MoonQwen3 / modeling_moonvit.py
shilinxu's picture
Upload folder using huggingface_hub
050b696 verified
import math
from copy import deepcopy
from typing import Union, Tuple, Sequence, Optional, List
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers.activations import GELUActivation, ACT2FN, PytorchGELUTanh
from transformers.activations import PytorchGELUTanh
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import is_flash_attn_2_available
from .configuration_moonvit import MoonViTConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_varlen_func
else:
flash_attn_varlen_func = None
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section=[12, 12, 12], unsqueeze_dim=1):
mrope_section = mrope_section * 2
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(unsqueeze_dim)
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def get_rope_index(
image_token_id,
video_token_id,
vision_start_token_id,
spatial_merge_size: int = 2,
input_ids: Optional[torch.LongTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
mrope_position_deltas = []
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
total_input_ids = input_ids
if attention_mask is None:
attention_mask = torch.ones_like(total_input_ids)
position_ids = torch.ones(3,input_ids.shape[0],input_ids.shape[1],dtype=input_ids.dtype,device=input_ids.device)
image_index, video_index = 0, 0
attention_mask = attention_mask.to(total_input_ids.device)
for i, input_ids in enumerate(total_input_ids):
input_ids = input_ids[attention_mask[i] == 1]
image_nums, video_nums = 0, 0
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
vision_tokens = input_ids[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
input_tokens = input_ids.tolist()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
for _ in range(image_nums + video_nums):
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (image_grid_thw[image_index][0],image_grid_thw[image_index][1],image_grid_thw[image_index][2])
second_per_grid_t = 0
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (video_grid_thw[video_index][0],video_grid_thw[video_index][1],video_grid_thw[video_index][2])
if second_per_grid_ts is not None:
second_per_grid_t = second_per_grid_ts[video_index]
else:
second_per_grid_t = 1.0
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (t.item(),h.item() // spatial_merge_size,w.item() // spatial_merge_size)
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
range_tensor = torch.arange(llm_grid_t).view(-1, 1)
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)
## normalize type, send to device.
second_per_grid_t = torch.as_tensor(second_per_grid_t, dtype=range_tensor.dtype, device=range_tensor.device)
time_tensor = expanded_range * second_per_grid_t * 2
time_tensor_long = time_tensor.long()
t_index = time_tensor_long.flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
return position_ids, mrope_position_deltas
else:
if attention_mask is not None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
else:
position_ids = (torch.arange(input_ids.shape[1], device=input_ids.device).view(1, 1, -1).expand(3, input_ids.shape[0], -1))
mrope_position_deltas = torch.zeros([input_ids.shape[0], 1],device=input_ids.device,dtype=input_ids.dtype,)
return position_ids, mrope_position_deltas
def multihead_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
q_cu_seqlens: Optional[torch.Tensor] = None,
k_cu_seqlens: Optional[torch.Tensor] = None,
):
"""Multi-head attention using flash attention 2.
Args:
q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim),
or (tot_seqlens, num_heads, head_dim) if packing.
q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q.
The first element should be 0 and the last element should be q.shape[0].
k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k.
The first element should be 0 and the last element should be k.shape[0].
Returns:
output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing,
where dim = num_heads * head_dim
"""
# Unified format legal check
assert q.dim() == k.dim() == v.dim() == 3, "q, k, v must have 3 dims"
assert q_cu_seqlens[-1] == q.shape[0], "q_cu_seqlens must sum to q.shape[0]"
assert (
k_cu_seqlens[-1] == k.shape[0] == v.shape[0]
), "k_cu_seqlens must sum to k.shape[0]"
assert q.dtype in [
torch.bfloat16,
torch.float16,
], f"unsupported dtype {q.dtype} for multihead attn"
max_seqlen_q = (q_cu_seqlens[1:] - q_cu_seqlens[:-1]).max().item()
max_seqlen_k = (k_cu_seqlens[1:] - k_cu_seqlens[:-1]).max().item()
attn_out = flash_attn_varlen_func(
q,
k,
v,
q_cu_seqlens,
k_cu_seqlens,
max_seqlen_q,
max_seqlen_k,
causal=False,
)
attn_out = attn_out.flatten(start_dim=-2)
return attn_out
def sdpa_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_mask: torch.Tensor,
) -> torch.Tensor:
"""SDPA attention.
