Model save
Browse files- .gitattributes +1 -0
- README.md +68 -0
- added_tokens.json +24 -0
- all_results.json +8 -0
- config.json +30 -0
- generation_config.json +6 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +209 -0
- train_results.json +8 -0
- trainer_state.json +1509 -0
- training_args.bin +3 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Qwen/Qwen2.5-Math-7B
|
| 3 |
+
library_name: transformers
|
| 4 |
+
model_name: Qwen-2.5-7B-Simple-RL
|
| 5 |
+
tags:
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- trl
|
| 8 |
+
- grpo
|
| 9 |
+
licence: license
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Model Card for Qwen-2.5-7B-Simple-RL
|
| 13 |
+
|
| 14 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
|
| 15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
| 16 |
+
|
| 17 |
+
## Quick start
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from transformers import pipeline
|
| 21 |
+
|
| 22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
| 23 |
+
generator = pipeline("text-generation", model="skzxjus/Qwen-2.5-7B-Simple-RL", device="cuda")
|
| 24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
| 25 |
+
print(output["generated_text"])
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
+
## Training procedure
|
| 29 |
+
|
| 30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/llmsft/huggingface/runs/6er3kbh6)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
| 34 |
+
|
| 35 |
+
### Framework versions
|
| 36 |
+
|
| 37 |
+
- TRL: 0.15.0.dev0
|
| 38 |
+
- Transformers: 4.49.0.dev0
|
| 39 |
+
- Pytorch: 2.5.1
|
| 40 |
+
- Datasets: 3.2.0
|
| 41 |
+
- Tokenizers: 0.21.0
|
| 42 |
+
|
| 43 |
+
## Citations
|
| 44 |
+
|
| 45 |
+
Cite GRPO as:
|
| 46 |
+
|
| 47 |
+
```bibtex
|
| 48 |
+
@article{zhihong2024deepseekmath,
|
| 49 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
| 50 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
| 51 |
+
year = 2024,
|
| 52 |
+
eprint = {arXiv:2402.03300},
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
Cite TRL as:
|
| 58 |
+
|
| 59 |
+
```bibtex
|
| 60 |
+
@misc{vonwerra2022trl,
|
| 61 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 62 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
| 63 |
+
year = 2020,
|
| 64 |
+
journal = {GitHub repository},
|
| 65 |
+
publisher = {GitHub},
|
| 66 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 67 |
+
}
|
| 68 |
+
```
|
added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
all_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 0.0,
|
| 3 |
+
"train_loss": 0.036631251517900455,
|
| 4 |
+
"train_runtime": 117440.362,
|
| 5 |
+
"train_samples": 7500,
|
| 6 |
+
"train_samples_per_second": 0.064,
|
| 7 |
+
"train_steps_per_second": 0.004
|
| 8 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Qwen/Qwen2.5-Math-7B",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2ForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151643,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 3584,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 18944,
|
| 13 |
+
"max_position_embeddings": 4096,
|
| 14 |
+
"max_window_layers": 28,
|
| 15 |
+
"model_type": "qwen2",
|
| 16 |
+
"num_attention_heads": 28,
|
| 17 |
+
"num_hidden_layers": 28,
|
| 18 |
+
"num_key_value_heads": 4,
|
| 19 |
+
"rms_norm_eps": 1e-06,
|
| 20 |
+
"rope_scaling": null,
|
| 21 |
+
"rope_theta": 10000,
|
| 22 |
+
"sliding_window": null,
|
| 23 |
+
"tie_word_embeddings": false,
|
| 24 |
+
"torch_dtype": "bfloat16",
|
| 25 |
+
"transformers_version": "4.49.0.dev0",
|
| 26 |
+
"use_cache": false,
|
| 27 |
+
"use_mrope": false,
|
| 28 |
+
"use_sliding_window": false,
|
| 29 |
+
"vocab_size": 152064
|
| 30 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"eos_token_id": 151643,
|
| 4 |
+
"max_new_tokens": 2048,
|
| 5 |
+
"transformers_version": "4.49.0.dev0"
|
| 6 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:935b6fb3bf17069614040a9860e85d1ff2b89d6837626e43c1a5aa4b2bc94c63
|
| 3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63b858a7499543d98484c54b6731a8c49e94dd3a3fc9a112f4c3894be898d517
|
| 3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb3e56a2a0f10beec9e06e594688b922d8e8da42429c7bbfb28f7486f1c573ba
|
| 3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a494c67e2978f79d97857480b1a29dcf6507204e7fe0498221b4e713731e269d
|
| 3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15231233024
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 345 |
+
}
|
| 346 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
| 3 |
+
size 11422063
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|endoftext|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"padding_side": "left",
|
| 206 |
+
"split_special_tokens": false,
|
| 207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
+
"unk_token": null
|
| 209 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"total_flos": 0.0,
|
| 3 |
+
"train_loss": 0.036631251517900455,
|
| 4 |
+
"train_runtime": 117440.362,
|
| 5 |
+
"train_samples": 7500,
|
| 6 |
+
"train_samples_per_second": 0.064,
|
| 7 |
+
"train_steps_per_second": 0.004
|
| 8 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,1509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.9984,
|
| 5 |
+
"eval_steps": 100,
|
| 6 |
+
"global_step": 468,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"completion_length": 631.1214530944824,
|
| 13 |
+
"epoch": 0.010666666666666666,
|
| 14 |
+
"grad_norm": 0.6909348368644714,
|
| 15 |
+
"kl": 0.00010949373245239258,
|
| 16 |
+
"learning_rate": 3.1914893617021275e-07,
|
| 17 |
+
"loss": 0.0,
|
| 18 |
+
"reward": 1.1349456831812859,
|
| 19 |
+
"reward_std": 0.8583761740475893,
|
| 20 |
+
"rewards/accuracy_reward": 0.5839285984635353,
|
| 21 |
+
"rewards/cosine_scaled_reward": 0.28554085849318656,
|
| 22 |
+
"rewards/format_reward": 0.001785714365541935,
|
| 23 |
+
"rewards/reasoning_steps_reward": 0.26369049251079557,
|
| 24 |
+
"step": 5
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"completion_length": 624.9053833007813,
|
| 28 |
+
"epoch": 0.021333333333333333,
|
| 29 |
+
"grad_norm": 1.4107904434204102,
|
| 30 |
+
"kl": 0.00033826828002929686,
|
| 31 |
+
"learning_rate": 6.382978723404255e-07,
|
| 32 |
+
"loss": 0.0,
|
| 33 |
+
"reward": 1.226787830889225,
|
| 34 |
+
"reward_std": 0.8526847071945667,
|
| 35 |
+
"rewards/accuracy_reward": 0.623214316368103,
|
| 36 |
+
"rewards/cosine_scaled_reward": 0.3333354140922893,
|
| 37 |
+
"rewards/format_reward": 0.0,
|
| 38 |
+
"rewards/reasoning_steps_reward": 0.2702381147071719,
|
| 39 |
+
"step": 10
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"completion_length": 604.6678848266602,
|
| 43 |
+
"epoch": 0.032,
|
| 44 |
+
"grad_norm": 2.2000041007995605,
|
| 45 |
+
"kl": 0.0002985477447509766,
|
| 46 |
+
"learning_rate": 9.574468085106384e-07,
|
| 47 |
+
"loss": 0.0,
|
| 48 |
+
"reward": 1.345777890086174,
|
| 49 |
+
"reward_std": 0.7787790141999722,
|
| 50 |
+
"rewards/accuracy_reward": 0.6839286014437675,
|
| 51 |
+
"rewards/cosine_scaled_reward": 0.35946831991896033,
|
| 52 |
+
"rewards/format_reward": 0.0,
|
| 53 |
+
"rewards/reasoning_steps_reward": 0.3023809714242816,
|
| 54 |
+
"step": 15
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"completion_length": 616.6214538574219,
|
| 58 |
+
"epoch": 0.042666666666666665,
|
| 59 |
+
"grad_norm": 2.0853445529937744,
|
| 60 |
+
"kl": 0.0005875349044799805,
|
| 61 |
+
"learning_rate": 1.276595744680851e-06,
|
| 62 |
+
"loss": 0.0,
|
| 63 |
+
