MoonQwen3 / modeling_smallvlm.py
shilinxu's picture
Upload folder using huggingface_hub
050b696 verified
from typing import Optional, List
import torch
from torch import nn
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
from transformers import PreTrainedModel, AutoModel, AutoModelForCausalLM
from transformers.modeling_outputs import ModelOutput
from transformers.generation.utils import GenerationMixin
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.models.qwen3.modeling_qwen3 import eager_attention_forward, BaseModelOutputWithPast
from .modeling_moonvit import patch_merger, get_rope_index, apply_multimodal_rotary_pos_emb
from .configuration_smallvlm import SmallVLMConfig
class Qwen2_5_VLRotaryEmbedding(nn.Module):
def __init__(self, config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
# In contrast to other models, Qwen2_5_VL has different position ids for the grids
# So we expand the inv_freq to shape (3, ...)
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def build_vision_model(config, model=None):
if model is None:
model = AutoModel.from_config(config, trust_remote_code=True)
return model
def mrope_forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(query_states, key_states, cos, sin, [16, 24, 24], unsqueeze_dim=1)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
pass
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
import transformers
transformers.models.qwen3.modeling_qwen3.Qwen3Attention.forward = mrope_forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
transformers.models.qwen3.modeling_qwen3.Qwen3Model.forward = forward
class SmallVLMForCausalLM(PreTrainedModel, GenerationMixin):
config_class = SmallVLMConfig
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(self, config, language_model=None, vision_model=None):
super().__init__(config)
self.rope_deltas = None # cache rope_deltas here
vision_model = build_vision_model(config.vision_model_config, vision_model)
if language_model is None:
kwargs_ = {}
if config._attn_implementation_internal is not None:
kwargs_['attn_implementation'] = config._attn_implementation_internal
language_model = AutoModelForCausalLM.from_config(config.language_model_config, trust_remote_code=True, **kwargs_)
self.vision_model = vision_model
self.language_model = language_model
self.vision_to_text_proj = nn.Sequential( # map the text embeddings to vision encoder
nn.Linear(self.config.vision_model_config.hidden_size, self.config.language_model_config.hidden_size),
nn.GELU(),
nn.Linear(self.config.language_model_config.hidden_size, self.config.language_model_config.hidden_size)
)
self.text_to_vision_proj = nn.Sequential(
nn.Linear(self.config.language_model_config.hidden_size, self.config.vision_model_config.hidden_size),
nn.GELU(),
nn.Linear(self.config.vision_model_config.hidden_size, self.config.vision_model_config.hidden_size)
)
self.vision_rotary_emb = Qwen2_5_VLRotaryEmbedding(config.vision_model_config)
self.text_rotary_emb = Qwen2_5_VLRotaryEmbedding(config.language_model_config)
self.language_model.model.rotary_emb = self.text_rotary_emb
for layer in self.language_model.model.layers:
setattr(layer.self_attn, 'layer_idx', layer.self_attn.layer_idx + self.vision_model.config.num_hidden_layers)
self.gradient_checkpointing = False
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
grid_hws: Optional[torch.LongTensor] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
inputs_embeds = self.get_input_embeddings()(input_ids)
inputs_embeds = self.text_to_vision_proj(inputs_embeds)
is_dummy_input = pixel_values is not None and pixel_values.size(0) == 0
if is_dummy_input:
pixel_values = torch.zeros((4,) + pixel_values.shape[1:], dtype=pixel_values.dtype, device=pixel_values.device)
grid_hws = torch.tensor([[1, 2, 2]], dtype=torch.int32).to(pixel_values.device)
if pixel_values is not None:
vision_embeds = self.vision_model.patch_embed(pixel_values, grid_hws[:, 1:])
vision_embeds_list = patch_merger(
vision_embeds, grid_hws[:, 1:], merge_kernel_size=self.vision_model.merge_kernel_size
)
vision_embeds = self.vision_model.pixel_merger(torch.cat(vision_embeds_list).view(-1, vision_embeds.shape[-1] * 4))
vision_mask = (input_ids == self.config.image_token_id).to(inputs_embeds.device)
inputs_embeds[vision_mask] = vision_embeds
image_token_lens = (grid_hws.prod(dim=1) // 4)
bsz, src_len = attention_mask.size()
causal_mask = attention_mask[:, None, None, :].expand(bsz, 1, src_len, src_len).to(inputs_embeds.dtype)
causal_mask.tril_()
idx = 0
for i, _ in enumerate(causal_mask):
vision_mask = input_ids[i] == self.config.image_token_id
while (vision_mask.sum() > 0):
start = torch.nonzero(vision_mask)[0][0]
num = image_token_lens[idx]
idx += 1
causal_mask[i, 0, start:start+num, start:start+num] = 1
vision_mask[start:start+num] = 0
causal_mask = 1.0 - causal_mask
causal_mask = causal_mask.masked_fill(causal_mask.to(torch.bool), torch.finfo(vision_embeds.dtype).min)
else:
causal_mask = None
if self.is_gradient_checkpointing and torch.is_grad_enabled() and self.training:
inputs_embeds.requires_grad_(True)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
# calculate RoPE index once per generation in the pre-fill stage only
if (
(cache_position is not None and cache_position[0] == 0)
or self.rope_deltas is None
or (past_key_values is None or past_key_values.get_seq_length() == 0)
):
position_ids, rope_deltas = get_rope_index(
self.config.image_token_id,
self.config.video_token_id,
self.config.vision_start_token_id,
spatial_merge_size=2,
input_ids=input_ids,
image_grid_thw=grid_hws,
video_grid_thw=None,
attention_mask=attention_mask
)
self.rope_deltas = rope_deltas
# then use the prev pre-calculated rope-deltas to get the correct position ids
else:
batch_size, seq_length, _ = inputs_embeds.shape
delta = (
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
if cache_position is not None
else 0
)
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
if cache_position is not None: # otherwise `deltas` is an int `0`
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
position_embeddings = self.vision_rotary_emb(inputs_embeds, position_ids)
inputs_embeds = self.vision_model.encoder(inputs_embeds, causal_mask, position_embeddings, past_key_values)
# return ModelOutput(
# last_hidden_state=self.vision_model.projector(inputs_embeds),
# text_hidden_state=self.vision_to_text_proj(inputs_embeds),
# )
inputs_embeds = self.vision_to_text_proj(inputs_embeds)
outputs = self.language_model(
input_ids=None,
labels=labels,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
return_dict=True,
)
return ModelOutput(
loss=outputs.loss,
logits=outputs.logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
super().gradient_checkpointing_enable(gradient_checkpointing_kwargs)
self.language_model.enable_input_require_grads()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
pixel_values=pixel_values,
use_cache=use_cache,
**kwargs,
)
# Qwen2-5-VL position_ids are prepareed with rope_deltas in forward
model_inputs["position_ids"] = None
if cache_position[0] != 0:
model_inputs["pixel_values"] = None
return model_inputs