Subham Sekhar Sahoo
commited on
Upload DUO
Browse files- README.md +199 -0
- config.json +23 -0
- config.py +29 -0
- model.py +601 -0
- model.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "subbham/duo-distilled",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"DUO"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "config.DUOConfig",
|
| 8 |
+
"AutoModelForMaskedLM": "model.DUO"
|
| 9 |
+
},
|
| 10 |
+
"causal": false,
|
| 11 |
+
"cond_dim": 128,
|
| 12 |
+
"dropout": 0.1,
|
| 13 |
+
"hidden_dim": 768,
|
| 14 |
+
"model_length": 1024,
|
| 15 |
+
"model_type": "DUO",
|
| 16 |
+
"n_blocks": 12,
|
| 17 |
+
"n_heads": 12,
|
| 18 |
+
"return_dict": false,
|
| 19 |
+
"torch_dtype": "float32",
|
| 20 |
+
"transformers_version": "4.38.2",
|
| 21 |
+
"var_min": true,
|
| 22 |
+
"vocab_size": 50258
|
| 23 |
+
}
|
config.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class DUOConfig(transformers.PretrainedConfig):
|
| 5 |
+
"""Hugging Face configuration class for DUO."""
|
| 6 |
+
model_type = 'DUO'
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size: int = 50258,
|
| 11 |
+
model_length: int = 1024,
|
| 12 |
+
causal: bool = False,
|
| 13 |
+
hidden_dim: int = 768,
|
| 14 |
+
cond_dim: int = 129,
|
| 15 |
+
n_blocks: int = 12,
|
| 16 |
+
n_heads: int = 12,
|
| 17 |
+
dropout: float = 0.1,
|
| 18 |
+
var_min: bool = True,
|
| 19 |
+
** kwargs):
|
| 20 |
+
super().__init__(**kwargs)
|
| 21 |
+
self.causal = causal
|
| 22 |
+
self.vocab_size = vocab_size
|
| 23 |
+
self.model_length = model_length
|
| 24 |
+
self.hidden_dim = hidden_dim
|
| 25 |
+
self.cond_dim = cond_dim
|
| 26 |
+
self.n_blocks = n_blocks
|
| 27 |
+
self.n_heads = n_heads
|
| 28 |
+
self.dropout = dropout
|
| 29 |
+
self.var_min = var_min
|
model.py
ADDED
|
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import typing
|
| 3 |
+
|
| 4 |
+
import einops
|
| 5 |
+
import flash_attn
|
| 6 |
+
import flash_attn.layers.rotary
|
| 7 |
+
import huggingface_hub
|
| 8 |
+
import omegaconf
|
| 9 |
+
import torch
|
| 10 |
+
import torch.nn as nn
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import transformers
|
| 13 |
+
|
| 14 |
+
from .config import DUOConfig
|
| 15 |
+
|
| 16 |
+
# Flags required to enable jit fusion kernels
|
| 17 |
+
torch._C._jit_set_profiling_mode(False)
|
| 18 |
+
torch._C._jit_set_profiling_executor(False)
|
| 19 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
| 20 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def bias_dropout_add_scale(
|
| 24 |
+
x: torch.Tensor,
|
| 25 |
+
bias: typing.Optional[torch.Tensor],
|
| 26 |
+
scale: torch.Tensor,
|
| 27 |
+
residual: typing.Optional[torch.Tensor],
|
| 28 |
+
prob: float,
|
| 29 |
+
training: bool) -> torch.Tensor:
|
| 30 |
+
if bias is not None:
|
| 31 |
+
out = scale * F.dropout(x + bias, p=prob, training=training)
|
| 32 |
+
else:
|
| 33 |
+