"reward": 1.189492864906788,
|
| 64 |
+
"reward_std": 0.7714623443782329,
|
| 65 |
+
"rewards/accuracy_reward": 0.6446428891271353,
|
| 66 |
+
"rewards/cosine_scaled_reward": 0.3246118599548936,
|
| 67 |
+
"rewards/format_reward": 0.0,
|
| 68 |
+
"rewards/reasoning_steps_reward": 0.2202381099574268,
|
| 69 |
+
"step": 20
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"completion_length": 625.9143142700195,
|
| 73 |
+
"epoch": 0.05333333333333334,
|
| 74 |
+
"grad_norm": 0.7545832991600037,
|
| 75 |
+
"kl": 0.001489543914794922,
|
| 76 |
+
"learning_rate": 1.5957446808510639e-06,
|
| 77 |
+
"loss": 0.0001,
|
| 78 |
+
"reward": 1.2568627644330264,
|
| 79 |
+
"reward_std": 0.7405834712088109,
|
| 80 |
+
"rewards/accuracy_reward": 0.6482143104076385,
|
| 81 |
+
"rewards/cosine_scaled_reward": 0.3449579537729733,
|
| 82 |
+
"rewards/format_reward": 0.0,
|
| 83 |
+
"rewards/reasoning_steps_reward": 0.263690494094044,
|
| 84 |
+
"step": 25
|
| 85 |
+
},
|
| 86 |
+
{
|
| 87 |
+
"completion_length": 645.5393142700195,
|
| 88 |
+
"epoch": 0.064,
|
| 89 |
+
"grad_norm": 0.6036539077758789,
|
| 90 |
+
"kl": 0.0018674850463867188,
|
| 91 |
+
"learning_rate": 1.9148936170212767e-06,
|
| 92 |
+
"loss": 0.0001,
|
| 93 |
+
"reward": 1.389559542015195,
|
| 94 |
+
"reward_std": 0.7100211177021265,
|
| 95 |
+
"rewards/accuracy_reward": 0.7000000335276126,
|
| 96 |
+
"rewards/cosine_scaled_reward": 0.39848807696253064,
|
| 97 |
+
"rewards/format_reward": 0.0,
|
| 98 |
+
"rewards/reasoning_steps_reward": 0.2910714516416192,
|
| 99 |
+
"step": 30
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"completion_length": 643.8160987854004,
|
| 103 |
+
"epoch": 0.07466666666666667,
|
| 104 |
+
"grad_norm": 2.453434944152832,
|
| 105 |
+
"kl": 0.004115867614746094,
|
| 106 |
+
"learning_rate": 2.2340425531914894e-06,
|
| 107 |
+
"loss": 0.0002,
|
| 108 |
+
"reward": 1.3226542802527548,
|
| 109 |
+
"reward_std": 0.6742276091128587,
|
| 110 |
+
"rewards/accuracy_reward": 0.6857143167406321,
|
| 111 |
+
"rewards/cosine_scaled_reward": 0.3619399464019807,
|
| 112 |
+
"rewards/format_reward": 0.0,
|
| 113 |
+
"rewards/reasoning_steps_reward": 0.275000019185245,
|
| 114 |
+
"step": 35
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"completion_length": 657.0893188476563,
|
| 118 |
+
"epoch": 0.08533333333333333,
|
| 119 |
+
"grad_norm": 0.46775656938552856,
|
| 120 |
+
"kl": 0.002264881134033203,
|
| 121 |
+
"learning_rate": 2.553191489361702e-06,
|
| 122 |
+
"loss": 0.0001,
|
| 123 |
+
"reward": 1.475758495926857,
|
| 124 |
+
"reward_std": 0.7186904706060886,
|
| 125 |
+
"rewards/accuracy_reward": 0.710714315623045,
|
| 126 |
+
"rewards/cosine_scaled_reward": 0.41266319632995874,
|
| 127 |
+
"rewards/format_reward": 0.0,
|
| 128 |
+
"rewards/reasoning_steps_reward": 0.3523809779435396,
|
| 129 |
+
"step": 40
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"completion_length": 632.8946701049805,
|
| 133 |
+
"epoch": 0.096,
|
| 134 |
+
"grad_norm": 0.7844781279563904,
|
| 135 |
+
"kl": 0.0034459114074707033,
|
| 136 |
+
"learning_rate": 2.872340425531915e-06,
|
| 137 |
+
"loss": 0.0001,
|
| 138 |
+
"reward": 1.5175182670354843,
|
| 139 |
+
"reward_std": 0.7221973031759262,
|
| 140 |
+
"rewards/accuracy_reward": 0.7196428939700127,
|
| 141 |
+
"rewards/cosine_scaled_reward": 0.42585154054686425,
|
| 142 |
+
"rewards/format_reward": 0.0,
|
| 143 |
+
"rewards/reasoning_steps_reward": 0.3720238355919719,
|
| 144 |
+
"step": 45
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"completion_length": 643.4964591979981,
|
| 148 |
+
"epoch": 0.10666666666666667,
|
| 149 |
+
"grad_norm": 0.7251370549201965,
|
| 150 |
+
"kl": 0.004925918579101562,
|
| 151 |
+
"learning_rate": 2.9996241442585123e-06,
|
| 152 |
+
"loss": 0.0002,
|
| 153 |
+
"reward": 1.4811092048883439,
|
| 154 |
+
"reward_std": 0.7391483150422573,
|
| 155 |
+
"rewards/accuracy_reward": 0.6875000253319741,
|
| 156 |
+
"rewards/cosine_scaled_reward": 0.39063297407701614,
|
| 157 |
+
"rewards/format_reward": 0.0,
|
| 158 |
+
"rewards/reasoning_steps_reward": 0.40297621972858905,
|
| 159 |
+
"step": 50
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"completion_length": 652.8803886413574,
|
| 163 |
+
"epoch": 0.11733333333333333,
|
| 164 |
+
"grad_norm": 0.6968328356742859,
|
| 165 |
+
"kl": 0.005688285827636719,
|
| 166 |
+
"learning_rate": 2.9973279301399446e-06,
|
| 167 |
+
"loss": 0.0002,
|
| 168 |
+
"reward": 1.4968807369470596,
|
| 169 |
+
"reward_std": 0.7624544829130173,
|
| 170 |
+
"rewards/accuracy_reward": 0.6803571686148644,
|
| 171 |
+
"rewards/cosine_scaled_reward": 0.3891425724606961,
|
| 172 |
+
"rewards/format_reward": 0.0,
|
| 173 |
+
"rewards/reasoning_steps_reward": 0.427380982413888,
|
| 174 |
+
"step": 55
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"completion_length": 645.0214546203613,
|
| 178 |
+
"epoch": 0.128,
|
| 179 |
+
"grad_norm": 2.436361074447632,
|
| 180 |
+
"kl": 0.008457565307617187,
|
| 181 |
+
"learning_rate": 2.992947502998804e-06,
|
| 182 |
+
"loss": 0.0003,
|
| 183 |
+
"reward": 1.7154926896095275,
|
| 184 |
+
"reward_std": 0.7312843732535839,
|
| 185 |
+
"rewards/accuracy_reward": 0.7392857454717159,
|
| 186 |
+
"rewards/cosine_scaled_reward": 0.4434688203968108,
|
| 187 |
+
"rewards/format_reward": 0.0,
|
| 188 |
+
"rewards/reasoning_steps_reward": 0.532738133519888,
|
| 189 |
+
"step": 60
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"completion_length": 647.5053848266601,
|
| 193 |
+
"epoch": 0.13866666666666666,
|
| 194 |
+
"grad_norm": 0.6552297472953796,
|
| 195 |
+
"kl": 0.012276077270507812,
|
| 196 |
+
"learning_rate": 2.9864889601923268e-06,
|
| 197 |
+
"loss": 0.0005,
|
| 198 |
+
"reward": 1.6644052103161813,
|
| 199 |
+
"reward_std": 0.7361363507807255,
|
| 200 |
+
"rewards/accuracy_reward": 0.6964286014437675,
|
| 201 |
+
"rewards/cosine_scaled_reward": 0.4126194438431412,
|
| 202 |
+
"rewards/format_reward": 0.0,
|
| 203 |
+
"rewards/reasoning_steps_reward": 0.5553571883589029,
|
| 204 |
+
"step": 65
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"completion_length": 657.8196716308594,
|
| 208 |
+
"epoch": 0.14933333333333335,
|
| 209 |
+
"grad_norm": 0.43994271755218506,
|
| 210 |
+
"kl": 0.011707305908203125,
|
| 211 |
+
"learning_rate": 2.977961291721137e-06,
|
| 212 |
+
"loss": 0.0005,
|
| 213 |
+
"reward": 1.8486495822668076,
|
| 214 |
+
"reward_std": 0.7102579422295093,
|
| 215 |
+
"rewards/accuracy_reward": 0.7625000298023223,
|
| 216 |
+
"rewards/cosine_scaled_reward": 0.45876856660470366,
|
| 217 |
+
"rewards/format_reward": 0.0,
|
| 218 |
+
"rewards/reasoning_steps_reward": 0.6273810021579266,
|
| 219 |
+
"step": 70
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"completion_length": 623.4339591979981,
|
| 223 |
+
"epoch": 0.16,
|
| 224 |
+
"grad_norm": 1.5503960847854614,
|
| 225 |
+
"kl": 0.01746063232421875,
|
| 226 |
+
"learning_rate": 2.9673763677155655e-06,
|
| 227 |
+
"loss": 0.0007,
|
| 228 |
+
"reward": 1.774902778863907,
|
| 229 |
+
"reward_std": 0.739626408368349,
|
| 230 |
+
"rewards/accuracy_reward": 0.7125000357627869,
|
| 231 |
+
"rewards/cosine_scaled_reward": 0.3999027090612799,
|
| 232 |
+
"rewards/format_reward": 0.0,
|
| 233 |
+
"rewards/reasoning_steps_reward": 0.6625000484287739,
|
| 234 |
+
"step": 75
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"completion_length": 618.9946701049805,
|
| 238 |
+
"epoch": 0.17066666666666666,
|
| 239 |
+
"grad_norm": 0.509928822517395,
|
| 240 |
+
"kl": 0.01522216796875,
