from typing import Optional, List import torch from torch import nn from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union from transformers import PreTrainedModel, AutoModel, AutoModelForCausalLM from transformers.modeling_outputs import ModelOutput from transformers.generation.utils import GenerationMixin from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS from transformers.models.qwen3.modeling_qwen3 import eager_attention_forward, BaseModelOutputWithPast from .modeling_moonvit import patch_merger, get_rope_index, apply_multimodal_rotary_pos_emb from .configuration_smallvlm import SmallVLMConfig class Qwen2_5_VLRotaryEmbedding(nn.Module): def __init__(self, config, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): # In contrast to other models, Qwen2_5_VL has different position ids for the grids # So we expand the inv_freq to shape (3, ...) inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1) position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions) device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) def build_vision_model(config, model=None): if model is None: model = AutoModel.from_config(config, trust_remote_code=True) return model def mrope_forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2) key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_multimodal_rotary_pos_emb(query_states, key_states, cos, sin, [16, 24, 24], unsqueeze_dim=1) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): pass else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=self.sliding_window, # diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights import transformers transformers.models.qwen3.modeling_qwen3.Qwen3Attention.forward = mrope_forward def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs, ) -> BaseModelOutputWithPast: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: use_cache = False # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache if not isinstance(past_key_values, (type(None), Cache)): raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) transformers.models.qwen3.modeling_qwen3.Qwen3Model.forward = forward class SmallVLMForCausalLM(PreTrainedModel, GenerationMixin): config_class = SmallVLMConfig supports_gradient_checkpointing = True _skip_keys_device_placement = "past_key_values" _supports_cache_class = True _supports_flash_attn_2 = True _supports_sdpa = True def __init__(self, config, language_model=None, vision_model=None): super().__init__(config) self.rope_deltas = None # cache rope_deltas here vision_model = build_vision_model(config.vision_model_config, vision_model) if language_model is None: kwargs_ = {} if config._attn_implementation_internal is not None: kwargs_['attn_implementation'] = config._attn_implementation_internal language_model = AutoModelForCausalLM.from_config(config.language_model_config, trust_remote_code=True, **kwargs_) self.vision_model = vision_model self.language_model = language_model self.vision_to_text_proj = nn.Sequential( # map the text embeddings to vision encoder nn.Linear(self.config.vision_model_config.hidden_size, self.config.language_model_config.hidden_size), nn.GELU(), nn.Linear(self.config.language_model_config.hidden_size, self.config.language_model_config.hidden_size) ) self.text_to_vision_proj = nn.Sequential( nn.Linear(self.config.language_model_config.hidden_size, self.config.vision_model_config.hidden_size), nn.GELU(), nn.Linear(self.config.vision_model_config.hidden_size, self.config.vision_model_config.hidden_size) ) self.vision_rotary_emb = Qwen2_5_VLRotaryEmbedding(config.vision_model_config) self.text_rotary_emb = Qwen2_5_VLRotaryEmbedding(config.language_model_config) self.language_model.model.rotary_emb = self.text_rotary_emb for layer in self.language_model.model.layers: setattr(layer.self_attn, 'layer_idx', layer.self_attn.layer_idx + self.vision_model.config.num_hidden_layers) self.gradient_checkpointing = False def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, grid_hws: Optional[torch.LongTensor] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: use_cache = False if use_cache and past_key_values is None: past_key_values = DynamicCache() inputs_embeds = self.get_input_embeddings()(input_ids) inputs_embeds = self.text_to_vision_proj(inputs_embeds) is_dummy_input = pixel_values is not None and pixel_values.size(0) == 0 if is_dummy_input: pixel_values = torch.zeros((4,) + pixel_values.shape[1:], dtype=pixel_values.dtype, device=pixel_values.device) grid_hws = torch.tensor([[1, 2, 2]], dtype=torch.int32).to(pixel_values.device) if pixel_values is not None: vision_embeds = self.vision_model.patch_embed(pixel_values, grid_hws[:, 1:]) vision_embeds_list = patch_merger( vision_embeds, grid_hws[:, 1:], merge_kernel_size=self.vision_model.merge_kernel_size ) vision_embeds = self.vision_model.pixel_merger(torch.cat(vision_embeds_list).view(-1, vision_embeds.shape[-1] * 4)) vision_mask = (input_ids == self.config.image_token_id).to(inputs_embeds.device) inputs_embeds[vision_mask] = vision_embeds image_token_lens = (grid_hws.prod(dim=1) // 4) bsz, src_len = attention_mask.size() causal_mask = attention_mask[:, None, None, :].expand(bsz, 1, src_len, src_len).to(inputs_embeds.dtype) causal_mask.tril_() idx = 0 for i, _ in enumerate(causal_mask): vision_mask = input_ids[i] == self.config.image_token_id while (vision_mask.sum() > 0): start = torch.nonzero(vision_mask)[0][0] num = image_token_lens[idx] idx += 1 causal_mask[i, 0, start:start+num, start:start+num] = 1 vision_mask[start:start+num] = 0 causal_mask = 1.0 - causal_mask causal_mask = causal_mask.masked_fill(causal_mask.to(torch.bool), torch.finfo(vision_embeds.dtype).min) else: causal_mask = None if self.is_gradient_checkpointing and torch.is_grad_enabled() and self.training: inputs_embeds.requires_grad_(True) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None and (attention_mask is None or attention_mask.ndim == 2): # calculate RoPE index once per generation in the pre-fill stage only if ( (cache_position is not None and cache_position[0] == 0) or self.rope_deltas is None or (past_key_values is None or past_key_values.get_seq_length() == 0) ): position_ids, rope_deltas = get_rope_index( self.config.image_token_id, self.config.video_token_id, self.config.vision_start_token_id, spatial_merge_size=2, input_ids=input_ids, image_grid_thw=grid_hws, video_grid_thw=None, attention_mask=attention_mask ) self.rope_deltas = rope_deltas # then use the prev pre-calculated rope-deltas to get the correct position ids else: batch_size, seq_length, _ = inputs_embeds.shape delta = ( (cache_position[0] + self.rope_deltas).to(inputs_embeds.device) if cache_position is not None else 0 ) position_ids = torch.arange(seq_length, device=inputs_embeds.device) position_ids = position_ids.view(1, -1).expand(batch_size, -1) if cache_position is not None: # otherwise `deltas` is an int `0` delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0) position_ids = position_ids.add(delta) position_ids = position_ids.unsqueeze(0).expand(3, -1, -1) position_embeddings = self.vision_rotary_emb(inputs_embeds, position_ids) inputs_embeds = self.vision_model.encoder(inputs_embeds, causal_mask, position_embeddings, past_key_values) # return ModelOutput( # last_hidden_state=self.vision_model.projector(inputs_embeds), # text_hidden_state=self.vision_to_text_proj(inputs_embeds), # ) inputs_embeds = self.vision_to_text_proj(inputs_embeds) outputs = self.language_model( input_ids=None, labels=labels, attention_mask=causal_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, cache_position=cache_position, return_dict=True, ) return ModelOutput( loss=outputs.loss, logits=outputs.logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None): super().gradient_checkpointing_enable(gradient_checkpointing_kwargs) self.language_model.enable_input_require_grads() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def get_output_embeddings(self): return self.language_model.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def set_decoder(self, decoder): self.language_model.set_decoder(decoder) def get_decoder(self): return self.language_model.get_decoder() def tie_weights(self): return self.language_model.tie_weights() def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, pixel_values=None, **kwargs, ): # Overwritten -- in specific circumstances we don't want to forward image inputs to the model model_inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, inputs_embeds=inputs_embeds, cache_position=cache_position, position_ids=position_ids, pixel_values=pixel_values, use_cache=use_cache, **kwargs, ) # Qwen2-5-VL position_ids are prepareed with rope_deltas in forward model_inputs["position_ids"] = None if cache_position[0] != 0: model_inputs["pixel_values"] = None return model_inputs