File size: 6,053 Bytes
638d672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423bda7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638d672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423bda7
 
 
 
638d672
 
 
 
 
 
 
 
 
 
 
 
423bda7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
638d672
 
423bda7
 
 
 
 
 
638d672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
base_model: Qwen/Qwen2.5-VL-3B-Instruct
library_name: transformers
model_name: Chart-RVR-3B
tags:
- generated_from_trainer
- grpo
- trl
licence: license
---


# Model Card for Chart-RVR-3B

We present the first RL-trained chart-specific explainable model with SOTA performance on OOD datasets.
The model is trained to predict chart type, data table, CoT reasoning and the final answer.

# Chart-RVR Inference Demo

This script demonstrates how to use the [`sanchit97/chart-rvr-3b`](https://huggingface.co/sanchit97/chart-rvr-3b) model for chart-based reasoning using a vision-language interface. It loads a chart image from a URL, prompts the model with a question, and extracts the structured reasoning and final answer.

## 🧠 System Prompt

The assistant is instructed to return a structured response using `<think>` and `<answer>` tags. Inside `<think>`, it outputs the chart type, the data table in JSON, and reasoning steps.

## 🧪 Inference Code

```python
from transformers import AutoProcessor, AutoModelForVision2Seq
from PIL import Image
import requests
from io import BytesIO
import torch
from qwen_vl_utils import process_vision_info  # helper from Qwen repo

# Load processor and model
processor = AutoProcessor.from_pretrained("sanchit97/chart-rvr-3b")
model = AutoModelForVision2Seq.from_pretrained(
    "sanchit97/chart-rvr-3b", device_map="auto", torch_dtype=torch.bfloat16
)

# Define the structured system prompt
SYSTEM_PROMPT = """
You are a vision-language assistant. You are given a chart image and a query about the chart. 
Think step-by-step about how to answer the query based on the chart image and then provide the final answer.

### Output format
Respond **with exactly two blocks in order and nothing else**:
<think>
First output the type of chart in <type>, \
then output the underlying data table and finally, \ 
think step-by-step about how to answer the query based on the chart image \
and then provide the final answer.
<type>
Type of chart - one word from line, bar, stacked bar, pie, histogram, scatterplot, area, stacked area, bubble, treemap.
</type>
Next output the data table in the <table></table> tags
<table>
json table - for the chart image, output only a JSON object with: "columns": list of column headers, "rows": list-of-lists, one per data row
No prose, no comments.
1. Respond with **only** a JSON object
2. The JSON must use exactly this schema:
    {
        "columns": [...],
        "rows": [[...], [...],..., [...]]
    }
3. Do NOT output HTML, Markdown, or commentary. Any deviation gets zero reward.
</table>
Provide your reasoning here in steps:
<step-1>: Provide a description of reasoning
<step-2>: Gather ALL the appropriate data from the chart
<step-3>: Break down the query into smaller parts and verify each part with the data
...
<step-n>: Do the final calculation or reasoning to derive the answer
</think>
<answer>
Final answer on a single line
</answer>
"""

# Chart image from URL
image_url = "https://mathmonks.com/wp-content/uploads/2023/01/Parts-Bar-Graph.jpg"
response = requests.get(image_url)
image = Image.open(BytesIO(response.content)).convert("RGB")

# Query about the chart
prompt = "What is the average of all the bars in the chart?"

# Build multimodal chat input
messages = [
    {
        "role": "system",
        "content": SYSTEM_PROMPT
    },
    {
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": prompt},
        ],
    },
]

# Format text and vision input
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)

inputs = processor(
    text=text,
    images=[image_inputs],
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
).to(model.device)

# Generate output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
    out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]

print("Generated Output: ", output)
print("Answer: ", output.split("<answer>")[-1].split("</answer>")[0].strip())
```




## Benchmark numbers

Some Raw numbers (more numbers+paper coming soon!):
1. ChartQA: 84.56
2. PlotQA: 78.68
3. ChartFC: 77.62 
4. EvoChart: 53.36
5. ChartQAPro: 28.38 


This model is a fine-tuned version of [Qwen/Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Training procedure

<!-- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/chartrl/chartrl/runs/nzaj1tyg)  -->


This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).

### Framework versions

- TRL: 0.20.0.dev0
- Transformers: 4.53.2
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citations

Cite GRPO as:

```bibtex
@article{zhihong2024deepseekmath,
    title        = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
    author       = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
    year         = 2024,
    eprint       = {arXiv:2402.03300},
}

```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```