--- library_name: peft base_model: microsoft/phi-2 tags: - biomedical - summarization - lay-summary - healthcare - nlp - fine-tuned - lora - peft - elife - plos - medical-text language: - en license: mit metrics: - rouge - bertscore - readability datasets: - elife - plos pipeline_tag: text2text-generation --- # Phi-2 BioLaySum: Biomedical Lay Summarization Model 🏆 ## 📖 Model Overview **Phi-2 BioLaySum** is a **champion model** that emerged as the most efficient and highest-performing solution for generating lay summaries of biomedical articles. This model converts complex medical research into easily understandable summaries for the general public, significantly enhancing accessibility to scientific literature. **🥇 Key Achievement**: This model **outperformed** T5-Base, T5-Large, FlanT5-Base, BioGPT, and Falconsi-Medical_summarisation across all evaluation dimensions (relevance, readability, and factuality) while maintaining optimal computational efficiency. ## 🎯 Model Purpose This model addresses the critical need to bridge the gap between complex biomedical research and public health literacy by: - Converting medical articles into patient-friendly summaries - Supporting healthcare communication between professionals and patients - Enhancing public access to biomedical research findings - Enabling better-informed health decisions by the general public ## 🏗️ Model Architecture - **Base Model**: microsoft/phi-2 - **Fine-tuning Technique**: LoRA (Low-Rank Adaptation) + PEFT (Parameter Efficient Fine-tuning) - **Model Type**: Text-to-Text Generation (Summarization) - **Language**: English - **Domain**: Biomedical/Healthcare ## 📊 Performance Highlights ### Why Phi-2 is the Champion Model: - ✅ **Superior Performance**: Best scores across relevance, readability, and factuality metrics - ✅ **Resource Efficiency**: Optimal performance-to-resource ratio - ✅ **Compact Size**: Most efficient in terms of model size and computational requirements - ✅ **Cost-Effective**: Best balance of quality and computational cost ### Evaluation Results: - **Relevance**: Measured using ROUGE (1, 2, L) and BERTScore - **Readability**: Assessed via Flesch-Kincaid Grade Level (FKGL) and Dale-Chall Readability Score (DCRS) - **Factuality**: Verified using BARTScore and factual consistency checks ## 🚀 Quick Start ### Loading the Model ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the base model and tokenizer base_model_name = "microsoft/phi-2" model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(base_model_name) # Load the fine-tuned adapter model = PeftModel.from_pretrained(model, "sank29mane/phi-2-biolaysum") # Set padding token if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token ``` ### Generating Lay Summaries ```python def generate_lay_summary(medical_text, max_length=150): # Prepare input prompt = f"Summarize the following medical text for a general audience: {medical_text}" inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512) # Generate summary with torch.no_grad(): outputs = model.generate( **inputs, max_length=max_length, temperature=0.7, do_sample=True, pad_token_id=tokenizer.eos_token_id ) # Decode and return summary = tokenizer.decode(outputs[0], skip_special_tokens=True) return summary.split(":")[-1].strip() # Extract generated part # Example usage medical_text = """ The study investigated the efficacy of novel therapeutic interventions in cardiovascular disease management through randomized controlled trials... """ lay_summary = generate_lay_summary(medical_text) print(f"Lay Summary: {lay_summary}") ``` ## 📚 Training Details ### Training Data - **eLife Dataset**: Open-access biomedical research articles with lay summaries - **PLOS Dataset**: Public Library of Science biomedical publications - **Data Processing**: Advanced preprocessing for optimal model performance ### Training Configuration - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) with PEFT - **Base Model**: microsoft/phi-2 - **Training Framework**: PyTorch + Hugging Face Transformers - **Optimization**: Parameter-efficient approach reducing computational requirements ### Training Advantages - **Efficiency**: LoRA reduces trainable parameters while maintaining performance - **Resource-Friendly**: PEFT enables high-quality fine-tuning with limited resources - **Stability**: Advanced techniques ensure robust model behavior ## 📈 Comparative Analysis ### Models Compared: 1. **T5-Base** - Text-to-Text Transfer Transformer (Base) 2. **T5-Large** - Text-to-Text Transfer Transformer (Large) 3. **FlanT5-Base** - Instruction-tuned