Args:
q, k, v: tensor of shape (batch_size, num_heads, seqlen, head_dim),
or (batch_size, seqlen, num_heads, head_dim) if packing.
"""
# bs, num_heads, seq_length, head_dim = q.shape
# attention_mask = attention_mask.repeat(1, num_heads, 1, 1)
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
attn_output = attn_output.transpose(1, 2)
return attn_output
def eager_attention(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
q_cu_seqlens: Optional[torch.Tensor] = None,
k_cu_seqlens: Optional[torch.Tensor] = None,
) -> torch.Tensor:
seq_length = q.shape[0]
attention_mask = torch.zeros(
[1, seq_length, seq_length], device=q.device, dtype=torch.bool
)
for i in range(1, len(q_cu_seqlens)):
attention_mask[
...,
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
q_cu_seqlens[i - 1] : q_cu_seqlens[i],
] = True
q = q.transpose(0, 1)
k = k.transpose(0, 1)
v = v.transpose(0, 1)
attn_weight = q @ k.transpose(-2, -1) / math.sqrt(q.shape[-1])
attn_weight += attention_mask
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32).to(q.dtype)
attn_output = attn_weight @ v
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(seq_length, -1)
return attn_output
VL_VISION_ATTENTION_FUNCTIONS = {
"flash_attention_2": multihead_attention,
"sdpa": sdpa_attention,
"eager": eager_attention,
}
def _apply_rope_input_validation(x, freqs_cis):
assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape)
assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape)
assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape)
assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype
def apply_rope(
xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Args: (The leading dimensions of all inputs should be the same)
xq: query, tensor of shape (..., num_heads, head_dim)
xk: key, tensor of shape (..., num_heads, head_dim)
freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid.
Returns:
xq_out, xk_out: tensors of shape (..., num_heads, head_dim)
"""
_apply_rope_input_validation(xq, freqs_cis)
_apply_rope_input_validation(xk, freqs_cis)
freqs_cis = freqs_cis.unsqueeze(-2) # ..., 1, head_dim/2
# ..., num_heads, head_dim/2
xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2))
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim
return xq_out.type_as(xq), xk_out.type_as(xk)
class Learnable2DInterpPosEmb(nn.Module):
def __init__(
self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic"
) -> None:
super().__init__()
self.height = height
self.width = width
self.interpolation_mode = interpolation_mode
self.weight = nn.Parameter(torch.empty(height, width, dim))
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weight)
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
pos_embs = []
for shape in grid_hws.tolist():
if shape == self.weight.shape[:-1]:
pos_embs.append(self.weight.flatten(end_dim=1))
else:
pos_embs.append(
F.interpolate(
self.weight.permute((2, 0, 1)).unsqueeze(0),
size=shape,
mode=self.interpolation_mode,
)
.squeeze(0)
.permute((1, 2, 0))
.flatten(end_dim=1)
)
out = x + torch.cat(pos_embs)
return out
class MoonVisionPatchEmbed(nn.Module):
def __init__(
self,
out_dim: int,
in_dim: int = 3,
patch_size: Union[int, Tuple[int, int]] = (14, 14),
pos_emb_height: int = 14,
pos_emb_width: int = 14,
):
super().__init__()
assert isinstance(
patch_size, (int, Sequence)
), f"Invalid patch_size type: {type(patch_size)}"
if isinstance(patch_size, int):
patch_size = (patch_size, patch_size)
assert (
len(patch_size) == 2
), f"Expected patch_size to be a tuple of 2, got {patch_size}"
self.patch_size = patch_size
self.proj = nn.Conv2d(
in_dim, out_dim, kernel_size=patch_size, stride=patch_size
)
self.pos_emb = Learnable2DInterpPosEmb(
height=pos_emb_height, width=pos_emb_width, dim=out_dim
)
def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor:
"""
Args:
x (L, Channels): input tensor
grid_hws (N, 2): grid height and width
Returns:
(L, Cout) tensor
"""
x = self.proj(x).view(x.size(0), -1)
# apply positional embedding
x = self.pos_emb(x, grid_hws)
return x
class Rope2DPosEmb(nn.Module):
"""2D rotary position embedding with multi-resolution support.
