiment.country}.pt
|
| 29 |
+
test: ${..path}/ffl/test/stats-${...experiment.country}.pt
|
| 30 |
train_subset: ${..run_type.train_subset}
|
| 31 |
val_subset: ${..run_type.val_subset}
|
| 32 |
test_subset: ${..run_type.test_subset}
|
|
|
|
| 50 |
out_feature_height: 28
|
| 51 |
vit:
|
| 52 |
type: vit_small_patch${..patch_size}_${..in_size}.dino
|
| 53 |
+
checkpoint_file: ${....host.model_root}/backbones/dino_deitsmall8_pretrain.pth
|
| 54 |
pretrained: true
|
| 55 |
patch_size: 8
|
| 56 |
patch_feature_size: 28
|
|
|
|
| 100 |
weight_decay: 0.0001
|
| 101 |
name: v0_all_bs4x16
|
| 102 |
group_name: v2_${.model.name}
|
| 103 |
+
country: all
|
| 104 |
+
training:
|
| 105 |
+
save_best: true
|
| 106 |
+
save_latest: true
|
| 107 |
+
save_every: 10
|
| 108 |
+
val_every: 1
|
| 109 |
+
best_val_loss: 10000000.0
|
| 110 |
+
best_val_iou: 0.0
|
| 111 |
+
evaluation:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
split: val
|
| 113 |
+
pred_file: ${..output_dir}/predictions_${..experiment.country}_${.split}/${..checkpoint}.json
|
| 114 |
modes:
|
| 115 |
- iou
|
| 116 |
eval_file: results/metrics
|
| 117 |
+
experiment.name: debug
|
| 118 |
+
output_dir: ${.host.model_root}/${.experiment.model.name}/${.experiment.encoder.in_size}/${.experiment.name}
|
| 119 |
+
checkpoint: null
|
| 120 |
+
num_workers: ${.run_type.num_workers}
|
pix2poly/224/v0_all_bs4x16/.hydra/hydra.yaml
CHANGED
|
@@ -112,18 +112,13 @@ hydra:
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
-
-
|
| 116 |
-
- host=
|
| 117 |
-
- run_type=
|
| 118 |
-
- multi_gpu=true
|
| 119 |
-
- checkpoint=null
|
| 120 |
-
- experiment=p2p_fusion
|
| 121 |
-
- experiment.name=v0_all_bs4x16
|
| 122 |
-
- country=all
|
| 123 |
job:
|
| 124 |
name: train
|
| 125 |
chdir: null
|
| 126 |
-
override_dirname:
|
| 127 |
id: ???
|
| 128 |
num: ???
|
| 129 |
config_name: config
|
|
@@ -137,26 +132,27 @@ hydra:
|
|
| 137 |
runtime:
|
| 138 |
version: 1.3.2
|
| 139 |
version_base: '1.3'
|
| 140 |
-
cwd: /
|
| 141 |
config_sources:
|
| 142 |
- path: hydra.conf
|
| 143 |
schema: pkg
|
| 144 |
provider: hydra
|
| 145 |
-
- path: /
|
| 146 |
schema: file
|
| 147 |
provider: main
|
| 148 |
- path: ''
|
| 149 |
schema: structured
|
| 150 |
provider: schema
|
| 151 |
-
output_dir: /
|
| 152 |
choices:
|
|
|
|
|
|
|
| 153 |
experiment: p2p_fusion
|
| 154 |
[email protected]: pix2poly
|
| 155 |
[email protected]: early_fusion_vit
|
| 156 |
-
dataset:
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
host: jz
|
| 160 |
hydra/env: default
|
| 161 |
hydra/callbacks: null
|
| 162 |
hydra/job_logging: default
|
|
|
|
| 112 |
hydra:
|
| 113 |
- hydra.mode=RUN
|
| 114 |
task:
|
| 115 |
+
- run_type=debug
|
| 116 |
+
- host=gin
|
| 117 |
+
- run_type.log_to_wandb=false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
job:
|
| 119 |
name: train
|
| 120 |
chdir: null
|
| 121 |
+
override_dirname: host=gin,run_type.log_to_wandb=false,run_type=debug
|
| 122 |
id: ???
|
| 123 |
num: ???
|
| 124 |
config_name: config
|
|
|
|
| 132 |
runtime:
|
| 133 |
version: 1.3.2
|
| 134 |
version_base: '1.3'
|
| 135 |
+
cwd: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons
|
| 136 |
config_sources:
|
| 137 |
- path: hydra.conf
|
| 138 |
schema: pkg
|
| 139 |
provider: hydra
|
| 140 |
+
- path: /run/netsop/u/home-sam/home/rsulzer/remote_python/pixelspointspolygons/config
|
| 141 |
schema: file
|
| 142 |
provider: main
|
| 143 |
- path: ''
|
| 144 |
schema: structured
|
| 145 |
provider: schema
|
| 146 |
+
output_dir: /data/rsulzer/PixelsPointsPolygons_output/pix2poly/224/v0_all_bs4x16
|
| 147 |
choices:
|
| 148 |
+
evaluation: val
|
| 149 |
+
training: default
|
| 150 |
experiment: p2p_fusion
|
| 151 |
[email protected]: pix2poly
|
| 152 |
[email protected]: early_fusion_vit
|
| 153 |
+
dataset: p3
|
| 154 |
+
run_type: debug
|
| 155 |
+
host: gin
|
|
|
|
| 156 |
hydra/env: default
|
| 157 |
hydra/callbacks: null
|
| 158 |
hydra/job_logging: default
|
pix2poly/224/v0_all_bs4x16/.hydra/overrides.yaml
CHANGED
|
@@ -1,8 +1,3 @@
|
|
| 1 |
-
-
|
| 2 |
-
- host=
|
| 3 |
-
- run_type=
|
| 4 |
-
- multi_gpu=true
|
| 5 |
-
- checkpoint=null
|
| 6 |
-
- experiment=p2p_fusion
|
| 7 |
-
- experiment.name=v0_all_bs4x16
|
| 8 |
-
- country=all
|
|
|
|
| 1 |
+
- run_type=debug
|
| 2 |
+
- host=gin
|
| 3 |
+
- run_type.log_to_wandb=false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|