out = scale * F.dropout(x, p=prob, training=training)
|
| 34 |
+
|
| 35 |
+
if residual is not None:
|
| 36 |
+
out = residual + out
|
| 37 |
+
return out
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_bias_dropout_add_scale(training):
|
| 41 |
+
def _bias_dropout_add(x, bias, scale, residual, prob):
|
| 42 |
+
return bias_dropout_add_scale(
|
| 43 |
+
x, bias, scale, residual, prob, training)
|
| 44 |
+
|
| 45 |
+
return _bias_dropout_add
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# function overload
|
| 49 |
+
def modulate(x: torch.Tensor,
|
| 50 |
+
shift: torch.Tensor,
|
| 51 |
+
scale: torch.Tensor) -> torch.Tensor:
|
| 52 |
+
return x * (1 + scale) + shift
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
@torch.jit.script
|
| 56 |
+
def bias_dropout_add_scale_fused_train(
|
| 57 |
+
x: torch.Tensor,
|
| 58 |
+
bias: typing.Optional[torch.Tensor],
|
| 59 |
+
scale: torch.Tensor,
|
| 60 |
+
residual: typing.Optional[torch.Tensor],
|
| 61 |
+
prob: float) -> torch.Tensor:
|
| 62 |
+
return bias_dropout_add_scale(
|
| 63 |
+
x, bias, scale, residual, prob, True)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
@torch.jit.script
|
| 67 |
+
def bias_dropout_add_scale_fused_inference(
|
| 68 |
+
x: torch.Tensor,
|
| 69 |
+
bias: typing.Optional[torch.Tensor],
|
| 70 |
+
scale: torch.Tensor,
|
| 71 |
+
residual: typing.Optional[torch.Tensor],
|
| 72 |
+
prob: float) -> torch.Tensor:
|
| 73 |
+
return bias_dropout_add_scale(
|
| 74 |
+
x, bias, scale, residual, prob, False)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
@torch.jit.script
|
| 78 |
+
def modulate_fused(x: torch.Tensor,
|
| 79 |
+
shift: torch.Tensor,
|
| 80 |
+
scale: torch.Tensor) -> torch.Tensor:
|
| 81 |
+
return modulate(x, shift, scale)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class Rotary(torch.nn.Module):
|
| 85 |
+
def __init__(self, dim, base=10_000):
|
| 86 |
+
super().__init__()
|
| 87 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 88 |
+
self.register_buffer('inv_freq', inv_freq)
|
| 89 |
+
self.seq_len_cached = None
|
| 90 |
+
self.cos_cached = None
|
| 91 |
+
self.sin_cached = None
|
| 92 |
+
|
| 93 |
+
def forward(self, x, seq_dim=1):
|
| 94 |
+
seq_len = x.shape[seq_dim]
|
| 95 |
+
if seq_len != self.seq_len_cached:
|
| 96 |
+
self.seq_len_cached = seq_len
|
| 97 |
+
t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq)
|
| 98 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq.clone())
|
| 99 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 100 |
+
# dims are: batch, seq_len, qkv, head, dim
|
| 101 |
+
self.cos_cached = emb.cos()[None, :, None, None, :].repeat(1,1,3,1,1)
|
| 102 |
+
self.sin_cached = emb.sin()[None, :, None, None, :].repeat(1,1,3,1,1)
|
| 103 |
+
# This makes the transformation on v an identity.
|
| 104 |
+
self.cos_cached[:,:,2,:,:].fill_(1.)
|
| 105 |
+
self.sin_cached[:,:,2,:,:].fill_(0.)