|
| 241 |
+
"learning_rate": 2.9547489219129666e-06,
|
| 242 |
+
"loss": 0.0006,
|
| 243 |
+
"reward": 1.8727758958935738,
|
| 244 |
+
"reward_std": 0.694974098354578,
|
| 245 |
+
"rewards/accuracy_reward": 0.7660714659839869,
|
| 246 |
+
"rewards/cosine_scaled_reward": 0.4501567647792399,
|
| 247 |
+
"rewards/format_reward": 0.0,
|
| 248 |
+
"rewards/reasoning_steps_reward": 0.6565476655960083,
|
| 249 |
+
"step": 80
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"completion_length": 666.6053817749023,
|
| 253 |
+
"epoch": 0.18133333333333335,
|
| 254 |
+
"grad_norm": 0.9841728210449219,
|
| 255 |
+
"kl": 0.013214111328125,
|
| 256 |
+
"learning_rate": 2.9400965311490175e-06,
|
| 257 |
+
"loss": 0.0005,
|
| 258 |
+
"reward": 1.9131548389792443,
|
| 259 |
+
"reward_std": 0.6515475906431675,
|
| 260 |
+
"rewards/accuracy_reward": 0.7232143137603998,
|
| 261 |
+
"rewards/cosine_scaled_reward": 0.4464881077874452,
|
| 262 |
+
"rewards/format_reward": 0.0,
|
| 263 |
+
"rewards/reasoning_steps_reward": 0.7434524357318878,
|
| 264 |
+
"step": 85
|
| 265 |
+
},
|
| 266 |
+
{
|
| 267 |
+
"completion_length": 639.5339553833007,
|
| 268 |
+
"epoch": 0.192,
|
| 269 |
+
"grad_norm": 1.1210987567901611,
|
| 270 |
+
"kl": 0.01442108154296875,
|
| 271 |
+
"learning_rate": 2.9234395908915565e-06,
|
| 272 |
+
"loss": 0.0006,
|
| 273 |
+
"reward": 1.8604818418622018,
|
| 274 |
+
"reward_std": 0.6601141307502985,
|
| 275 |
+
"rewards/accuracy_reward": 0.6857143167406321,
|
| 276 |
+
"rewards/cosine_scaled_reward": 0.39738651625812055,
|
| 277 |
+
"rewards/format_reward": 0.001785714365541935,
|
| 278 |
+
"rewards/reasoning_steps_reward": 0.7755952969193458,
|
| 279 |
+
"step": 90
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"completion_length": 646.3982467651367,
|
| 283 |
+
"epoch": 0.20266666666666666,
|
| 284 |
+
"grad_norm": 1.8718233108520508,
|
| 285 |
+
"kl": 0.017840576171875,
|
| 286 |
+
"learning_rate": 2.904801286851009e-06,
|
| 287 |
+
"loss": 0.0007,
|
| 288 |
+
"reward": 1.9381854191422463,
|
| 289 |
+
"reward_std": 0.60800197198987,
|
| 290 |
+
"rewards/accuracy_reward": 0.7071428872644901,
|
| 291 |
+
"rewards/cosine_scaled_reward": 0.4096139133675024,
|
| 292 |
+
"rewards/format_reward": 0.0,
|
| 293 |
+
"rewards/reasoning_steps_reward": 0.8214286342263222,
|
| 294 |
+
"step": 95
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"completion_length": 602.1875228881836,
|
| 298 |
+
"epoch": 0.21333333333333335,
|
| 299 |
+
"grad_norm": 2.6090805530548096,
|
| 300 |
+
"kl": 0.02310333251953125,
|
| 301 |
+
"learning_rate": 2.884207562706925e-06,
|
| 302 |
+
"loss": 0.0009,
|
| 303 |
+
"reward": 2.1229332089424133,
|
| 304 |
+
"reward_std": 0.5944005899131298,
|
| 305 |
+
"rewards/accuracy_reward": 0.8000000335276127,
|
| 306 |
+
"rewards/cosine_scaled_reward": 0.49852837100625036,
|
| 307 |
+
"rewards/format_reward": 0.0,
|
| 308 |
+
"rewards/reasoning_steps_reward": 0.8244048207998276,
|
| 309 |
+
"step": 100
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"epoch": 0.21333333333333335,
|
| 313 |
+
"eval_completion_length": 641.7788288208008,
|
| 314 |
+
"eval_kl": 0.0251678466796875,
|
| 315 |
+
"eval_loss": 0.0009895984549075365,
|
| 316 |
+
"eval_reward": 1.92431583173275,
|
| 317 |
+
"eval_reward_std": 0.6558538222849369,
|
| 318 |
+
"eval_rewards/accuracy_reward": 0.6669143144667149,
|
| 319 |
+
"eval_rewards/cosine_scaled_reward": 0.3816490911774221,
|
| 320 |
+
"eval_rewards/format_reward": 0.0001428571492433548,
|
| 321 |
+
"eval_rewards/reasoning_steps_reward": 0.8756095867991447,
|
| 322 |
+
"eval_runtime": 20717.2483,
|
| 323 |
+
"eval_samples_per_second": 0.241,
|
| 324 |
+
"eval_steps_per_second": 0.017,
|
| 325 |
+
"step": 100
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"completion_length": 654.980387878418,
|
| 329 |
+
"epoch": 0.224,
|
| 330 |
+
"grad_norm": 0.7697030901908875,
|
| 331 |
+
"kl": 0.02506561279296875,
|
| 332 |
+
"learning_rate": 2.8616870839955444e-06,
|
| 333 |
+
"loss": 0.001,
|
| 334 |
+
"reward": 2.0908009231090547,
|
| 335 |
+
"reward_std": 0.6430241191759706,
|
| 336 |
+
"rewards/accuracy_reward": 0.7428571812808513,
|
| 337 |
+
"rewards/cosine_scaled_reward": 0.45687227630987765,
|
| 338 |
+
"rewards/format_reward": 0.0,
|
| 339 |
+
"rewards/reasoning_steps_reward": 0.8910714864730835,
|
| 340 |
+
"step": 105
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"completion_length": 687.5053863525391,
|
| 344 |
+
"epoch": 0.23466666666666666,
|
| 345 |
+
"grad_norm": 1.5209710597991943,
|
| 346 |
+
"kl": 0.0304779052734375,
|
| 347 |
+
"learning_rate": 2.837271198208662e-06,
|
| 348 |
+
"loss": 0.0012,
|
| 349 |
+
"reward": 2.1170908212661743,
|
| 350 |
+
"reward_std": 0.6039011087268591,
|
| 351 |
+
"rewards/accuracy_reward": 0.7339286006987095,
|
| 352 |
+
"rewards/cosine_scaled_reward": 0.4647097608074546,
|
| 353 |
+
"rewards/format_reward": 0.0,
|
| 354 |
+
"rewards/reasoning_steps_reward": 0.9184524416923523,
|
| 355 |
+
"step": 110
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"completion_length": 639.716096496582,
|
| 359 |
+
"epoch": 0.24533333333333332,
|
| 360 |
+
"grad_norm": 0.7531526684761047,
|
| 361 |
+
"kl": 0.0342376708984375,
|
| 362 |
+
"learning_rate": 2.8109938911593322e-06,
|
| 363 |
+
"loss": 0.0014,
|
| 364 |
+
"reward": 2.075811105966568,
|
| 365 |
+
"reward_std": 0.559355116635561,
|
| 366 |
+
"rewards/accuracy_reward": 0.7160714510828257,
|
| 367 |
+
"rewards/cosine_scaled_reward": 0.4240253158146515,
|
| 368 |
+
"rewards/format_reward": 0.0,
|
| 369 |
+
"rewards/reasoning_steps_reward": 0.9357143342494965,
|
| 370 |
+
"step": 115
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"completion_length": 668.7660995483399,
|
| 374 |
+
"epoch": 0.256,
|
| 375 |
+
"grad_norm": 0.9209851026535034,
|
| 376 |
+
"kl": 0.0358154296875,
|
| 377 |
+
"learning_rate": 2.7828917396751474e-06,
|
| 378 |
+
"loss": 0.0015,
|
| 379 |
+
"reward": 2.127332517504692,
|
| 380 |
+
"reward_std": 0.601556234434247,
|
| 381 |
+
"rewards/accuracy_reward": 0.7267857434228062,
|
| 382 |
+
"rewards/cosine_scaled_reward": 0.4559038822539151,
|
| 383 |
+
"rewards/format_reward": 0.0,
|
| 384 |
+
"rewards/reasoning_steps_reward": 0.9446429044008255,
|
| 385 |
+
"step": 120
|
| 386 |
+
},
|
| 387 |
+
{
|
| 388 |
+
"completion_length": 676.3518180847168,
|
| 389 |
+
"epoch": 0.26666666666666666,
|
| 390 |
+
"grad_norm": 0.6511895060539246,
|
| 391 |
+
"kl": 0.0373077392578125,
|
| 392 |
+
"learning_rate": 2.753003860684943e-06,
|
| 393 |
+
"loss": 0.0015,
|
| 394 |
+
"reward": 2.2261758178472517,
|
| 395 |
+
"reward_std": 0.6260890623554587,
|
| 396 |
+
"rewards/accuracy_reward": 0.7714286014437676,
|
| 397 |
+
"rewards/cosine_scaled_reward": 0.5190328445285559,
|
| 398 |
+
"rewards/format_reward": 0.0,
|
| 399 |
+
"rewards/reasoning_steps_reward": 0.9357143476605415,
|
| 400 |
+
"step": 125
|
| 401 |
+
},
|
| 402 |
+
{
|
| 403 |
+
"completion_length": 692.8714576721192,
|
| 404 |
+
"epoch": 0.2773333333333333,
|
| 405 |
+
"grad_norm": 0.5059028267860413,
|
| 406 |
+
"kl": 0.0350311279296875,
|
| 407 |
+
"learning_rate": 2.721371856769793e-06,
|
| 408 |
+
"loss": 0.0014,
|
| 409 |
+
"reward": 2.102233949303627,
|
| 410 |
+
"reward_std": 0.6460967320948839,
|
| 411 |
+
"rewards/accuracy_reward": 0.7053571756929159,
|
| 412 |
+
"rewards/cosine_scaled_reward": 0.44271006155759096,
|
| 413 |
+
"rewards/format_reward": 0.0,
|
| 414 |
+
"rewards/reasoning_steps_reward": 0.9541667267680168,