T5 model 4. **BioGPT** - Biomedical domain-specific GPT 5. **Phi-2** - Microsoft's efficient language model (**Winner**) 6. **Falconsi-Medical_summarisation** - Specialized medical summarization model ### Key Findings: - **Phi-2 outperformed all competitors** in comprehensive evaluation - **Domain-specific models** (BioGPT, Falconsi) showed advantages over general T5 models - **Parameter efficiency** of Phi-2 provided superior cost-effectiveness - **Smaller models** can achieve better performance with proper fine-tuning ## 🎯 Use Cases ### Healthcare Applications: - **Patient Education**: Convert research findings into understandable format - **Medical Communication**: Support doctor-patient conversations - **Health Journalism**: Assist science writers and health reporters - **Educational Materials**: Create teaching resources for health education - **Policy Support**: Provide accessible summaries for health policy decisions ### Target Audiences: - Healthcare professionals seeking patient communication tools - Patients and families researching medical conditions - Health educators and trainers - Medical journalists and science communicators - Public health policy makers ## ⚡ Performance Metrics ### Evaluation Framework: - **ROUGE Scores**: Overlap-based relevance assessment - **BERTScore**: Semantic similarity evaluation - **Readability Metrics**: FKGL and DCRS for accessibility - **Factual Consistency**: BARTScore for accuracy verification ### Resource Efficiency: - **Model Size**: Compact and deployment-friendly - **Inference Speed**: Fast generation suitable for real-time applications - **Memory Usage**: Optimized for various computational environments - **Cost Effectiveness**: Best performance per computational dollar ## 🔧 Technical Specifications ### Model Details: - **Architecture**: Transformer-based with LoRA adaptation - **Parameters**: Base Phi-2 + efficient LoRA adapters - **Precision**: Mixed precision training for efficiency - **Framework**: PyTorch with Hugging Face ecosystem ### System Requirements: - **Minimum GPU**: 4GB VRAM for inference - **Recommended**: 8GB+ VRAM for optimal performance - **CPU**: Compatible with CPU inference (slower) - **Dependencies**: transformers, peft, torch ## 📖 Research Impact This model contributes to: - **Democratizing Medical Knowledge**: Making research accessible to all - **Advancing Healthcare NLP**: Pushing boundaries of medical text processing - **Resource-Efficient AI**: Demonstrating effective use of LoRA and PEFT - **Evaluation Methodology**: Comprehensive framework for summarization assessment ## 📄 License & Citation ### License This model is released under the **MIT License**, promoting open research and development. ### Citation If you use this model in your research, please cite: ```bibtex @misc{mane2024phi2biolaysum, title={Phi-2 BioLaySum: Resource-Efficient Biomedical Lay Summarization using LoRA and PEFT}, author={Mane, Sanket}, year={2024}, publisher={Hugging Face}, url={https://huggingface.co/sank29mane/phi-2-biolaysum} } ``` ## 🔗 Related Resources - **GitHub Repository**: [lays-bio-summery](https://github.com/sank29mane/lays-bio-summery) - Complete training code and evaluation - **Base Model**: [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) - **Research Paper**: [Detailed methodology and results](https://github.com/sank29mane/lays-bio-summery) ## 👨‍💻 Author **Sanket Mane** - [@sank29mane](https://github.com/sank29mane) *Researcher in Biomedical NLP and Efficient Language Models* ## 📞 Contact & Support - **GitHub Issues**: [Create an issue](https://github.com/sank29mane/lays-bio-summery/issues) - **Model Issues**: Use the Community tab above - **Research Collaborations**: Through GitHub profile ## 🚨 Limitations & Considerations ### Current Limitations: - **Language**: Currently optimized for English biomedical text - **Domain**: Focused on general biomedical research (not clinical notes) - **Length**: Optimized for article-length inputs, may vary with very short/long texts ### Recommended Use: - Use for biomedical research article summarization - Validate outputs for critical healthcare decisions - Consider human review for patient-facing applications ## 🔄 Model Updates - **v1.0**: Initial release with LoRA+PEFT fine-tuning - **Future**: Planned improvements for multi-language support and clinical text adaptation --- ### Framework Versions - **PEFT**: 0.7.2.dev0 - **Transformers**: Compatible with latest versions - **PyTorch**: 1.12+ ⭐ **Star this model if you find it useful for your biomedical NLP research!** ⭐