|
| 106 |
+
|
| 107 |
+
return self.cos_cached, self.sin_cached
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
def rotate_half(x):
|
| 111 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
| 112 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def split_and_apply_rotary_pos_emb(qkv, rotary_cos_sin):
|
| 116 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 117 |
+
cos, sin = rotary_cos_sin
|
| 118 |
+
cos = cos.to(qkv.dtype)
|
| 119 |
+
sin = sin.to(qkv.dtype)
|
| 120 |
+
cos = cos[0,:,0,0,:cos.shape[-1]//2]
|
| 121 |
+
sin = sin[0,:,0,0,:sin.shape[-1]//2]
|
| 122 |
+
q, k, v = qkv.chunk(3, dim=2)
|
| 123 |
+
q = flash_attn.layers.rotary.apply_rotary_emb_torch(
|
| 124 |
+
q.squeeze(dim=2), cos, sin)
|
| 125 |
+
k = flash_attn.layers.rotary.apply_rotary_emb_torch(
|
| 126 |
+
k.squeeze(dim=2), cos, sin)
|
| 127 |
+
v = v.squeeze(dim=2)
|
| 128 |
+
return q, k, v
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def apply_rotary_pos_emb(qkv, cos, sin):
|
| 132 |
+
cos = cos[0,:,0,0,:cos.shape[-1]//2]
|
| 133 |
+
sin = sin[0,:,0,0,:sin.shape[-1]//2]
|
| 134 |
+
return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def regular_attention_multi_headed(q, k, v):
|
| 138 |
+
# Assuming qkv is a tensor with shape [batch, seq_len, 3, num_heads, head_dim]
|
| 139 |
+
# where the 3 represents Q, K, V packed in that order
|
| 140 |
+
attention_output = F.scaled_dot_product_attention(
|
| 141 |
+
query=q.transpose(1, 2),
|
| 142 |
+
key=k.transpose(1, 2),
|
| 143 |
+
value=v.transpose(1, 2),
|
| 144 |
+
attn_mask=None,
|
| 145 |
+
dropout_p=0.0,
|
| 146 |
+
is_causal=False)
|
| 147 |
+
# [batch_size, seq_len, num_heads, head_dim]
|
| 148 |
+
attention_output = attention_output.transpose(1, 2)
|
| 149 |
+
return einops.rearrange(attention_output, 'b s h d -> b s (h d)')
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
#################################################################################
|
| 153 |
+
# Layers #
|
| 154 |
+
#################################################################################
|
| 155 |
+
class LayerNorm(nn.Module):
|
| 156 |
+
def __init__(self, dim):
|
| 157 |
+
super().__init__()
|
| 158 |
+
self.weight = nn.Parameter(torch.ones([dim]))
|
| 159 |
+
self.dim = dim
|
| 160 |
+
def forward(self, x):
|
| 161 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 162 |
+
x = F.layer_norm(x.float(), [self.dim])
|
| 163 |
+
return x * self.weight[None, None, :]
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def residual_linear(x, W, x_skip, residual_scale):
|
| 167 |
+
"""x_skip + residual_scale * W @ x"""
|
| 168 |
+
dim_out, dim_in = W.shape[0], W.shape[1]
|
| 169 |
+
return torch.addmm(
|
| 170 |
+
x_skip.view(-1, dim_out),
|
| 171 |
+
x.view(-1, dim_in),
|
| 172 |
+
W.T,
|
| 173 |
+
alpha=residual_scale).view(*x.shape[:-1], dim_out)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
#################################################################################
|
| 177 |
+
# Embedding Layers for Timesteps and Class Labels #
|
| 178 |
+
#################################################################################
|
| 179 |
+
class TimestepEmbedder(nn.Module):
|
| 180 |
+
"""
|
| 181 |
+
Embeds scalar timesteps into vector representations.
|
| 182 |
+
"""
|
| 183 |
+
def __init__(self, hidden_size, frequency_embedding_size=256):
|
| 184 |
+
super().__init__()
|
| 185 |
+
self.mlp = nn.Sequential(
|
| 186 |
+
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
| 187 |
+
nn.SiLU(),
|
| 188 |
+
nn.Linear(hidden_size, hidden_size, bias=True))
|
| 189 |
+
self.frequency_embedding_size = frequency_embedding_size
|
| 190 |
+
|
| 191 |
+
@staticmethod
|
| 192 |
+
def timestep_embedding(t, dim, max_period=10000):
|
| 193 |
+
"""
|
| 194 |
+
Create sinusoidal timestep embeddings.
|
| 195 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
| 196 |
+
These may be fractional.
|
| 197 |
+
:param dim: the dimension of the output.
|
| 198 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 199 |
+
:return: an (N, D) Tensor of positional embeddings.
|
| 200 |
+
"""
|
| 201 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 202 |
+
half = dim // 2
|
| 203 |
+
freqs = torch.exp(
|
| 204 |
+
- math.log(max_period)
|
| 205 |
+
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
| 206 |
+
/ half)
|
| 207 |
+
args = t[:, None].float() * freqs[None]
|
| 208 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 209 |
+
if dim % 2:
|
| 210 |
+
embedding = torch.cat(
|
| 211 |
+
[embedding,
|
| 212 |
+
torch.zeros_like(embedding[:, :1])], dim=-1)
|
| 213 |
+
return embedding
|
| 214 |
+
|
| 215 |
+
def forward(self, t):
|
| 216 |
+
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
| 217 |
+
t_emb = self.mlp(t_freq)
|
| 218 |
+
return t_emb
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class LabelEmbedder(nn.Module):
|
| 222 |
+
"""Embeds class labels into vector representations.