This class is intended to be used in the following way:
1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis.
2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration.
3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation.
The rope is shared across all attention layers and all heads.
Refs:
- RoFormer: https://arxiv.org/abs/2104.09864
- VisionLLaMA: https://arxiv.org/abs/2403.00522
- https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py
Args:
dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed)
max_height (int): the maximum height of the 2D grid
max_width (int): the maximum width of the 2D grid
theta_base (float): the base of the theta
device (str): the device to store the precomputed cis
"""
def __init__(self, dim: int, max_height: int, max_width: int, theta_base=10000):
super().__init__()
self.dim = dim
assert self.dim % 4 == 0, "dim must be divisible by 4"
self.max_height = max_height
self.max_width = max_width
self.theta_base = theta_base
self.freqs_cis = None
def extra_repr(self):
return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}"
def _precompute_freqs_cis(self, device: torch.device) -> torch.Tensor:
"""Calculate the cis(freqs) for each position in the 2D grid.
Return: complex tensor of shape (max_height, max_width, dim//2) and value:
height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim))
weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4))
note: `cis` is a mathematical notation defined by cis x = cos x + i sin x,
"""
N = self.max_height * self.max_width
flat_pos = torch.arange(0, N).float().to(device)
x_pos = flat_pos % self.max_width
y_pos = flat_pos // self.max_width
dim_range = (
torch.arange(0, self.dim, 4)[: (self.dim // 4)].float().to(device)
) # C/4
freqs = 1.0 / (self.theta_base ** (dim_range / self.dim))
x_freqs = torch.outer(x_pos, freqs).float() # N, C/4
y_freqs = torch.outer(y_pos, freqs).float() # N, C/4
x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs) # N, C/4
y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs) # N, C/4
# N, C/4, 2
freqs_cis = torch.cat(
[x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1
)
# max_height, max_width, C/2
freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1)
return freqs_cis
def get_freqs_cis(self, grid_hws: torch.Tensor) -> torch.Tensor:
"""
Args:
grid_hws (torch.Tensor): grid height and width
Returns:
freqs_cis: tensor of shape (sum(t * height * width), dim//2)
"""
if self.freqs_cis is None:
self.freqs_cis = self._precompute_freqs_cis(grid_hws.device)
shapes = grid_hws.tolist()
assert all(
1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes
), (
shapes,
self.max_height,
self.max_width,
)
# freqs_cis = torch.cat(
# [self.freqs_cis[:h, :w].reshape(-1, self.dim // 2) for h, w in shapes],
# dim=0,
# )
max_h, max_w = grid_hws.max(dim=0).values.tolist()
max_h, max_w = max_h // 2, max_w // 2
freqs_cis = self.freqs_cis[:max_h, :max_w].reshape(-1, self.dim // 2).repeat(len(shapes), 1, 1)
return freqs_cis
class MLP2(nn.Module):
"""
Args:
dims: [in_dim, hidden_dim, out_dim]
bias: whether to use bias in linear layer.