|
| 415 |
+
"step": 130
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"completion_length": 626.5982414245606,
|
| 419 |
+
"epoch": 0.288,
|
| 420 |
+
"grad_norm": 0.9745141863822937,
|
| 421 |
+
"kl": 0.0357391357421875,
|
| 422 |
+
"learning_rate": 2.688039758254093e-06,
|
| 423 |
+
"loss": 0.0014,
|
| 424 |
+
"reward": 2.290945905447006,
|
| 425 |
+
"reward_std": 0.566658615320921,
|
| 426 |
+
"rewards/accuracy_reward": 0.8071428859606385,
|
| 427 |
+
"rewards/cosine_scaled_reward": 0.5457077167928219,
|
| 428 |
+
"rewards/format_reward": 0.0,
|
| 429 |
+
"rewards/reasoning_steps_reward": 0.9380953028798104,
|
| 430 |
+
"step": 135
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"completion_length": 647.5911033630371,
|
| 434 |
+
"epoch": 0.2986666666666667,
|
| 435 |
+
"grad_norm": 0.8204265236854553,
|
| 436 |
+
"kl": 0.0362335205078125,
|
| 437 |
+
"learning_rate": 2.65305396191733e-06,
|
| 438 |
+
"loss": 0.0014,
|
| 439 |
+
"reward": 2.1995943754911425,
|
| 440 |
+
"reward_std": 0.6815032918006182,
|
| 441 |
+
"rewards/accuracy_reward": 0.7678571723401546,
|
| 442 |
+
"rewards/cosine_scaled_reward": 0.5103085894137621,
|
| 443 |
+
"rewards/format_reward": 0.00357142873108387,
|
| 444 |
+
"rewards/reasoning_steps_reward": 0.9178572073578835,
|
| 445 |
+
"step": 140
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"completion_length": 672.96967086792,
|
| 449 |
+
"epoch": 0.30933333333333335,
|
| 450 |
+
"grad_norm": 2.2863059043884277,
|
| 451 |
+
"kl": 0.0353759765625,
|
| 452 |
+
"learning_rate": 2.61646316641186e-06,
|
| 453 |
+
"loss": 0.0014,
|
| 454 |
+
"reward": 2.0759469985961916,
|
| 455 |
+
"reward_std": 0.706667598336935,
|
| 456 |
+
"rewards/accuracy_reward": 0.7125000339001417,
|
| 457 |
+
"rewards/cosine_scaled_reward": 0.4384469170589,
|
| 458 |
+
"rewards/format_reward": 0.0,
|
| 459 |
+
"rewards/reasoning_steps_reward": 0.9250000521540642,
|
| 460 |
+
"step": 145
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"completion_length": 664.0589607238769,
|
| 464 |
+
"epoch": 0.32,
|
| 465 |
+
"grad_norm": 0.6098917722702026,
|
| 466 |
+
"kl": 0.0397186279296875,
|
| 467 |
+
"learning_rate": 2.5783183044765715e-06,
|
| 468 |
+
"loss": 0.0016,
|
| 469 |
+
"reward": 2.00558588206768,
|
| 470 |
+
"reward_std": 0.7086378004401922,
|
| 471 |
+
"rewards/accuracy_reward": 0.6821428902447224,
|
| 472 |
+
"rewards/cosine_scaled_reward": 0.4186810594052076,
|
| 473 |
+
"rewards/format_reward": 0.0,
|
| 474 |
+
"rewards/reasoning_steps_reward": 0.9047619655728341,
|
| 475 |
+
"step": 150
|
| 476 |
+
},
|
| 477 |
+
{
|
| 478 |
+
"completion_length": 674.0750328063965,
|
| 479 |
+
"epoch": 0.33066666666666666,
|
| 480 |
+
"grad_norm": 0.8959779739379883,
|
| 481 |
+
"kl": 0.050909423828125,
|
| 482 |
+
"learning_rate": 2.5386724720408135e-06,
|
| 483 |
+
"loss": 0.002,
|
| 484 |
+
"reward": 2.008633776009083,
|
| 485 |
+
"reward_std": 0.7557358780875802,
|
| 486 |
+
"rewards/accuracy_reward": 0.6803571756929159,
|
| 487 |
+
"rewards/cosine_scaled_reward": 0.437205099593848,
|
| 488 |
+
"rewards/format_reward": 0.001785714365541935,
|
| 489 |
+
"rewards/reasoning_steps_reward": 0.8892857730388641,
|
| 490 |
+
"step": 155
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"completion_length": 670.244669342041,
|
| 494 |
+
"epoch": 0.3413333333333333,
|
| 495 |
+
"grad_norm": 0.5438752770423889,
|
| 496 |
+
"kl": 0.07694091796875,
|
| 497 |
+
"learning_rate": 2.49758085431725e-06,
|
| 498 |
+
"loss": 0.0031,
|
| 499 |
+
"reward": 1.9426198080182076,
|
| 500 |
+
"reward_std": 0.6488124974071979,
|
| 501 |
+
"rewards/accuracy_reward": 0.6803571708500386,
|
| 502 |
+
"rewards/cosine_scaled_reward": 0.39261971979867666,
|
| 503 |
+
"rewards/format_reward": 0.0,
|
| 504 |
+
"rewards/reasoning_steps_reward": 0.8696429163217545,
|
| 505 |
+
"step": 160
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"completion_length": 705.6607482910156,
|
| 509 |
+
"epoch": 0.352,
|
| 510 |
+
"grad_norm": 1.0254724025726318,
|
| 511 |
+
"kl": 0.1366790771484375,
|
| 512 |
+
"learning_rate": 2.455100648986533e-06,
|
| 513 |
+
"loss": 0.0055,
|
| 514 |
+
"reward": 1.9435187339782716,
|
| 515 |
+
"reward_std": 0.74994295835495,
|
| 516 |
+
"rewards/accuracy_reward": 0.6660714631900191,
|
| 517 |
+
"rewards/cosine_scaled_reward": 0.4214948390610516,
|
| 518 |
+
"rewards/format_reward": 0.0,
|
| 519 |
+
"rewards/reasoning_steps_reward": 0.8559524461627006,
|
| 520 |
+
"step": 165
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"completion_length": 703.3446784973145,
|
| 524 |
+
"epoch": 0.3626666666666667,
|
| 525 |
+
"grad_norm": 0.7715374231338501,
|
| 526 |
+
"kl": 0.13954315185546876,
|
| 527 |
+
"learning_rate": 2.4112909865807053e-06,
|
| 528 |
+
"loss": 0.0056,
|
| 529 |
+
"reward": 1.855338068306446,
|
| 530 |
+
"reward_std": 0.750602075085044,
|
| 531 |
+
"rewards/accuracy_reward": 0.6232143130153418,
|
| 532 |
+
"rewards/cosine_scaled_reward": 0.36545706654433163,
|
| 533 |
+
"rewards/format_reward": 0.0,
|
| 534 |
+
"rewards/reasoning_steps_reward": 0.8666667252779007,
|
| 535 |
+
"step": 170
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"completion_length": 682.3285972595215,
|
| 539 |
+
"epoch": 0.37333333333333335,
|
| 540 |
+
"grad_norm": 0.6281430721282959,
|
| 541 |
+
"kl": 0.0823638916015625,
|
| 542 |
+
"learning_rate": 2.366212848176164e-06,
|
| 543 |
+
"loss": 0.0033,
|
| 544 |
+
"reward": 2.0821879684925078,
|
| 545 |
+
"reward_std": 0.6594970747828484,
|
| 546 |
+
"rewards/accuracy_reward": 0.7321428842842579,
|
| 547 |
+
"rewards/cosine_scaled_reward": 0.4786164700053632,
|
| 548 |
+
"rewards/format_reward": 0.0,
|
| 549 |
+
"rewards/reasoning_steps_reward": 0.8714286372065544,
|
| 550 |
+
"step": 175
|
| 551 |
+
},
|
| 552 |
+
{
|
| 553 |
+
"completion_length": 642.4875274658203,
|
| 554 |
+
"epoch": 0.384,
|
| 555 |
+
"grad_norm": 0.7311661243438721,
|
| 556 |
+
"kl": 0.0912109375,
|
| 557 |
+
"learning_rate": 2.319928980510752e-06,
|
| 558 |
+
"loss": 0.0036,
|
| 559 |
+
"reward": 2.176451873779297,
|
| 560 |
+
"reward_std": 0.666511994227767,
|
| 561 |
+
"rewards/accuracy_reward": 0.7696428835391999,
|
| 562 |
+
"rewards/cosine_scaled_reward": 0.509189874585718,
|
| 563 |
+
"rewards/format_reward": 0.0,
|
| 564 |
+
"rewards/reasoning_steps_reward": 0.8976191058754921,
|
| 565 |
+
"step": 180
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"completion_length": 679.0821708679199,
|
| 569 |
+
"epoch": 0.39466666666666667,
|
| 570 |
+
"grad_norm": 0.4346056282520294,
|
| 571 |
+
"kl": 0.078515625,
|
| 572 |
+
"learning_rate": 2.272503808643123e-06,
|
| 573 |
+
"loss": 0.0031,
|
| 574 |
+
"reward": 2.01886305809021,
|
| 575 |
+
"reward_std": 0.6258400946855545,
|
| 576 |
+
"rewards/accuracy_reward": 0.6857143115252257,
|
| 577 |
+
"rewards/cosine_scaled_reward": 0.4248154018074274,
|
| 578 |
+
"rewards/format_reward": 0.0,
|
| 579 |
+
"rewards/reasoning_steps_reward": 0.9083333954215049,
|
| 580 |
+
"step": 185
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"completion_length": 650.3928825378418,
|
| 584 |
+
"epoch": 0.4053333333333333,
|
| 585 |
+
"grad_norm": 0.444560706615448,
|
| 586 |
+
"kl": 0.0803558349609375,
|
| 587 |
+
"learning_rate": 2.2240033462759628e-06,
|
| 588 |
+
"loss": 0.0032,
|
| 589 |
+
"reward": 2.268611046671867,
|
| 590 |
+
"reward_std": 0.5309645187109708,
|
| 591 |
+
"rewards/accuracy_reward": 0.7857143092900515,
|
| 592 |
+
"rewards/cosine_scaled_reward": 0.5328966917470097,