|
| 223 |
+
|
| 224 |
+
Also handles label dropout for classifier-free guidance.
|
| 225 |
+
"""
|
| 226 |
+
def __init__(self, num_classes, cond_size):
|
| 227 |
+
super().__init__()
|
| 228 |
+
self.embedding_table = nn.Embedding(num_classes + 1, cond_size)
|
| 229 |
+
self.num_classes = num_classes
|
| 230 |
+
|
| 231 |
+
# TODO think of initializing with 0.02 std deviation like in original DiT paper
|
| 232 |
+
|
| 233 |
+
def forward(self, labels):
|
| 234 |
+
embeddings = self.embedding_table(labels)
|
| 235 |
+
return embeddings
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
#################################################################################
|
| 239 |
+
# Core Model #
|
| 240 |
+
#################################################################################
|
| 241 |
+
|
| 242 |
+
class DDiTBlockCausal(nn.Module):
|
| 243 |
+
def __init__(self, dim, n_heads, mlp_ratio=4, dropout=0.1):
|
| 244 |
+
super().__init__()
|
| 245 |
+
self.n_heads = n_heads
|
| 246 |
+
|
| 247 |
+
self.norm1 = LayerNorm(dim)
|
| 248 |
+
self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
|
| 249 |
+
self.attn_out = nn.Linear(dim, dim, bias=False)
|
| 250 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 251 |
+
|
| 252 |
+
self.norm2 = LayerNorm(dim)
|
| 253 |
+
self.mlp = nn.Sequential(
|
| 254 |
+
nn.Linear(dim, mlp_ratio * dim, bias=True),
|
| 255 |
+
nn.GELU(approximate='tanh'),
|
| 256 |
+
nn.Linear(mlp_ratio * dim, dim, bias=True))
|
| 257 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 258 |
+
self.dropout = dropout
|
| 259 |
+
|
| 260 |
+
def _get_bias_dropout_scale(self):
|
| 261 |
+
if self.training:
|
| 262 |
+
return bias_dropout_add_scale_fused_train
|
| 263 |
+
else:
|
| 264 |
+
return bias_dropout_add_scale_fused_inference
|
| 265 |
+
|
| 266 |
+
def forward(self, x, rotary_cos_sin, **kwargs):
|
| 267 |
+
del kwargs
|
| 268 |
+
batch_size, seq_len = x.shape[0], x.shape[1]
|
| 269 |
+
|
| 270 |
+
bias_dropout_scale_fn = self._get_bias_dropout_scale()
|
| 271 |
+
|
| 272 |
+
# attention operation
|
| 273 |
+
x_skip = x
|
| 274 |
+
x = self.norm1(x)
|
| 275 |
+
|
| 276 |
+
qkv = self.attn_qkv(x)
|
| 277 |
+
qkv = einops.rearrange(
|
| 278 |
+
qkv,
|
| 279 |
+
'b s (three h d) -> b s three h d',
|
| 280 |
+
three=3,
|
| 281 |
+
h=self.n_heads)
|
| 282 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 283 |
+
cos, sin = rotary_cos_sin
|
| 284 |
+
qkv = apply_rotary_pos_emb(
|
| 285 |
+
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype)
|
| 286 |
+
)
|
| 287 |
+
qkv = einops.rearrange(qkv, 'b s ... -> (b s) ...')