"""
def __init__(self, dims: list[int], activation, bias=True):
super().__init__()
assert len(dims) == 3
self.fc0 = nn.Linear(dims[0], dims[1], bias=bias)
self.fc1 = nn.Linear(dims[1], dims[2], bias=bias)
self.activation = activation
for m in [self.fc0, self.fc1]:
nn.init.trunc_normal_(m.weight, std=math.sqrt(2 / m.in_features))
if m.bias is not None:
nn.init.zeros_(m.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc0(x)
x = self.activation(x)
return self.fc1(x)
class MoonVitEncoderLayer(nn.Module):
def __init__(
self,
layer_idx: int,
num_heads: int,
hidden_dim: int,
mlp_dim: int,
attn_implementation: str = "eager",
activation=F.gelu,
attn_bias: bool = False,
):
super().__init__()
self.layer_idx = layer_idx
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads
self.attn_implementation = attn_implementation
self.norm0 = nn.LayerNorm(hidden_dim)
self.norm1 = nn.LayerNorm(hidden_dim)
self.mlp = MLP2([hidden_dim, mlp_dim, hidden_dim], activation)
self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=attn_bias)
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=attn_bias)
def attention_qkvpacked(
self,
x: torch.Tensor,
attention_mask: torch.Tensor,
rope_freqs_cis: Optional[torch.Tensor] = None,
past_key_value = None
):
"""
Args:
x (torch.Tensor): (batch_size, seqlen, hidden_dim)
cu_seqlens (torch.Tensor):
"""
batch_size, seqlen, hidden_dim = x.shape
xqkv = self.wqkv(x)
xqkv = xqkv.view(batch_size, seqlen, 3, self.num_heads, self.hidden_size_per_attention_head)
xq, xk, xv = torch.unbind(xqkv, dim=-3)
xq = xq.transpose(1, 2)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# xq, xk = apply_rope(xq, xk, rope_freqs_cis)
cos, sin = rope_freqs_cis
xq, xk = apply_multimodal_rotary_pos_emb(xq, xk, cos, sin)
if past_key_value is not None:
xk, xv = past_key_value.update(xk, xv, self.layer_idx)
attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation]
attn_out = attn_func(xq, xk, xv, attention_mask)
attn_out = attn_out.reshape(batch_size, seqlen, hidden_dim).contiguous()
attn_out = self.wo(attn_out)
return attn_out
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
rope_freqs_cis: Union[torch.Tensor, None] = None,
past_key_value = None
) -> torch.Tensor:
"""
Args:
hidden_states: non-packed (B, N, D) or packed (L, D). if non-packed, seqlens should be None, if packed, seqlens should be set
Returns:
output: same shape of input, non-packed (B, N, D) for non-packed input, (L, D) for packed input
"""
residual = hidden_states
hidden_states = self.norm0(hidden_states)
attn_out = self.attention_qkvpacked(
hidden_states, attention_mask, rope_freqs_cis=rope_freqs_cis, past_key_value=past_key_value,
)
hidden_states = residual + attn_out
residual = hidden_states
hidden_states = self.mlp(self.norm1(hidden_states))
hidden_states = residual + hidden_states
return hidden_states
class MoonVitEncoder(nn.Module):
def __init__(
self,
hidden_dim: int,
num_layers: int,
block_cfg: dict,
) -> None:
super().__init__()
self.blocks = nn.ModuleList(
[MoonVitEncoderLayer(layer_idx, **block_cfg) for layer_idx in range(num_layers)]
)
self.final_layernorm = nn.LayerNorm(hidden_dim)
self.gradient_checkpointing = False
def forward(self, hidden_states, attention_mask, rope_freqs_cis, past_key_value=None) -> torch.Tensor:
for _, block in enumerate(self.blocks):
if self.gradient_checkpointing and self.training:
# hidden_states = self._gradient_checkpointing_func(
# block.__call__, hidden_states, attention_mask, rope_freqs_cis
# )
hidden_states = torch.utils.checkpoint.checkpoint(
block.__call__, hidden_states, attention_mask, rope_freqs_cis, past_key_value
)
else:
hidden_states = block(
hidden_states, attention_mask, rope_freqs_cis=rope_freqs_cis, past_key_value=past_key_value,
)
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
def patch_merger(
x: torch.Tensor,
grid_hws: torch.Tensor,
merge_kernel_size: list[int, int] = (2, 2),
) -> List[torch.Tensor]:
d_model = x.size(-1)
outputs = []
pre_sum = 0
for i, x_shape in enumerate(grid_hws.tolist()):
height, width = x_shape[0], x_shape[1]
# Get the current sequence
seq = x[pre_sum:pre_sum+height * width]
