Upload folder using huggingface_hub
Browse files- README.md +42 -0
- aesthetic_scorer.py +44 -0
- merges.txt +0 -0
- model.pt +3 -0
- preprocessor_config.json +28 -0
- requirements.txt +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +32 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Aesthetic Scorer
|
| 3 |
+
|
| 4 |
+
This model predicts 7 different aesthetic metrics for images:
|
| 5 |
+
- Overall aesthetic score
|
| 6 |
+
- Technical quality score
|
| 7 |
+
- Composition score
|
| 8 |
+
- Lighting score
|
| 9 |
+
- Color harmony score
|
| 10 |
+
- Depth of field score
|
| 11 |
+
- Content score
|
| 12 |
+
|
| 13 |
+
## Model Details
|
| 14 |
+
- Based on CLIP ViT-B/32 visual encoder
|
| 15 |
+
- Fine-tuned on the PARA dataset
|
| 16 |
+
- Returns scores between 0-5 for each aesthetic dimension
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
from transformers import CLIPProcessor
|
| 22 |
+
from aesthetic_scorer import AestheticScorer
|
| 23 |
+
import torch
|
| 24 |
+
from PIL import Image
|
| 25 |
+
|
| 26 |
+
# Load the model
|
| 27 |
+
processor = CLIPProcessor.from_pretrained("YOUR_USERNAME/aesthetic-scorer")
|
| 28 |
+
model = torch.load("YOUR_USERNAME/aesthetic-scorer/model.pt")
|
| 29 |
+
|
| 30 |
+
# Process an image
|
| 31 |
+
image = Image.open("your_image.jpg")
|
| 32 |
+
inputs = processor(images=image, return_tensors="pt")["pixel_values"]
|
| 33 |
+
|
| 34 |
+
# Get scores
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
scores = model(inputs)
|
| 37 |
+
|
| 38 |
+
# Print results
|
| 39 |
+
aesthetic_categories = ["Overall", "Quality", "Composition", "Lighting", "Color", "Depth of Field", "Content"]
|
| 40 |
+
for category, score in zip(aesthetic_categories, scores):
|
| 41 |
+
print(f"{category}: {score.item():.2f}/10")
|
| 42 |
+
```
|
aesthetic_scorer.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
class AestheticScorer(nn.Module):
|
| 5 |
+
'''
|
| 6 |
+
Fine-tuned CLIP model to predict aesthetic scores (e.g., light, depth, composition) based on the PARA dataset.
|
| 7 |
+
'''
|
| 8 |
+
def __init__(self, backbone):
|
| 9 |
+
super().__init__()
|
| 10 |
+
self.backbone = backbone
|
| 11 |
+
|
| 12 |
+
# Define the scoring heads
|
| 13 |
+
hidden_dim = backbone.config.hidden_size
|
| 14 |
+
self.aesthetic_head = nn.Sequential(
|
| 15 |
+
nn.Linear(hidden_dim, 1),
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
self.quality_head = nn.Sequential(
|
| 19 |
+
nn.Linear(hidden_dim, 1),
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
self.composition_head = nn.Sequential(
|
| 23 |
+
nn.Linear(hidden_dim, 1),
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
self.light_head = nn.Sequential(
|
| 27 |
+
nn.Linear(hidden_dim, 1),
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
self.color_head = nn.Sequential(
|
| 31 |
+
nn.Linear(hidden_dim, 1),
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
self.dof_head = nn.Sequential(
|
| 35 |
+
nn.Linear(hidden_dim, 1),
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
self.content_head = nn.Sequential(
|
| 39 |
+
nn.Linear(hidden_dim, 1),
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
def forward(self, pixel_values):
|
| 43 |
+
features = self.backbone(pixel_values).pooler_output
|
| 44 |
+
return self.aesthetic_head(features), self.quality_head(features), self.composition_head(features), self.light_head(features), self.color_head(features), self.dof_head(features), self.content_head(features)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59853d88e95c287d101bd692c876232f5cd4a860299060d370258ad68b36042d
|
| 3 |
+
size 349912662
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"crop_size": {
|
| 3 |
+
"height": 224,
|
| 4 |
+
"width": 224
|
| 5 |
+
},
|
| 6 |
+
"do_center_crop": true,
|
| 7 |
+
"do_convert_rgb": true,
|
| 8 |
+
"do_normalize": true,
|
| 9 |
+
"do_rescale": true,
|
| 10 |
+
"do_resize": true,
|
| 11 |
+
"image_mean": [
|
| 12 |
+
0.48145466,
|
| 13 |
+
0.4578275,
|
| 14 |
+
0.40821073
|
| 15 |
+
],
|
| 16 |
+
"image_processor_type": "CLIPImageProcessor",
|
| 17 |
+
"image_std": [
|
| 18 |
+
0.26862954,
|
| 19 |
+
0.26130258,
|
| 20 |
+
0.27577711
|
| 21 |
+
],
|
| 22 |
+
"processor_class": "CLIPProcessor",
|
| 23 |
+
"resample": 3,
|
| 24 |
+
"rescale_factor": 0.00392156862745098,
|
| 25 |
+
"size": {
|
| 26 |
+
"shortest_edge": 224
|
| 27 |
+
}
|
| 28 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=1.8.0
|
| 2 |
+
transformers>=4.11.0
|
| 3 |
+
pillow>=8.0.0
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|startoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<|endoftext|>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"49406": {
|
| 5 |
+
"content": "<|startoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"49407": {
|
| 13 |
+
"content": "<|endoftext|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
}
|
| 20 |
+
},
|
| 21 |
+
"bos_token": "<|startoftext|>",
|
| 22 |
+
"clean_up_tokenization_spaces": false,
|
| 23 |
+
"do_lower_case": true,
|
| 24 |
+
"eos_token": "<|endoftext|>",
|
| 25 |
+
"errors": "replace",
|
| 26 |
+
"extra_special_tokens": {},
|
| 27 |
+
"model_max_length": 77,
|
| 28 |
+
"pad_token": "<|endoftext|>",
|
| 29 |
+
"processor_class": "CLIPProcessor",
|
| 30 |
+
"tokenizer_class": "CLIPTokenizer",
|
| 31 |
+
"unk_token": "<|endoftext|>"
|
| 32 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|