|
| 288 |
+
cu_seqlens = torch.arange(
|
| 289 |
+
0, (batch_size + 1) * seq_len,
|
| 290 |
+
step=seq_len, dtype=torch.int32, device=qkv.device)
|
| 291 |
+
x = flash_attn.flash_attn_interface.flash_attn_varlen_qkvpacked_func(
|
| 292 |
+
qkv, cu_seqlens, seq_len, 0.0, causal=True)
|
| 293 |
+
|
| 294 |
+
x = einops.rearrange(x, '(b s) h d -> b s (h d)',
|
| 295 |
+
b=batch_size)
|
| 296 |
+
|
| 297 |
+
scale = torch.ones(1, device=x.device, dtype=x.dtype)
|
| 298 |
+
x = bias_dropout_scale_fn(
|
| 299 |
+
self.attn_out(x), None, scale, x_skip, self.dropout)
|
| 300 |
+
|
| 301 |
+
# mlp operation
|
| 302 |
+
x = bias_dropout_scale_fn(
|
| 303 |
+
self.mlp(self.norm2(x)), None, scale, x, self.dropout)
|
| 304 |
+
return x
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class DDiTBlock(nn.Module):
|
| 309 |
+
def __init__(self, dim, n_heads, adaLN,
|
| 310 |
+
cond_dim=None, mlp_ratio=4,
|
| 311 |
+
dropout=0.1):
|
| 312 |
+
super().__init__()
|
| 313 |
+
self.n_heads = n_heads
|
| 314 |
+
self.adaLN = adaLN
|
| 315 |
+
|
| 316 |
+
self.norm1 = LayerNorm(dim)
|
| 317 |
+
self.attn_qkv = nn.Linear(dim, 3 * dim, bias=False)
|
| 318 |
+
self.attn_out = nn.Linear(dim, dim, bias=False)
|
| 319 |
+
self.dropout1 = nn.Dropout(dropout)
|
| 320 |
+
|
| 321 |
+
self.norm2 = LayerNorm(dim)
|
| 322 |
+
self.mlp = nn.Sequential(
|
| 323 |
+
nn.Linear(dim, mlp_ratio * dim, bias=True),
|
| 324 |
+
nn.GELU(approximate='tanh'),
|
| 325 |
+
nn.Linear(mlp_ratio * dim, dim, bias=True))
|
| 326 |
+
self.dropout2 = nn.Dropout(dropout)
|
| 327 |
+
self.dropout = dropout
|
| 328 |
+
|
| 329 |
+
if self.adaLN:
|
| 330 |
+
self.adaLN_modulation = nn.Linear(cond_dim, 6 * dim)
|
| 331 |
+
self.adaLN_modulation.weight.data.zero_()
|
| 332 |
+
self.adaLN_modulation.bias.data.zero_()
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_bias_dropout_scale(self):
|
| 336 |
+
if self.training:
|
| 337 |
+
return bias_dropout_add_scale_fused_train
|
| 338 |
+
else:
|
| 339 |
+
return bias_dropout_add_scale_fused_inference
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def forward(self, x, rotary_cos_sin, c=None):
|
| 343 |
+
|
| 344 |
+
bias_dropout_scale_fn = self._get_bias_dropout_scale()
|
| 345 |
+
|
| 346 |
+
x_skip = x
|
| 347 |
+
x = self.norm1(x)
|
| 348 |
+
|
| 349 |
+
if self.adaLN:
|
| 350 |
+
# self.adaLN_modulation(c): (128, 1536)
|
| 351 |
+
# self.adaLN_modulation(c)[:, None]: (128, 1, 1536)
|
| 352 |
+
# "" .chunk(6, dim=2) returns 6 tuples of shapes (128, 1, 256)
|
| 353 |
+
(shift_msa, scale_msa, gate_msa, shift_mlp,
|
| 354 |
+
scale_mlp, gate_mlp) = self.adaLN_modulation(c)[:, None].chunk(6, dim=2)
|
| 355 |
+
x = modulate_fused(x, shift_msa, scale_msa)
|
| 356 |
+
|
| 357 |
+
qkv = einops.rearrange(
|
| 358 |
+
self.attn_qkv(x),
|
| 359 |
+
'b s (three h d) -> b s three h d',
|
| 360 |
+
three=3,
|
| 361 |
+
h=self.n_heads)
|
| 362 |
+
q, k, v = split_and_apply_rotary_pos_emb(qkv, rotary_cos_sin)
|
| 363 |
+
|
| 364 |
+
