--- license: apache-2.0 ---

FireRedTTS-2

Official PyTorch code for
FireRedTTS-2: Towards Long Conversational Speech Generation for Podcast and Chatbot

technical report version HF-model Apache-2.0
## Overview FireRedTTS‑2 is a long-form streaming TTS system for **multi-speaker dialogue generation**, delivering stable, natural speech with reliable speaker switching and context-aware prosody. ## Highlight🔥 - **Long Conversational Speech Generation**: It currently supports 3 minutes dialogues with 4 speakers and can be easily scaled to longer conversations with more speakers by extending training corpus. - **Multilingual Support**: It supports multiple languages including English, Chinese, Japanese, Korean, French, German, and Russian. Support zero-shot voice cloning for cross-lingual and code-switching scenarios. - **Ultra-Low Latency**: Building on the new **12.5Hz streaming** speech tokenizer, we employ a dual-transformer architecture that operates on a text–speech interleaved sequence, enabling flexible sentence-bysentence generation and reducing first-packet latency,Specifically, on an L20 GPU, our first-packet latency as low as 140ms while maintaining high-quality audio output. - **Strong Stability**:Our model achieves high similarity and low WER/CER in both monologue and dialogue tests. - **Random Timbre Generation**:Useful for creating ASR/speech interaction data. ## Demo Examples For more examples, see [demo page](https://fireredteam.github.io/demos/firered_tts_2/). ## News - [2025/09/12] 🔥 **We have added a UI tool to the dialogue generation.** - [2025/09/08] 🔥 We release the [pre-trained checkpoints](https://huggingface.co/FireRedTeam/FireRedTTS2) and inference code. - [2025/09/02] 🔥 We release the [technical report](https://arxiv.org/abs/2509.02020) and [demo page](https://fireredteam.github.io/demos/firered_tts_2/) ## Roadmap - [x] 2025/09 - [x] Release the pre-trained checkpoints and inference code. - [x] Add web UI tool. - [ ] 2025/10 - [ ] Release a base model with enhanced multilingual support. - [ ] **Provide fine-tuning code & tutorial for specific dialogue/multilingual data.** - [ ] **End-to-end text-to-blog pipeline.** ## Install & Model Download ### Clone and install - **Clone the repo** ``` sh git clone https://github.com/FireRedTeam/FireRedTTS2.git cd FireRedTTS2 ``` - **Create Conda env**: ``` sh conda create --name fireredtts2 python==3.11 conda activate fireredtts2 # Step 1. PyTorch Installation (if required) pip install torch==2.7.1 torchvision==0.22.1 torchaudio==2.7.1 --index-url https://download.pytorch.org/whl/cu126 # Step 2. Install Dependencies pip install -e . pip install -r requirements.txt ``` - **Model download** ```sh git lfs install git clone https://huggingface.co/FireRedTeam/FireRedTTS2 pretrained_models/FireRedTTS2 ``` ## Basic Usage **Dialogue Generation with Web UI** Generate dialogue through an easy-to-use web interface that supports both voice cloning and randomized voices. ```sh python gradio_demo.py --pretrained-dir "./pretrained_models/FireRedTTS2" ``` **Dialogue Generation** ```python import os import sys import torch import torchaudio from fireredtts2.fireredtts2 import FireRedTTS2 device = "cuda" fireredtts2 = FireRedTTS2( pretrained_dir="./pretrained_models/FireRedTTS2", gen_type="dialogue", device=device, ) text_list = [ "[S1]那可能说对对,没有去过美国来说去去看到美国线下。