|
| 593 |
+
"rewards/format_reward": 0.0,
|
| 594 |
+
"rewards/reasoning_steps_reward": 0.9500000566244126,
|
| 595 |
+
"step": 190
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"completion_length": 702.928604888916,
|
| 599 |
+
"epoch": 0.416,
|
| 600 |
+
"grad_norm": 0.9547479748725891,
|
| 601 |
+
"kl": 0.112750244140625,
|
| 602 |
+
"learning_rate": 2.1744951038678905e-06,
|
| 603 |
+
"loss": 0.0045,
|
| 604 |
+
"reward": 2.1632190570235252,
|
| 605 |
+
"reward_std": 0.6817336268723011,
|
| 606 |
+
"rewards/accuracy_reward": 0.7214286040514708,
|
| 607 |
+
"rewards/cosine_scaled_reward": 0.4995284925447777,
|
| 608 |
+
"rewards/format_reward": 0.0,
|
| 609 |
+
"rewards/reasoning_steps_reward": 0.9422619566321373,
|
| 610 |
+
"step": 195
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"completion_length": 703.4661041259766,
|
| 614 |
+
"epoch": 0.4266666666666667,
|
| 615 |
+
"grad_norm": 0.5146152973175049,
|
| 616 |
+
"kl": 0.1219329833984375,
|
| 617 |
+
"learning_rate": 2.124047994661941e-06,
|
| 618 |
+
"loss": 0.0049,
|
| 619 |
+
"reward": 2.1924852967262267,
|
| 620 |
+
"reward_std": 0.6154963219538331,
|
| 621 |
+
"rewards/accuracy_reward": 0.7410714585334063,
|
| 622 |
+
"rewards/cosine_scaled_reward": 0.5115328402258456,
|
| 623 |
+
"rewards/format_reward": 0.0,
|
| 624 |
+
"rewards/reasoning_steps_reward": 0.9398810029029846,
|
| 625 |
+
"step": 200
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.4266666666666667,
|
| 629 |
+
"eval_completion_length": 714.3101461914063,
|
| 630 |
+
"eval_kl": 0.1737868896484375,
|
| 631 |
+
"eval_loss": 0.006958193611353636,
|
| 632 |
+
"eval_reward": 1.9060095809578896,
|
| 633 |
+
"eval_reward_std": 0.7741354959219694,
|
| 634 |
+
"eval_rewards/accuracy_reward": 0.6149714575111866,
|
| 635 |
+
"eval_rewards/cosine_scaled_reward": 0.3717333221578854,
|
| 636 |
+
"eval_rewards/format_reward": 5.7142859697341916e-05,
|
| 637 |
+
"eval_rewards/reasoning_steps_reward": 0.9192476727962494,
|
| 638 |
+
"eval_runtime": 21483.7352,
|
| 639 |
+
"eval_samples_per_second": 0.233,
|
| 640 |
+
"eval_steps_per_second": 0.017,
|
| 641 |
+
"step": 200
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"completion_length": 706.7518203735351,
|
| 645 |
+
"epoch": 0.43733333333333335,
|
| 646 |
+
"grad_norm": 1.068983793258667,
|
| 647 |
+
"kl": 0.21756591796875,
|
| 648 |
+
"learning_rate": 2.072732238761434e-06,
|
| 649 |
+
"loss": 0.0087,
|
| 650 |
+
"reward": 1.9650339633226395,
|
| 651 |
+
"reward_std": 0.8582378407940269,
|
| 652 |
+
"rewards/accuracy_reward": 0.6642857462167739,
|
| 653 |
+
"rewards/cosine_scaled_reward": 0.4174148519756272,
|
| 654 |
+
"rewards/format_reward": 0.0,
|
| 655 |
+
"rewards/reasoning_steps_reward": 0.8833333909511566,
|
| 656 |
+
"step": 205
|
| 657 |
+
},
|
| 658 |
+
{
|
| 659 |
+
"completion_length": 654.6446731567382,
|
| 660 |
+
"epoch": 0.448,
|
| 661 |
+
"grad_norm": 1.7271358966827393,
|
| 662 |
+
"kl": 0.1701934814453125,
|
| 663 |
+
"learning_rate": 2.0206192653867536e-06,
|
| 664 |
+
"loss": 0.0068,
|
| 665 |
+
"reward": 2.0717602521181107,
|
| 666 |
+
"reward_std": 0.771126739308238,
|
| 667 |
+
"rewards/accuracy_reward": 0.7446428872644901,
|
| 668 |
+
"rewards/cosine_scaled_reward": 0.4818792417878285,
|
| 669 |
+
"rewards/format_reward": 0.0,
|
| 670 |
+
"rewards/reasoning_steps_reward": 0.8452381536364555,
|
| 671 |
+
"step": 210
|
| 672 |
+
},
|
| 673 |
+
{
|
| 674 |
+
"completion_length": 730.1428932189941,
|
| 675 |
+
"epoch": 0.45866666666666667,
|
| 676 |
+
"grad_norm": 1.706314206123352,
|
| 677 |
+
"kl": 0.191485595703125,
|
| 678 |
+
"learning_rate": 1.967781613449095e-06,
|
| 679 |
+
"loss": 0.0077,
|
| 680 |
+
"reward": 1.8680204302072525,
|
| 681 |
+
"reward_std": 0.7623149130493403,
|
| 682 |
+
"rewards/accuracy_reward": 0.6267857406288385,
|
| 683 |
+
"rewards/cosine_scaled_reward": 0.37575842121150343,
|
| 684 |
+
"rewards/format_reward": 0.0,
|
| 685 |
+
"rewards/reasoning_steps_reward": 0.8654762491583824,
|
| 686 |
+
"step": 215
|
| 687 |
+
},
|
| 688 |
+
{
|
| 689 |
+
"completion_length": 706.8571807861329,
|
| 690 |
+
"epoch": 0.4693333333333333,
|
| 691 |
+
"grad_norm": 0.5565593838691711,
|
| 692 |
+
"kl": 0.1629547119140625,
|
| 693 |
+
"learning_rate": 1.9142928305795637e-06,
|
| 694 |
+
"loss": 0.0065,
|
| 695 |
+
"reward": 1.8906428053975106,
|
| 696 |
+
"reward_std": 0.7771835651248693,
|
| 697 |
+
"rewards/accuracy_reward": 0.651785746589303,
|
| 698 |
+
"rewards/cosine_scaled_reward": 0.3876665448769927,
|
| 699 |
+
"rewards/format_reward": 0.0,
|
| 700 |
+
"rewards/reasoning_steps_reward": 0.851190535724163,
|
| 701 |
+
"step": 220
|
| 702 |
+
},
|
| 703 |
+
{
|
| 704 |
+
"completion_length": 669.3768127441406,
|
| 705 |
+
"epoch": 0.48,
|
| 706 |
+
"grad_norm": 1.5649381875991821,
|
| 707 |
+
"kl": 0.17498779296875,
|
| 708 |
+
"learning_rate": 1.8602273707541886e-06,
|
| 709 |
+
"loss": 0.007,
|
| 710 |
+
"reward": 2.0173469945788383,
|
| 711 |
+
"reward_std": 0.8250991944223642,
|
| 712 |
+
"rewards/accuracy_reward": 0.7142857421189547,
|
| 713 |
+
"rewards/cosine_scaled_reward": 0.4477040659636259,
|
| 714 |
+
"rewards/format_reward": 0.0,
|
| 715 |
+
"rewards/reasoning_steps_reward": 0.8553571999073029,
|
| 716 |
+
"step": 225
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"completion_length": 730.8518165588379,
|
| 720 |
+
"epoch": 0.49066666666666664,
|
| 721 |
+
"grad_norm": 0.5532453060150146,
|
| 722 |
+
"kl": 0.280194091796875,
|
| 723 |
+
"learning_rate": 1.8056604906573418e-06,
|
| 724 |
+
"loss": 0.0112,
|
| 725 |
+
"reward": 1.8200394719839097,
|
| 726 |
+
"reward_std": 0.9259789921343327,
|
| 727 |
+
"rewards/accuracy_reward": 0.6250000283122062,
|
| 728 |
+
"rewards/cosine_scaled_reward": 0.3718251186190173,
|
| 729 |
+
"rewards/format_reward": 0.0,
|
| 730 |
+
"rewards/reasoning_steps_reward": 0.8232143491506576,
|
| 731 |
+
"step": 230
|
| 732 |
+
},
|
| 733 |
+
{
|
| 734 |
+
"completion_length": 760.2411041259766,
|
| 735 |
+
"epoch": 0.5013333333333333,
|
| 736 |
+
"grad_norm": 0.5970042943954468,
|
| 737 |
+
"kl": 0.39481201171875,
|
| 738 |
+
"learning_rate": 1.7506681449278226e-06,
|
| 739 |
+
"loss": 0.0158,
|
| 740 |
+
"reward": 1.5480424344539643,
|
| 741 |
+
"reward_std": 1.0719380795955658,
|
| 742 |
+
"rewards/accuracy_reward": 0.5428571717813611,
|
| 743 |
+
"rewards/cosine_scaled_reward": 0.2676852141972631,
|
| 744 |
+
"rewards/format_reward": 0.0,
|
| 745 |
+
"rewards/reasoning_steps_reward": 0.7375000461935997,
|
| 746 |
+
"step": 235
|
| 747 |
+
},
|
| 748 |
+
{
|
| 749 |
+
"completion_length": 676.1571731567383,
|
| 750 |
+
"epoch": 0.512,
|
| 751 |
+
"grad_norm": 0.5172022581100464,
|
| 752 |
+
"kl": 0.1457733154296875,
|
| 753 |
+
"learning_rate": 1.6953268804334257e-06,
|
| 754 |
+
"loss": 0.0058,
|
| 755 |
+
"reward": 2.0531174913048744,
|
| 756 |
+
"reward_std": 0.7161804366856813,
|
| 757 |
+
"rewards/accuracy_reward": 0.7160714583471417,
|
| 758 |
+
"rewards/cosine_scaled_reward": 0.475736457714811,
|
| 759 |
+
"rewards/format_reward": 0.0,
|
| 760 |
+
"rewards/reasoning_steps_reward": 0.8613095909357071,
|
| 761 |
+
"step": 240
|
| 762 |
+
},
|
| 763 |
+
{
|
| 764 |
+
"completion_length": 622.910740661621,
|
| 765 |
+
"epoch": 0.5226666666666666,
|
| 766 |
+
"grad_norm": 0.4317789673805237,
|
| 767 |
+
"kl": 0.0579132080078125,
|
| 768 |
+
"learning_rate": 1.6397137297211436e-06,
|
| 769 |
+
"loss": 0.0023,
|
| 770 |
+
"reward": 2.1757386445999147,
|
| 771 |
+