x = regular_attention_multi_headed(q, k, v)
|
| 365 |
+
|
| 366 |
+
if self.adaLN:
|
| 367 |
+
x = bias_dropout_scale_fn(self.attn_out(x),
|
| 368 |
+
None,
|
| 369 |
+
gate_msa,
|
| 370 |
+
x_skip,
|
| 371 |
+
self.dropout)
|
| 372 |
+
x = bias_dropout_scale_fn(
|
| 373 |
+
self.mlp(modulate_fused(
|
| 374 |
+
self.norm2(x), shift_mlp, scale_mlp)),
|
| 375 |
+
None, gate_mlp, x, self.dropout)
|
| 376 |
+
else:
|
| 377 |
+
scale = torch.ones(1, device=x.device, dtype=x.dtype)
|
| 378 |
+
x = bias_dropout_scale_fn(
|
| 379 |
+
self.attn_out(x), None, scale, x_skip, self.dropout)
|
| 380 |
+
x = bias_dropout_scale_fn(
|
| 381 |
+
self.mlp(self.norm2(x)), None, scale, x, self.dropout)
|
| 382 |
+
return x
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
class EmbeddingLayer(nn.Module):
|
| 386 |
+
def __init__(self, dim, vocab_dim):
|
| 387 |
+
super().__init__()
|
| 388 |
+
self.embedding = nn.Parameter(torch.empty((vocab_dim, dim)))
|
| 389 |
+
torch.nn.init.kaiming_uniform_(self.embedding, a=math.sqrt(5))
|
| 390 |
+
|
| 391 |
+
def forward(self, x):
|
| 392 |
+
if x.ndim == 2:
|
| 393 |
+
return self.embedding[x]
|
| 394 |
+
assert x.ndim == 3
|
| 395 |
+
return torch.einsum(
|
| 396 |
+
"blv,ve->ble",
|
| 397 |
+
torch.nn.functional.softmax(x, dim=-1).float(),
|
| 398 |
+
self.embedding.float()).to(x.dtype)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
class DDiTFinalLayer(nn.Module):
|
| 402 |
+
def __init__(self, hidden_size, out_channels, cond_dim,
|
| 403 |
+
adaLN):
|
| 404 |
+
super().__init__()
|
| 405 |
+
self.norm_final = LayerNorm(hidden_size)
|
| 406 |
+
self.linear = nn.Linear(hidden_size, out_channels)
|
| 407 |
+
self.linear.weight.data.zero_()
|
| 408 |
+
self.linear.bias.data.zero_()
|
| 409 |
+
self.adaLN = adaLN
|
| 410 |
+
if self.adaLN:
|
| 411 |
+
self.adaLN_modulation = nn.Linear(cond_dim,
|
| 412 |
+
2 * hidden_size,
|
| 413 |
+
bias=True)
|
| 414 |
+
self.adaLN_modulation.weight.data.zero_()
|
| 415 |
+
self.adaLN_modulation.bias.data.zero_()
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def forward(self, x, c):
|
| 419 |
+
x = self.norm_final(x)
|
| 420 |
+
if self.adaLN:
|
| 421 |
+
shift, scale = self.adaLN_modulation(c)[:, None].chunk(2, dim=2)
|
| 422 |
+
x = modulate_fused(x, shift, scale)
|
| 423 |
+
x = self.linear(x)
|
| 424 |
+
return x
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
class DIT(nn.Module, huggingface_hub.PyTorchModelHubMixin):
|
| 428 |
+
def __init__(self, config, vocab_size: int):
|
| 429 |
+
super().__init__()
|
| 430 |
+
if type(config) == dict:
|
| 431 |
+
config = omegaconf.OmegaConf.create(config)
|
| 432 |
+
self.causal = config.algo.causal_attention
|
| 433 |
+
self.adaLN = not self.causal
|
| 434 |
+
self.config = config
|
| 435 |
+
self.vocab_size = vocab_size
|
| 436 |
+
dim = config.model.hidden_size
|
| 437 |
+
cond_dim = config.model.cond_dim
|
| 438 |
+
self.vocab_embed = EmbeddingLayer(dim, vocab_size)
|
| 439 |
+
if not self.causal:
