|
|
from typing import Optional, List |
|
|
import torch |
|
|
from torch import nn |
|
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
from transformers import PreTrainedModel, AutoModel, AutoModelForCausalLM |
|
|
from transformers.modeling_outputs import ModelOutput |
|
|
from transformers.generation.utils import GenerationMixin |
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS |
|
|
from transformers.models.qwen3.modeling_qwen3 import eager_attention_forward, BaseModelOutputWithPast |
|
|
|
|
|
from .modeling_moonvit import patch_merger, get_rope_index, apply_multimodal_rotary_pos_emb |
|
|
from .configuration_smallvlm import SmallVLMConfig |
|
|
|
|
|
class Qwen2_5_VLRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
|
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) |
|
|
position_ids_expanded = position_ids[:, :, None, :].float() |
|
|
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
def build_vision_model(config, model=None): |
|
|
if model is None: |
|
|
model = AutoModel.from_config(config, trust_remote_code=True) |
|
|
return model |
|
|
|
|
|
def mrope_forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: Tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs, |
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_multimodal_rotary_pos_emb(query_states, key_states, cos, sin, [16, 24, 24], unsqueeze_dim=1) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} |
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): |
|
|
pass |
|
|
else: |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
|
|
|
import transformers |
|
|
transformers.models.qwen3.modeling_qwen3.Qwen3Attention.forward = mrope_forward |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**flash_attn_kwargs, |
|
|
) -> BaseModelOutputWithPast: |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
|
use_cache = False |
|
|
|
|
|
|
|
|
if not isinstance(past_key_values, (type(None), Cache)): |
|
|
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
causal_mask = self._update_causal_mask( |
|
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
|
) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
layer_outputs = self._gradient_checkpointing_func( |
|
|
decoder_layer.__call__, |
|
|
hidden_states, |
|
|
causal_mask, |
|
|
position_ids, |
|
|
past_key_values, |
|
|
output_attentions, |
|
|
use_cache, |
|
|
cache_position, |
|
|
position_embeddings, |
|
|
) |
|
|
else: |
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**flash_attn_kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
transformers.models.qwen3.modeling_qwen3.Qwen3Model.forward = forward |
|
|
|
|
|
class SmallVLMForCausalLM(PreTrainedModel, GenerationMixin): |
|
|
config_class = SmallVLMConfig |
|
|
supports_gradient_checkpointing = True |
|
|
_skip_keys_device_placement = "past_key_values" |
|
|
_supports_cache_class = True |
|
|
_supports_flash_attn_2 = True |
|
|
_supports_sdpa = True |
|
|
|
|
|
def __init__(self, config, language_model=None, vision_model=None): |
|
|
super().__init__(config) |
|
|
self.rope_deltas = None |
|
|
|
|
|
vision_model = build_vision_model(config.vision_model_config, vision_model) |
|
|
if language_model is None: |
|
|
kwargs_ = {} |
|
|
if config._attn_implementation_internal is not None: |
|
|
kwargs_['attn_implementation'] = config._attn_implementation_internal |
|
|
language_model = AutoModelForCausalLM.from_config(config.language_model_config, trust_remote_code=True, **kwargs_) |
|
|
|
|
|
self.vision_model = vision_model |
|
|
|
|
|
self.language_model = language_model |
|
|
|
|
|
self.vision_to_text_proj = nn.Sequential( |
|
|
nn.Linear(self.config.vision_model_config.hidden_size, self.config.language_model_config.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(self.config.language_model_config.hidden_size, self.config.language_model_config.hidden_size) |
|
|
) |
|
|
|
|
|
self.text_to_vision_proj = nn.Sequential( |
|
|
nn.Linear(self.config.language_model_config.hidden_size, self.config.vision_model_config.hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(self.config.vision_model_config.hidden_size, self.config.vision_model_config.hidden_size) |
|
|
) |
|
|
self.vision_rotary_emb = Qwen2_5_VLRotaryEmbedding(config.vision_model_config) |
|
|
self.text_rotary_emb = Qwen2_5_VLRotaryEmbedding(config.language_model_config) |
|
|
self.language_model.model.rotary_emb = self.text_rotary_emb |
|
|
|
|
|
for layer in self.language_model.model.layers: |
|
|
setattr(layer.self_attn, 'layer_idx', layer.self_attn.layer_idx + self.vision_model.config.num_hidden_layers) |
|
|
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
grid_hws: Optional[torch.LongTensor] = None, |
|
|
): |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
|
use_cache = False |
|
|
|
|
|
if use_cache and past_key_values is None: |
|
|
past_key_values = DynamicCache() |
|
|
|
|