"reward_std": 0.5802463456988335,
|
| 772 |
+
"rewards/accuracy_reward": 0.8035714585334063,
|
| 773 |
+
"rewards/cosine_scaled_reward": 0.5370481017976999,
|
| 774 |
+
"rewards/format_reward": 0.0,
|
| 775 |
+
"rewards/reasoning_steps_reward": 0.8351190999150276,
|
| 776 |
+
"step": 245
|
| 777 |
+
},
|
| 778 |
+
{
|
| 779 |
+
"completion_length": 657.0875282287598,
|
| 780 |
+
"epoch": 0.5333333333333333,
|
| 781 |
+
"grad_norm": 0.27897346019744873,
|
| 782 |
+
"kl": 0.04737091064453125,
|
| 783 |
+
"learning_rate": 1.5839061037913395e-06,
|
| 784 |
+
"loss": 0.0019,
|
| 785 |
+
"reward": 2.280982181429863,
|
| 786 |
+
"reward_std": 0.5807892467826605,
|
| 787 |
+
"rewards/accuracy_reward": 0.8142857417464257,
|
| 788 |
+
"rewards/cosine_scaled_reward": 0.5881249699741602,
|
| 789 |
+
"rewards/format_reward": 0.0,
|
| 790 |
+
"rewards/reasoning_steps_reward": 0.878571480512619,
|
| 791 |
+
"step": 250
|
| 792 |
+
},
|
| 793 |
+
{
|
| 794 |
+
"completion_length": 688.4482467651367,
|
| 795 |
+
"epoch": 0.544,
|
| 796 |
+
"grad_norm": 0.38000839948654175,
|
| 797 |
+
"kl": 0.04910125732421875,
|
| 798 |
+
"learning_rate": 1.527981684345115e-06,
|
| 799 |
+
"loss": 0.002,
|
| 800 |
+
"reward": 2.107425755262375,
|
| 801 |
+
"reward_std": 0.5918682970106601,
|
| 802 |
+
"rewards/accuracy_reward": 0.732142885401845,
|
| 803 |
+
"rewards/cosine_scaled_reward": 0.4669495075941086,
|
| 804 |
+
"rewards/format_reward": 0.0,
|
| 805 |
+
"rewards/reasoning_steps_reward": 0.9083334013819695,
|
| 806 |
+
"step": 255
|
| 807 |
+
},
|
| 808 |
+
{
|
| 809 |
+
"completion_length": 683.7750328063964,
|
| 810 |
+
"epoch": 0.5546666666666666,
|
| 811 |
+
"grad_norm": 0.3659621775150299,
|
| 812 |
+
"kl": 0.0616912841796875,
|
| 813 |
+
"learning_rate": 1.4720183156548855e-06,
|
| 814 |
+
"loss": 0.0025,
|
| 815 |
+
"reward": 2.2262755960226057,
|
| 816 |
+
"reward_std": 0.6095046918839216,
|
| 817 |
+
"rewards/accuracy_reward": 0.7500000275671482,
|
| 818 |
+
"rewards/cosine_scaled_reward": 0.534013625793159,
|
| 819 |
+
"rewards/format_reward": 0.0,
|
| 820 |
+
"rewards/reasoning_steps_reward": 0.9422619551420212,
|
| 821 |
+
"step": 260
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"completion_length": 722.6518203735352,
|
| 825 |
+
"epoch": 0.5653333333333334,
|
| 826 |
+
"grad_norm": 3.2591984272003174,
|
| 827 |
+
"kl": 0.755340576171875,
|
| 828 |
+
"learning_rate": 1.4160938962086612e-06,
|
| 829 |
+
"loss": 0.0303,
|
| 830 |
+
"reward": 2.1296338394284247,
|
| 831 |
+
"reward_std": 0.5928221672773362,
|
| 832 |
+
"rewards/accuracy_reward": 0.7178571680560708,
|
| 833 |
+
"rewards/cosine_scaled_reward": 0.4814194705337286,
|
| 834 |
+
"rewards/format_reward": 0.0,
|
| 835 |
+
"rewards/reasoning_steps_reward": 0.9303571835160256,
|
| 836 |
+
"step": 265
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"completion_length": 677.3678932189941,
|
| 840 |
+
"epoch": 0.576,
|
| 841 |
+
"grad_norm": 0.34547945857048035,
|
| 842 |
+
"kl": 0.084674072265625,
|
| 843 |
+
"learning_rate": 1.3602862702788567e-06,
|
| 844 |
+
"loss": 0.0034,
|
| 845 |
+
"reward": 2.200597658753395,
|
| 846 |
+
"reward_std": 0.625842222943902,
|
| 847 |
+
"rewards/accuracy_reward": 0.7589286014437675,
|
| 848 |
+
"rewards/cosine_scaled_reward": 0.5077404484152794,
|
| 849 |
+
"rewards/format_reward": 0.0,
|
| 850 |
+
"rewards/reasoning_steps_reward": 0.9339286297559738,
|
| 851 |
+
"step": 270
|
| 852 |
+
},
|
| 853 |
+
{
|
| 854 |
+
"completion_length": 678.8910987854003,
|
| 855 |
+
"epoch": 0.5866666666666667,
|
| 856 |
+
"grad_norm": 0.4450472593307495,
|
| 857 |
+
"kl": 0.090386962890625,
|
| 858 |
+
"learning_rate": 1.3046731195665748e-06,
|
| 859 |
+
"loss": 0.0036,
|
| 860 |
+
"reward": 2.2284871727228164,
|
| 861 |
+
"reward_std": 0.6351787287741899,
|
| 862 |
+
"rewards/accuracy_reward": 0.7607143148779869,
|
| 863 |
+
"rewards/cosine_scaled_reward": 0.533249006792903,
|
| 864 |
+
"rewards/format_reward": 0.0,
|
| 865 |
+
"rewards/reasoning_steps_reward": 0.9345238700509071,
|
| 866 |
+
"step": 275
|
| 867 |
+
},
|
| 868 |
+
{
|
| 869 |
+
"completion_length": 703.6821754455566,
|
| 870 |
+
"epoch": 0.5973333333333334,
|
| 871 |
+
"grad_norm": 0.4517715275287628,
|
| 872 |
+
"kl": 0.10860595703125,
|
| 873 |
+
"learning_rate": 1.2493318550721775e-06,
|
| 874 |
+
"loss": 0.0043,
|
| 875 |
+
"reward": 2.1768259733915327,
|
| 876 |
+
"reward_std": 0.5669930893927813,
|
| 877 |
+
"rewards/accuracy_reward": 0.7375000264495611,
|
| 878 |
+
"rewards/cosine_scaled_reward": 0.4982544435886666,
|
| 879 |
+
"rewards/format_reward": 0.0,
|
| 880 |
+
"rewards/reasoning_steps_reward": 0.9410714849829673,
|
| 881 |
+
"step": 280
|
| 882 |
+
},
|
| 883 |
+
{
|
| 884 |
+
"completion_length": 688.2607437133789,
|
| 885 |
+
"epoch": 0.608,
|
| 886 |
+
"grad_norm": 0.403906911611557,
|
| 887 |
+
"kl": 0.1100799560546875,
|
| 888 |
+
"learning_rate": 1.1943395093426585e-06,
|
| 889 |
+
"loss": 0.0044,
|
| 890 |
+
"reward": 2.2273842960596086,
|
| 891 |
+
"reward_std": 0.5660578895360231,
|
| 892 |
+
"rewards/accuracy_reward": 0.748214314877987,
|
| 893 |
+
"rewards/cosine_scaled_reward": 0.5327413596212864,
|
| 894 |
+
"rewards/format_reward": 0.0,
|
| 895 |
+
"rewards/reasoning_steps_reward": 0.9464286237955093,
|
| 896 |
+
"step": 285
|
| 897 |
+
},
|
| 898 |
+
{
|
| 899 |
+
"completion_length": 663.8607498168946,
|
| 900 |
+
"epoch": 0.6186666666666667,
|
| 901 |
+
"grad_norm": 0.7475197911262512,
|
| 902 |
+
"kl": 0.117352294921875,
|
| 903 |
+
"learning_rate": 1.1397726292458115e-06,
|
| 904 |
+
"loss": 0.0047,
|
| 905 |
+
"reward": 2.155428893864155,
|
| 906 |
+
"reward_std": 0.6302181664854288,
|
| 907 |
+
"rewards/accuracy_reward": 0.7303571704775095,
|
| 908 |
+
"rewards/cosine_scaled_reward": 0.5042383354157209,
|
| 909 |
+
"rewards/format_reward": 0.0,
|
| 910 |
+
"rewards/reasoning_steps_reward": 0.9208333924412727,
|
| 911 |
+
"step": 290
|
| 912 |
+
},
|
| 913 |
+
{
|
| 914 |
+
"completion_length": 711.130387878418,
|
| 915 |
+
"epoch": 0.6293333333333333,
|
| 916 |
+
"grad_norm": 18.6844539642334,
|
| 917 |
+
"kl": 0.360479736328125,
|
| 918 |
+
"learning_rate": 1.085707169420437e-06,
|
| 919 |
+
"loss": 0.0144,
|
| 920 |
+
"reward": 2.0090325683355332,
|
| 921 |
+
"reward_std": 0.6006665829569101,
|
| 922 |
+
"rewards/accuracy_reward": 0.6500000275671483,
|
| 923 |
+
"rewards/cosine_scaled_reward": 0.4364134394330904,
|
| 924 |
+
"rewards/format_reward": 0.0,
|
| 925 |
+
"rewards/reasoning_steps_reward": 0.9226190969347954,
|
| 926 |
+
"step": 295
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"completion_length": 666.8428817749024,
|
| 930 |
+
"epoch": 0.64,
|
| 931 |
+
"grad_norm": 62.51573181152344,
|
| 932 |
+
"kl": 0.5435150146484375,
|
| 933 |
+
"learning_rate": 1.0322183865509054e-06,
|
| 934 |
+
"loss": 0.0217,
|
| 935 |
+
"reward": 2.2747762113809586,
|
| 936 |
+
"reward_std": 0.6328875336796045,
|
| 937 |
+
"rewards/accuracy_reward": 0.7982143104076386,
|
| 938 |
+
"rewards/cosine_scaled_reward": 0.5747761461883784,
|
| 939 |
+
"rewards/format_reward": 0.0,
|
| 940 |
+
"rewards/reasoning_steps_reward": 0.9017857685685158,
|
| 941 |
+
"step": 300
|
| 942 |
+
},
|
| 943 |
+
{
|
| 944 |
+
"epoch": 0.64,
|
| 945 |
+
"eval_completion_length": 689.4330311889648,
|
| 946 |
+
"eval_kl": 0.6253654296875,
|
| 947 |
+
"eval_loss": 0.024997977539896965,
|
| 948 |
+
"eval_reward": 2.0301740431547164,
|
| 949 |
+
"eval_reward_std": 0.6546256743520499,
|
| 950 |
+
