--- library_name: peft license: mit base_model: microsoft/Phi-3-mini-128k-instruct tags: - axolotl - generated_from_trainer model-index: - name: 3414d43e-5776-46fb-9c1c-0c745e4249c5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: microsoft/Phi-3-mini-128k-instruct bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - a8acb8fbf624e566_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true gradient_clipping: 0.9 group_by_length: false hub_model_id: sergioalves/3414d43e-5776-46fb-9c1c-0c745e4249c5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-05 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/a8acb8fbf624e566_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 73900726-a2c5-4a6a-a029-478b5221794b wandb_project: s56-7 wandb_run: your_name wandb_runid: 73900726-a2c5-4a6a-a029-478b5221794b warmup_steps: 10 weight_decay: 0.05 xformers_attention: false ```

# 3414d43e-5776-46fb-9c1c-0c745e4249c5 This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.5126 | 0.0000 | 1 | 2.9043 | | 6.3891 | 0.0020 | 50 | 2.6179 | | 3.8619 | 0.0039 | 100 | 2.5445 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1