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
inputs_embeds = self.text_to_vision_proj(inputs_embeds) |
|
|
is_dummy_input = pixel_values is not None and pixel_values.size(0) == 0 |
|
|
if is_dummy_input: |
|
|
pixel_values = torch.zeros((4,) + pixel_values.shape[1:], dtype=pixel_values.dtype, device=pixel_values.device) |
|
|
grid_hws = torch.tensor([[1, 2, 2]], dtype=torch.int32).to(pixel_values.device) |
|
|
|
|
|
if pixel_values is not None: |
|
|
vision_embeds = self.vision_model.patch_embed(pixel_values, grid_hws[:, 1:]) |
|
|
vision_embeds_list = patch_merger( |
|
|
vision_embeds, grid_hws[:, 1:], merge_kernel_size=self.vision_model.merge_kernel_size |
|
|
) |
|
|
vision_embeds = self.vision_model.pixel_merger(torch.cat(vision_embeds_list).view(-1, vision_embeds.shape[-1] * 4)) |
|
|
|
|
|
vision_mask = (input_ids == self.config.image_token_id).to(inputs_embeds.device) |
|
|
inputs_embeds[vision_mask] = vision_embeds |
|
|
|
|
|
image_token_lens = (grid_hws.prod(dim=1) // 4) |
|
|
bsz, src_len = attention_mask.size() |
|
|
causal_mask = attention_mask[:, None, None, :].expand(bsz, 1, src_len, src_len).to(inputs_embeds.dtype) |
|
|
causal_mask.tril_() |
|
|
idx = 0 |
|
|
for i, _ in enumerate(causal_mask): |
|
|
vision_mask = input_ids[i] == self.config.image_token_id |
|
|
while (vision_mask.sum() > 0): |
|
|
start = torch.nonzero(vision_mask)[0][0] |
|
|
num = image_token_lens[idx] |
|
|
idx += 1 |
|
|
causal_mask[i, 0, start:start+num, start:start+num] = 1 |
|
|
vision_mask[start:start+num] = 0 |
|
|
|
|
|
causal_mask = 1.0 - causal_mask |
|
|
causal_mask = causal_mask.masked_fill(causal_mask.to(torch.bool), torch.finfo(vision_embeds.dtype).min) |
|
|
else: |
|
|
causal_mask = None |
|
|
|
|
|
if self.is_gradient_checkpointing and torch.is_grad_enabled() and self.training: |
|
|
inputs_embeds.requires_grad_(True) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
|
) |
|
|
|
|
|
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2): |
|
|
|
|
|
if ( |
|
|
(cache_position is not None and cache_position[0] == 0) |
|
|
or self.rope_deltas is None |
|
|
or (past_key_values is None or past_key_values.get_seq_length() == 0) |
|
|
): |
|
|
position_ids, rope_deltas = get_rope_index( |
|
|
self.config.image_token_id, |
|
|
self.config.video_token_id, |
|
|
self.config.vision_start_token_id, |
|
|
spatial_merge_size=2, |
|
|
input_ids=input_ids, |
|
|
image_grid_thw=grid_hws, |
|
|
video_grid_thw=None, |
|
|
attention_mask=attention_mask |
|
|
) |
|
|
self.rope_deltas = rope_deltas |
|
|
|
|
|
else: |
|
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
|
delta = ( |
|
|
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device) |
|
|
if cache_position is not None |
|
|
else 0 |
|
|
) |
|
|
position_ids = torch.arange(seq_length, device=inputs_embeds.device) |
|
|
position_ids = position_ids.view(1, -1).expand(batch_size, -1) |
|
|
if cache_position is not None: |
|
|
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) |
|
|
position_ids = position_ids.add(delta) |
|
|
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) |
|
|
|
|
|
position_embeddings = self.vision_rotary_emb(inputs_embeds, position_ids) |
|
|
inputs_embeds = self.vision_model.encoder(inputs_embeds, causal_mask, position_embeddings, past_key_values) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs_embeds = self.vision_to_text_proj(inputs_embeds) |
|
|
|
|
|
outputs = self.language_model( |
|
|
input_ids=None, |
|
|
labels=labels, |
|
|
attention_mask=causal_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
cache_position=cache_position, |
|
|
return_dict=True, |
|
|
) |
|
|
|
|
|
return ModelOutput( |
|
|
loss=outputs.loss, |
|
|
logits=outputs.logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): |
|
|
super().gradient_checkpointing_enable(gradient_checkpointing_kwargs) |
|
|
self.language_model.enable_input_require_grads() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.language_model.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.language_model.get_decoder() |
|
|
|
|
|
def tie_weights(self): |
|
|
return self.language_model.tie_weights() |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
|
self, |
|
|
input_ids, |
|
|
past_key_values=None, |
|
|
attention_mask=None, |
|
|
inputs_embeds=None, |
|
|
cache_position=None, |
|
|
position_ids=None, |
|
|
use_cache=True, |
|
|
pixel_values=None, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
|
input_ids, |
|
|
past_key_values=past_key_values, |
|
|
attention_mask=attention_mask, |
|
|
inputs_embeds=inputs_embeds, |
|
|
cache_position=cache_position, |
|
|
position_ids=position_ids, |
|
|
pixel_values=pixel_values, |
|
|
use_cache=use_cache, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
model_inputs["position_ids"] = None |
|
|
if cache_position[0] != 0: |
|
|
model_inputs["pixel_values"] = None |
|
|
|
|
|
return model_inputs |
|
|
|