|
| 440 |
+
self.sigma_map = TimestepEmbedder(cond_dim)
|
| 441 |
+
self.rotary_emb = Rotary(dim // config.model.n_heads)
|
| 442 |
+
|
| 443 |
+
blocks = []
|
| 444 |
+
for _ in range(config.model.n_blocks):
|
| 445 |
+
if self.causal:
|
| 446 |
+
block = DDiTBlockCausal(
|
| 447 |
+
dim=dim,
|
| 448 |
+
n_heads=config.model.n_heads,
|
| 449 |
+
dropout=config.model.dropout)
|
| 450 |
+
else:
|
| 451 |
+
block = DDiTBlock(
|
| 452 |
+
dim=dim,
|
| 453 |
+
n_heads=config.model.n_heads,
|
| 454 |
+
cond_dim=cond_dim,
|
| 455 |
+
adaLN=self.adaLN,
|
| 456 |
+
dropout=config.model.dropout)
|
| 457 |
+
blocks.append(block)
|
| 458 |
+
self.blocks = nn.ModuleList(blocks)
|
| 459 |
+
|
| 460 |
+
self.output_layer = DDiTFinalLayer(
|
| 461 |
+
hidden_size=dim,
|
| 462 |
+
out_channels=vocab_size,
|
| 463 |
+
cond_dim=cond_dim,
|
| 464 |
+
adaLN=self.adaLN)
|
| 465 |
+
self.scale_by_sigma = config.model.scale_by_sigma
|
| 466 |
+
|
| 467 |
+
def _get_bias_dropout_scale(self):
|
| 468 |
+
if self.training:
|
| 469 |
+
return bias_dropout_add_scale_fused_train
|
| 470 |
+
else:
|
| 471 |
+
return bias_dropout_add_scale_fused_inference
|
| 472 |
+
|
| 473 |
+
def forward(self, x, sigma):
|
| 474 |
+
x = self.vocab_embed(x)
|
| 475 |
+
if self.causal:
|
| 476 |
+
t_cond = None
|
| 477 |
+
else:
|
| 478 |
+
t_cond = F.silu(self.sigma_map(sigma))
|
| 479 |
+
|
| 480 |
+
rotary_cos_sin = self.rotary_emb(x)
|
| 481 |
+
|
| 482 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
| 483 |
+
for i in range(len(self.blocks)):
|
| 484 |
+
x = self.blocks[i](x, rotary_cos_sin, c=t_cond)
|
| 485 |
+
x = self.output_layer(x, c=t_cond)
|
| 486 |
+
|
| 487 |
+
return x
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
class HFDIT(torch.nn.Module):
|
| 492 |
+
def __init__(self, config):
|
| 493 |
+
super().__init__()
|
| 494 |
+
self.causal = config.causal
|
| 495 |
+
self.adaLN = not self.causal
|
| 496 |
+
self.vocab_size = config.vocab_size
|
| 497 |
+
dim = config.hidden_dim
|
| 498 |
+
cond_dim = config.cond_dim
|
| 499 |
+
self.vocab_embed = EmbeddingLayer(dim, self.vocab_size)
|
| 500 |
+
if not self.causal:
|
| 501 |
+
self.sigma_map = TimestepEmbedder(cond_dim)
|
| 502 |
+
self.rotary_emb = Rotary(dim // config.n_heads)
|
| 503 |
+
|
| 504 |
+
blocks = []
|
| 505 |
+
for _ in range(config.n_blocks):
|
| 506 |
+
if self.causal:
|
| 507 |
+
block = DDiTBlockCausal(
|
| 508 |
+
dim=dim,
|
| 509 |
+
n_heads=config.n_heads,
|
| 510 |
+
dropout=config.dropout)
|
| 511 |
+
else:
|
| 512 |
+
block = DDiTBlock(
|
| 513 |
+
dim=dim,
|
| 514 |
+
n_heads=config.n_heads,
|
| 515 |
+
cond_dim=cond_dim,
|
| 516 |
+
adaLN=self.adaLN,
|
| 517 |
+
dropout=config.dropout)
|
| 518 |
+
blocks.append(block)
|
| 519 |
+
self.blocks = torch.nn.ModuleList(blocks)
|
| 520 |
+
|
| 521 |
+
self.output_layer = DDiTFinalLayer(
|
| 522 |
+
hidden_size=dim,
|
| 523 |
+
out_channels=self.vocab_size,
|
| 524 |
+
cond_dim=cond_dim,
|
| 525 |
+
adaLN=self.adaLN)
|
| 526 |