# Reshape along self.merge_kernel_size and concat to the last dimension
kernel_height, kernel_width = merge_kernel_size
new_height, new_width = height // kernel_height, width // kernel_width
reshaped_seq = seq.view(
new_height, kernel_height, new_width, kernel_width, d_model
)
reshaped_seq = reshaped_seq.permute(0, 2, 1, 3, 4).contiguous()
padded_seq = reshaped_seq.view(
new_height * new_width, kernel_height * kernel_width, -1
)
outputs.append(padded_seq)
pre_sum += height * width
return outputs
class MultiModalProjector(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = (
config.hidden_size
* config.merge_kernel_size[0]
* config.merge_kernel_size[1]
)
self.pre_norm = torch.nn.LayerNorm(config.hidden_size, eps=1e-05)
self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
self.act = GELUActivation()
self.linear_2 = nn.Linear(self.hidden_size, config.text_hidden_size, bias=True)
# self.linear_2 = nn.Linear(self.hidden_size, config.hidden_size, bias=True)
def forward(self, image_features: list[torch.Tensor]) -> torch.Tensor:
# image_features = torch.cat(image_features, dim=0)
# hidden_states = self.pre_norm(image_features).view(-1, self.hidden_size)
hidden_states = self.pre_norm(image_features)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class MoonVitPretrainedModel(PreTrainedModel):
config_class = MoonViTConfig
model_type = "moonvit"
supports_gradient_checkpointing = True
_no_split_modules = ["PackingTransformer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(self, config: MoonViTConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
config = deepcopy(config)
self.merge_kernel_size = config.merge_kernel_size
self.patch_size = config.patch_size
self.patch_embed = MoonVisionPatchEmbed(
out_dim=config.hidden_size,
patch_size=config.patch_size,
pos_emb_height=config.init_pos_emb_height,
pos_emb_width=config.init_pos_emb_width,
)
self.rope_2d = Rope2DPosEmb(
config.hidden_size // config.num_attention_heads, 512, 512
)
self.encoder = MoonVitEncoder(
hidden_dim=config.hidden_size,
num_layers=config.num_hidden_layers,
block_cfg={
"num_heads": config.num_attention_heads,
"hidden_dim": config.hidden_size,
"mlp_dim": config.intermediate_size,
"activation": PytorchGELUTanh(),
"attn_bias": True,
"attn_implementation": config._attn_implementation,
},
)
self.pixel_merger = nn.Sequential(
nn.Linear(config.hidden_size*4, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size)
)
self.projector = nn.Sequential(
nn.LayerNorm(config.hidden_size),
nn.Linear(config.hidden_size, config.hidden_size, bias=True),
nn.GELU(),
nn.Linear(config.hidden_size, config.text_hidden_size, bias=True),
)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
nn.init.normal_(module.bias, std=1e-6)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(
self, pixel_values: torch.Tensor, image_grid_hws: torch.Tensor
) -> torch.Tensor:
"""
Args:
pixel_values (torch.Tensor): The input pixel values.
grid_hws (torch.Tensor): The grid height and width.
Returns:
torch.Tensor: The output tokens.
"""
hidden_states = self.patch_embed(pixel_values, image_grid_hws)
hidden_states_list = patch_merger(
hidden_states, image_grid_hws, merge_kernel_size=self.merge_kernel_size
)
hidden_states = self.pixel_merger(torch.cat(hidden_states_list).view(-1, hidden_states.shape[-1] * 4))
num_tokens = (image_grid_hws.prod(dim=1) // 4).tolist()
hidden_states_list = hidden_states.split(num_tokens, dim=0)
max_length = max(num_tokens)
max_h, max_w = image_grid_hws.max(dim=0).values.tolist()
max_length = max_h * max_w // 4
hidden_states = torch.stack([F.pad(h, (0, 0, 0, max_length - h.shape[0])) for h in hidden_states_list])
attention_mask = torch.zeros(len(image_grid_hws), max_length, device=hidden_states.device, dtype=torch.bool)
for i in range(len(image_grid_hws)):
attention_mask[i][:num_tokens[i]] = True
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
rope_freqs_cis = self.rope_2d.get_freqs_cis(grid_hws=image_grid_hws)
hidden_states = self.encoder(hidden_states, attention_mask, rope_freqs_cis)
hidden_states = torch.cat([hidden_states[i][:num_tokens[i]] for i in range(len(image_grid_hws))])
# hidden_states = self.projector(hidden_states)
return hidden_states