巴斯曼也好,沃尔玛也好,他们线下不管说,因为深圳出去的还是电子周边的会表达,会发现哇对这个价格真的是很高呀。都是卖三十五美金、四十美金,甚至一个手机壳,就是二十五美金开。", "[S2]对,没错,我每次都觉得不不可思议。我什么人会买三五十美金的手机壳?但是其实在在那个target啊,就塔吉特这种超级市场,大家都是这样的,定价也很多人买。", "[S1]对对,那这样我们再去看说亚马逊上面卖卖卖手机壳也好啊,贴膜也好,还包括说车窗也好,各种线材也好,大概就是七块九九或者说啊八块九九,这个价格才是卖的最多的啊。因为亚马逊的游戏规则限定的。如果说你卖七块九九以下,那你基本上是不赚钱的。", "[S2]那比如说呃除了这个可能去到海外这个调查,然后这个调研考察那肯定是最直接的了。那平时我知道你是刚才建立了一个这个叫做呃rean的这样的一个一个播客,它是一个英文的。然后平时你还听一些什么样的东西,或者是从哪里获取一些这个海外市场的一些信息呢?", "[S1]嗯,因为做做亚马逊的话呢,我们会关注很多行业内的东西。就比如说行业有什么样亚马逊有什么样新的游戏规则呀。呃,物流的价格有没有波动呀,包括说有没有什么新的评论的政策呀,广告有什么新的打法呀?那这些我们会会关关注很多行业内部的微信公众号呀,还包括去去查一些知乎专栏的文章呀,以及说我们周边有很多同行。那我们经常会坐在一起聊天,看看信息有什么共享。那这个是关注内内的一个方式。", ] prompt_wav_list = [ "examples/chat_prompt/zh/S1.flac", "examples/chat_prompt/zh/S2.flac", ] prompt_text_list = [ "[S1]啊,可能说更适合美国市场应该是什么样子。那这这个可能说当然如果说有有机会能亲身的去考察去了解一下,那当然是有更好的帮助。", "[S2]比如具体一点的,他觉得最大的一个跟他预想的不一样的是在什么地方。", ] all_audio = fireredtts2.generate_dialogue( text_list=text_list, prompt_wav_list=prompt_wav_list, prompt_text_list=prompt_text_list, temperature=0.9, topk=30, ) torchaudio.save("chat_clone.wav", all_audio, 24000) ``` **Monologue Generation** ```python import os import sys import torch import torchaudio from fireredtts2.fireredtts2 import FireRedTTS2 device = "cuda" lines = [ "Hello everyone, welcome to our newly launched FireRedTTS2. It supports multiple languages including English, Chinese, Japanese, Korean, French, German, and Russian. Additionally, this TTS model features long-context dialogue generation capabilities.", "如果你厌倦了千篇一律的AI音色,不满意于其他模型语言支持不够丰富,那么本项目将会成为你绝佳的工具。", "ランダムな話者と言語を選択して合成できます", "이는 많은 인공지능 시스템에 유용합니다. 예를 들어, 제가 다양한 음성 데이터를 대량으로 생성해 여러분의 ASR 모델이나 대화 모델에 풍부한 데이터를 제공할 수 있습니다.", "J'évolue constamment et j'espère pouvoir parler davantage de langues avec plus d'aisance à l'avenir.", ] fireredtts2 = FireRedTTS2( pretrained_dir="./pretrained_models/FireRedTTS2", gen_type="monologue", device=device, ) # random speaker for i in range(len(lines)): text = lines[i].strip() audio = fireredtts2.generate_monologue(text=text) # adjust temperature & topk # audio = fireredtts2.generate_monologue(text=text, temperature=0.8, topk=30) torchaudio.save(str(i) + ".wav", audio.cpu(), 24000) # # voice clone # for i in range(len(lines)): # text = lines[i].strip() # audio = fireredtts2.generate_monologue( # text=text, # prompt_wav=, # prompt_text=, # ) # torchaudio.save(str(i) + ".wav", audio.cpu(), 24000) ``` ## ⚠️ Usage Disclaimer ❗️❗️❗️❗️❗️❗️ - The project incorporates zero-shot voice cloning functionality; Please note that this capability is intended **solely for academic research purposes**. - **DO NOT** use this model for **ANY illegal activities**❗️❗️❗️❗️❗️❗️ - The developers assume no liability for any misuse of this model. - If you identify any instances of **abuse**, **misuse**, or **fraudulent** activities related to this project, **please report them to our team immediately.**