+
|
| 527 |
+
def _get_bias_dropout_scale(self):
|
| 528 |
+
if self.training:
|
| 529 |
+
return bias_dropout_add_scale_fused_train
|
| 530 |
+
else:
|
| 531 |
+
return bias_dropout_add_scale_fused_inference
|
| 532 |
+
|
| 533 |
+
def forward(self, x, sigma, output_hidden_states=False):
|
| 534 |
+
all_hidden_states = []
|
| 535 |
+
x = self.vocab_embed(x)
|
| 536 |
+
if output_hidden_states:
|
| 537 |
+
all_hidden_states.append(x)
|
| 538 |
+
if self.causal:
|
| 539 |
+
t_cond = None
|
| 540 |
+
else:
|
| 541 |
+
t_cond = F.silu(self.sigma_map(sigma))
|
| 542 |
+
|
| 543 |
+
rotary_cos_sin = self.rotary_emb(x)
|
| 544 |
+
with torch.cuda.amp.autocast(
|
| 545 |
+
dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32):
|
| 546 |
+
for i in range(len(self.blocks)):
|
| 547 |
+
x = self.blocks[i](x, rotary_cos_sin, c=t_cond)
|
| 548 |
+
if output_hidden_states:
|
| 549 |
+
all_hidden_states.append(x)
|
| 550 |
+
x = self.output_layer(x, c=t_cond)
|
| 551 |
+
return x, all_hidden_states
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
class DUO(transformers.PreTrainedModel):
|
| 555 |
+
"""HF-compatible model."""
|
| 556 |
+
config_class = DUOConfig
|
| 557 |
+
base_model_prefix = 'duo'
|
| 558 |
+
|
| 559 |
+
def __init__(self, config: DUOConfig):
|
| 560 |
+
super().__init__(config)
|
| 561 |
+
self.config = config
|
| 562 |
+
self.backbone = HFDIT(config)
|
| 563 |
+
|
| 564 |
+
def reset_kv_cache(self):
|
| 565 |
+
for block in self.backbone.blocks:
|
| 566 |
+
block.kv_cache = None
|
| 567 |
+
|
| 568 |
+
def forward(
|
| 569 |
+
self,
|
| 570 |
+
input_ids: torch.LongTensor = None,
|
| 571 |
+
timesteps: torch.FloatTensor = None,
|
| 572 |
+
output_hidden_states: typing.Optional[bool] = None,
|
| 573 |
+
return_dict: typing.Optional[bool] = None,
|
| 574 |
+
) -> typing.Union[
|
| 575 |
+
torch.Tensor, typing.Tuple,
|
| 576 |
+
transformers.modeling_outputs.MaskedLMOutput]:
|
| 577 |
+
"""HF-compatible forward method."""
|
| 578 |
+
output_hidden_states = (
|
| 579 |
+
output_hidden_states
|
| 580 |
+
if output_hidden_states is not None
|
| 581 |
+
else self.config.output_hidden_states
|
| 582 |
+
)
|
| 583 |
+
return_dict = return_dict \
|
| 584 |
+
if return_dict is not None \
|
| 585 |
+
else self.config.use_return_dict
|
| 586 |
+
|
| 587 |
+
logits, all_hidden_states = self.backbone(
|
| 588 |
+
x=input_ids,
|
| 589 |
+
sigma=timesteps,
|
| 590 |
+
output_hidden_states=output_hidden_states,
|
| 591 |
+
)
|
| 592 |
+
if return_dict:
|
| 593 |
+
return transformers.modeling_outputs.MaskedLMOutput(
|
| 594 |
+
logits=logits,
|
| 595 |
+
hidden_states=all_hidden_states if output_hidden_states else None,
|
| 596 |
+
loss=None
|
| 597 |
+
)
|
| 598 |
+
elif output_hidden_states:
|
| 599 |
+
return logits, all_hidden_states
|
| 600 |
+
else:
|
| 601 |
+
return logits
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c4b66c48780483f7079e47b1a56e6245a12d83057533455f447e822ef20fe93f
|
| 3 |
+
size 678522728
|