"eval_rewards/accuracy_reward": 0.6642857430905104,
|
| 951 |
+
"eval_rewards/cosine_scaled_reward": 0.4451358726256585,
|
| 952 |
+
"eval_rewards/format_reward": 0.0,
|
| 953 |
+
"eval_rewards/reasoning_steps_reward": 0.9207524393320083,
|
| 954 |
+
"eval_runtime": 21121.621,
|
| 955 |
+
"eval_samples_per_second": 0.237,
|
| 956 |
+
"eval_steps_per_second": 0.017,
|
| 957 |
+
"step": 300
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"completion_length": 677.9232406616211,
|
| 961 |
+
"epoch": 0.6506666666666666,
|
| 962 |
+
"grad_norm": 56.39460754394531,
|
| 963 |
+
"kl": 1.057305908203125,
|
| 964 |
+
"learning_rate": 9.793807346132464e-07,
|
| 965 |
+
"loss": 0.0423,
|
| 966 |
+
"reward": 2.1904526859521867,
|
| 967 |
+
"reward_std": 0.6557880196720361,
|
| 968 |
+
"rewards/accuracy_reward": 0.7589286021888256,
|
| 969 |
+
"rewards/cosine_scaled_reward": 0.5190240478143096,
|
| 970 |
+
"rewards/format_reward": 0.0,
|
| 971 |
+
"rewards/reasoning_steps_reward": 0.912500049173832,
|
| 972 |
+
"step": 305
|
| 973 |
+
},
|
| 974 |
+
{
|
| 975 |
+
"completion_length": 683.6518188476563,
|
| 976 |
+
"epoch": 0.6613333333333333,
|
| 977 |
+
"grad_norm": 3.143488883972168,
|
| 978 |
+
"kl": 0.49482421875,
|
| 979 |
+
"learning_rate": 9.272677612385667e-07,
|
| 980 |
+
"loss": 0.0198,
|
| 981 |
+
"reward": 2.1639647781848907,
|
| 982 |
+
"reward_std": 0.5980867598205805,
|
| 983 |
+
"rewards/accuracy_reward": 0.735714315623045,
|
| 984 |
+
"rewards/cosine_scaled_reward": 0.5092027972044889,
|
| 985 |
+
"rewards/format_reward": 0.0,
|
| 986 |
+
"rewards/reasoning_steps_reward": 0.9190476804971695,
|
| 987 |
+
"step": 310
|
| 988 |
+
},
|
| 989 |
+
{
|
| 990 |
+
"completion_length": 711.8625305175781,
|
| 991 |
+
"epoch": 0.672,
|
| 992 |
+
"grad_norm": 7.134365081787109,
|
| 993 |
+
"kl": 0.550030517578125,
|
| 994 |
+
"learning_rate": 8.759520053380591e-07,
|
| 995 |
+
"loss": 0.022,
|
| 996 |
+
"reward": 2.110590432584286,
|
| 997 |
+
"reward_std": 0.6294085841625929,
|
| 998 |
+
"rewards/accuracy_reward": 0.6964285980910063,
|
| 999 |
+
"rewards/cosine_scaled_reward": 0.4891618086723611,
|
| 1000 |
+
"rewards/format_reward": 0.0,
|
| 1001 |
+
"rewards/reasoning_steps_reward": 0.9250000715255737,
|
| 1002 |
+
"step": 315
|
| 1003 |
+
},
|
| 1004 |
+
{
|
| 1005 |
+
"completion_length": 677.2786026000977,
|
| 1006 |
+
"epoch": 0.6826666666666666,
|
| 1007 |
+
"grad_norm": 26.3464298248291,
|
| 1008 |
+
"kl": 0.179278564453125,
|
| 1009 |
+
"learning_rate": 8.255048961321088e-07,
|
| 1010 |
+
"loss": 0.0072,
|
| 1011 |
+
"reward": 2.1933317139744757,
|
| 1012 |
+
"reward_std": 0.5765910983085633,
|
| 1013 |
+
"rewards/accuracy_reward": 0.7500000298023224,
|
| 1014 |
+
"rewards/cosine_scaled_reward": 0.5183316646143794,
|
| 1015 |
+
"rewards/format_reward": 0.0,
|
| 1016 |
+
"rewards/reasoning_steps_reward": 0.9250000655651093,
|
| 1017 |
+
"step": 320
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"completion_length": 665.1946723937988,
|
| 1021 |
+
"epoch": 0.6933333333333334,
|
| 1022 |
+
"grad_norm": 1.566721796989441,
|
| 1023 |
+
"kl": 0.8156646728515625,
|
| 1024 |
+
"learning_rate": 7.759966537240373e-07,
|
| 1025 |
+
"loss": 0.0326,
|
| 1026 |
+
"reward": 2.27912737429142,
|
| 1027 |
+
"reward_std": 0.555161041021347,
|
| 1028 |
+
"rewards/accuracy_reward": 0.7946428887546062,
|
| 1029 |
+
"rewards/cosine_scaled_reward": 0.5666272971779108,
|
| 1030 |
+
"rewards/format_reward": 0.0,
|
| 1031 |
+
"rewards/reasoning_steps_reward": 0.9178572088479996,
|
| 1032 |
+
"step": 325
|
| 1033 |
+
},
|
| 1034 |
+
{
|
| 1035 |
+
"completion_length": 693.6536056518555,
|
| 1036 |
+
"epoch": 0.704,
|
| 1037 |
+
"grad_norm": 13.486714363098145,
|
| 1038 |
+
"kl": 0.17557373046875,
|
| 1039 |
+
"learning_rate": 7.274961913568773e-07,
|
| 1040 |
+
"loss": 0.007,
|
| 1041 |
+
"reward": 2.166937792301178,
|
| 1042 |
+
"reward_std": 0.6367484670132398,
|
| 1043 |
+
"rewards/accuracy_reward": 0.7357143186032772,
|
| 1044 |
+
"rewards/cosine_scaled_reward": 0.5234853073954582,
|
| 1045 |
+
"rewards/format_reward": 0.0,
|
| 1046 |
+
"rewards/reasoning_steps_reward": 0.907738147675991,
|
| 1047 |
+
"step": 330
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"completion_length": 697.7536041259766,
|
| 1051 |
+
"epoch": 0.7146666666666667,
|
| 1052 |
+
"grad_norm": 14.8841552734375,
|
| 1053 |
+
"kl": 29.035800170898437,
|
| 1054 |
+
"learning_rate": 6.800710194892484e-07,
|
| 1055 |
+
"loss": 1.1599,
|
| 1056 |
+
"reward": 2.207159787416458,
|
| 1057 |
+
"reward_std": 0.6891704991459846,
|
| 1058 |
+
"rewards/accuracy_reward": 0.7410714641213417,
|
| 1059 |
+
"rewards/cosine_scaled_reward": 0.5375168476253748,
|
| 1060 |
+
"rewards/format_reward": 0.0,
|
| 1061 |
+
"rewards/reasoning_steps_reward": 0.9285714894533157,
|
| 1062 |
+
"step": 335
|
| 1063 |
+
},
|
| 1064 |
+
{
|
| 1065 |
+
"completion_length": 709.1589599609375,
|
| 1066 |
+
"epoch": 0.7253333333333334,
|
| 1067 |
+
"grad_norm": 67.83998107910156,
|
| 1068 |
+
"kl": 0.5466156005859375,
|
| 1069 |
+
"learning_rate": 6.33787151823836e-07,
|
| 1070 |
+
"loss": 0.0219,
|
| 1071 |
+
"reward": 2.1167072311043738,
|
| 1072 |
+
"reward_std": 0.6302111553028226,
|
| 1073 |
+
"rewards/accuracy_reward": 0.7107143126428127,
|
| 1074 |
+
"rewards/cosine_scaled_reward": 0.5006357172504068,
|
| 1075 |
+
"rewards/format_reward": 0.0,
|
| 1076 |
+
"rewards/reasoning_steps_reward": 0.9053572043776512,
|
| 1077 |
+
"step": 340
|
| 1078 |
+
},
|
| 1079 |
+
{
|
| 1080 |
+
"completion_length": 671.0464561462402,
|
| 1081 |
+
"epoch": 0.736,
|
| 1082 |
+
"grad_norm": 9.81600284576416,
|
| 1083 |
+
"kl": 1.0592437744140626,
|
| 1084 |
+
"learning_rate": 5.887090134192947e-07,
|
| 1085 |
+
"loss": 0.0423,
|
| 1086 |
+
"reward": 2.292465257644653,
|
| 1087 |
+
"reward_std": 0.5572628553956747,
|
| 1088 |
+
"rewards/accuracy_reward": 0.7857143163681031,
|
| 1089 |
+
"rewards/cosine_scaled_reward": 0.5805604325607419,
|
| 1090 |
+
"rewards/format_reward": 0.0,
|
| 1091 |
+
"rewards/reasoning_steps_reward": 0.9261905312538147,
|
| 1092 |
+
"step": 345
|
| 1093 |
+
},
|
| 1094 |
+
{
|
| 1095 |
+
"completion_length": 706.3339599609375,
|
| 1096 |
+
"epoch": 0.7466666666666667,
|
| 1097 |
+
"grad_norm": 5.232671737670898,
|
| 1098 |
+
"kl": 0.52496337890625,
|
| 1099 |
+
"learning_rate": 5.448993510134669e-07,
|
| 1100 |
+
"loss": 0.021,
|
| 1101 |
+
"reward": 2.179406076669693,
|
| 1102 |
+
"reward_std": 0.6182668030261993,
|
| 1103 |
+
"rewards/accuracy_reward": 0.7285714585334062,
|
| 1104 |
+
"rewards/cosine_scaled_reward": 0.5252393416129053,
|
| 1105 |
+
"rewards/format_reward": 0.0,
|
| 1106 |
+
"rewards/reasoning_steps_reward": 0.9255952969193458,
|
| 1107 |
+
"step": 350
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
"completion_length": 682.7000328063965,
|
| 1111 |
+
"epoch": 0.7573333333333333,
|
| 1112 |
+
"grad_norm": 10.811017990112305,
|
| 1113 |
+
"kl": 0.27938232421875,
|
| 1114 |
+
"learning_rate": 5.024191456827498e-07,
|
| 1115 |
+
"loss": 0.0112,
|
| 1116 |
+
"reward": 2.2113805234432222,
|
| 1117 |
+
"reward_std": 0.6210865731351077,
|
| 1118 |
+
"rewards/accuracy_reward": 0.7553571738302708,
|
| 1119 |
+
"rewards/cosine_scaled_reward": 0.5310232989490032,
|
| 1120 |
+
"rewards/format_reward": 0.0,
|
| 1121 |
+
"rewards/reasoning_steps_reward": 0.9250000566244125,
|
| 1122 |
+
"step": 355
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"completion_length": 679.5375274658203,
|
| 1126 |
+
"epoch": 0.768,
|
| 1127 |
+
"grad_norm": 11.851579666137695,
|
| 1128 |
+
"kl": 0.15789794921875,
|
| 1129 |
+
"learning_rate": 4.6132752795918667e-07,
|
| 1130 |
+
"loss": 0.0063,
|
| 1131 |
+
"reward": 2.2049001812934876,
|
| 1132 |
+
"reward_std": 0.6100614225491882,
|
| 1133 |
+
"rewards/accuracy_reward": 0.7517857491970062,
|
| 1134 |
+
"rewards/cosine_scaled_reward": 0.545971542969346,
|
| 1135 |
+
"rewards/format_reward": 0.0,
|
| 1136 |
+
"rewards/reasoning_steps_reward": 0.9071429073810577,
|
| 1137 |
+
"step": 360
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"completion_length": 698.9321739196778,
|
| 1141 |
+
"epoch": 0.7786666666666666,
|
| 1142 |
+
"grad_norm": 81.21385192871094,
|
| 1143 |
+
"kl": 0.9218048095703125,
|
| 1144 |
+
"learning_rate": 4.2168169552342905e-07,
|
| 1145 |
+
"loss": 0.0369,
|
| 1146 |
+
"reward": 2.1202023535966874,
|
| 1147 |
+
"reward_std": 0.6697802128270268,
|
| 1148 |
+
"rewards/accuracy_reward": 0.7053571727126837,
|
| 1149 |
+
"rewards/cosine_scaled_reward": 0.48210706626996397,
|
| 1150 |
+
"rewards/format_reward": 0.0,
|
| 1151 |
+
"rewards/reasoning_steps_reward": 0.9327381521463394,
|
| 1152 |
+
"step": 365
|
| 1153 |
+
},
|
| 1154 |
+
{
|
| 1155 |
+
"completion_length": 677.235743713379,
|
| 1156 |
+
"epoch": 0.7893333333333333,
|
| 1157 |
+
"grad_norm": 21.409543991088867,
|
| 1158 |
+
"kl": 1.5054473876953125,
|
| 1159 |
+
"learning_rate": 3.8353683358814046e-07,
|
| 1160 |
+
"loss": 0.0603,
|
| 1161 |
+
"reward": 2.1415405943989754,
|
| 1162 |
+
"reward_std": 0.5950695391744375,
|
| 1163 |
+
"rewards/accuracy_reward": 0.7160714630037546,
|
| 1164 |
+
"rewards/cosine_scaled_reward": 0.49868337218649683,
|
| 1165 |
+
"rewards/format_reward": 0.0,
|
| 1166 |
+
"rewards/reasoning_steps_reward": 0.926785783469677,
|
| 1167 |
+
"step": 370
|
| 1168 |
+
},
|
| 1169 |
+
{
|
| 1170 |
+
"completion_length": 688.4768150329589,
|
| 1171 |
+
"epoch": 0.8,
|
| 1172 |
+
"grad_norm": 6.628698348999023,
|
| 1173 |
+
"kl": 0.5792510986328125,
|
| 1174 |
+
"learning_rate": 3.469460380826697e-07,
|
| 1175 |
+
"loss": 0.0232,
|
| 1176 |
+
"reward": 2.145669251680374,
|
| 1177 |
+
"reward_std": 0.6894128751009703,
|
| 1178 |
+
"rewards/accuracy_reward": 0.7125000268220901,
|
| 1179 |
+
"rewards/cosine_scaled_reward": 0.502216786518693,
|
| 1180 |
+
"rewards/format_reward": 0.0,
|
| 1181 |
+
"rewards/reasoning_steps_reward": 0.9309524387121201,
|
| 1182 |
+
"step": 375
|
| 1183 |
+
},
|
| 1184 |
+
{
|
| 1185 |
+
"completion_length": 673.8661003112793,
|
| 1186 |
+
"epoch": 0.8106666666666666,
|
| 1187 |
+
"grad_norm": 7.763125896453857,
|
| 1188 |
+
"kl": 0.376788330078125,
|
| 1189 |
+
"learning_rate": 3.119602417459075e-07,
|
| 1190 |
+
"loss": 0.0151,
|
| 1191 |
+
"reward": 2.0863234639167785,
|
| 1192 |
+
"reward_std": 0.6567210204899311,
|
| 1193 |
+
"rewards/accuracy_reward": 0.6946428891271352,
|
| 1194 |
+
"rewards/cosine_scaled_reward": 0.4714424631558359,
|
| 1195 |
+
"rewards/format_reward": 0.0,
|
| 1196 |
+
"rewards/reasoning_steps_reward": 0.9202381551265717,
|
| 1197 |
+
"step": 380
|
| 1198 |
+
},
|
| 1199 |
+
{
|
| 1200 |
+
"completion_length": 681.7732482910156,
|
| 1201 |
+
"epoch": 0.8213333333333334,
|
| 1202 |
+
"grad_norm": 2.6778337955474854,
|
| 1203 |
+
"kl": 0.7844024658203125,
|
| 1204 |
+
"learning_rate": 2.786281432302071e-07,
|
| 1205 |
+
"loss": 0.0314,
|
| 1206 |
+
"reward": 2.1348024934530256,
|
| 1207 |
+
"reward_std": 0.6229438653215766,
|
| 1208 |
+
"rewards/accuracy_reward": 0.7285714592784643,
|
| 1209 |
+
"rewards/cosine_scaled_reward": 0.4931357389315963,
|
| 1210 |
+
"rewards/format_reward": 0.0,
|
| 1211 |
+
"rewards/reasoning_steps_reward": 0.9130952954292297,
|
| 1212 |
+
"step": 385
|
| 1213 |
+
},
|
| 1214 |
+
{
|
| 1215 |
+
"completion_length": 673.9232414245605,
|
| 1216 |
+
"epoch": 0.832,
|
| 1217 |
+
"grad_norm": 5.024774074554443,
|
| 1218 |
+
"kl": 1.637579345703125,
|
| 1219 |
+
"learning_rate": 2.46996139315057e-07,
|
| 1220 |
+
"loss": 0.0655,
|
| 1221 |
+
"reward": 2.1784381210803985,
|
| 1222 |
+
"reward_std": 0.6571927208453416,
|
| 1223 |
+
"rewards/accuracy_reward": 0.7553571790456772,
|
| 1224 |
+
"rewards/cosine_scaled_reward": 0.5171285319607705,
|
| 1225 |
+
"rewards/format_reward": 0.0,
|
| 1226 |
+
"rewards/reasoning_steps_reward": 0.9059524446725845,
|
| 1227 |
+
"step": 390
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"completion_length": 659.0571716308593,
|
| 1231 |
+
"epoch": 0.8426666666666667,
|
| 1232 |
+
"grad_norm": 3.3763248920440674,
|
| 1233 |
+
"kl": 25.73623046875,
|
| 1234 |
+
"learning_rate": 2.1710826032485286e-07,
|
| 1235 |
+
"loss": 1.0278,
|
| 1236 |
+
"reward": 2.1876179754734038,
|
| 1237 |
+
"reward_std": 0.5652194958180189,
|
| 1238 |
+
"rewards/accuracy_reward": 0.7553571701049805,
|
| 1239 |
+
"rewards/cosine_scaled_reward": 0.5280940998345613,
|
| 1240 |
+
"rewards/format_reward": 0.0,
|
| 1241 |
+
"rewards/reasoning_steps_reward": 0.9041667342185974,
|
| 1242 |
+
"step": 395
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"completion_length": 718.1357467651367,
|
| 1246 |
+
"epoch": 0.8533333333333334,
|
| 1247 |
+
"grad_norm": 5.579762935638428,
|
| 1248 |
+
"kl": 0.422265625,
|
| 1249 |
+
"learning_rate": 1.8900610884066817e-07,
|
| 1250 |
+
"loss": 0.0169,
|
| 1251 |
+
"reward": 2.0510597810149194,
|
| 1252 |
+
"reward_std": 0.6493859238922596,
|
| 1253 |
+
"rewards/accuracy_reward": 0.6696428947150708,
|
| 1254 |
+
"rewards/cosine_scaled_reward": 0.4534406474791467,
|
| 1255 |
+
"rewards/format_reward": 0.0,
|
| 1256 |
+
"rewards/reasoning_steps_reward": 0.927976231276989,
|
| 1257 |
+
"step": 400
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"epoch": 0.8533333333333334,
|
| 1261 |
+
"eval_completion_length": 686.8438880981445,
|
| 1262 |
+
"eval_kl": 0.515645947265625,
|
| 1263 |
+
"eval_loss": 0.020598456263542175,
|
| 1264 |
+
"eval_reward": 2.017853285288811,
|
| 1265 |
+
"eval_reward_std": 0.6641908749222756,
|
| 1266 |
+
"eval_rewards/accuracy_reward": 0.6639143145978451,
|
| 1267 |
+
"eval_rewards/cosine_scaled_reward": 0.4352722596784588,
|
| 1268 |
+
"eval_rewards/format_reward": 0.0,
|
| 1269 |
+
"eval_rewards/reasoning_steps_reward": 0.9186667237281799,
|
| 1270 |
+
"eval_runtime": 21111.8983,
|
| 1271 |
+
"eval_samples_per_second": 0.237,
|
| 1272 |
+
"eval_steps_per_second": 0.017,
|
| 1273 |
+
"step": 400
|
| 1274 |
+
},
|
| 1275 |
+
{
|
| 1276 |
+
"completion_length": 697.8196746826172,
|
| 1277 |
+
"epoch": 0.864,
|
| 1278 |
+
"grad_norm": 5.856068134307861,
|
| 1279 |
+
"kl": 0.6500579833984375,
|
| 1280 |
+
"learning_rate": 1.627288017913383e-07,
|
| 1281 |
+
"loss": 0.026,
|
| 1282 |
+
"reward": 2.1224559903144837,
|
| 1283 |
+
"reward_std": 0.6821707881987095,
|
| 1284 |
+
"rewards/accuracy_reward": 0.7089286036789417,
|
| 1285 |
+
"rewards/cosine_scaled_reward": 0.47543211858719586,
|
| 1286 |
+
"rewards/format_reward": 0.0,
|
| 1287 |
+
"rewards/reasoning_steps_reward": 0.9380952849984169,
|
| 1288 |
+
"step": 405
|
| 1289 |
+
},
|
| 1290 |
+
{
|
| 1291 |
+
"completion_length": 706.5928840637207,
|
| 1292 |
+
"epoch": 0.8746666666666667,
|
| 1293 |
+
"grad_norm": 78.17637634277344,
|
| 1294 |
+
"kl": 1.1235443115234376,
|
| 1295 |
+
"learning_rate": 1.3831291600445573e-07,
|
| 1296 |
+
"loss": 0.0449,
|
| 1297 |
+
"reward": 2.150267854332924,
|
| 1298 |
+
"reward_std": 0.5447332851588726,
|
| 1299 |
+
"rewards/accuracy_reward": 0.7107143115252257,
|
| 1300 |
+
"rewards/cosine_scaled_reward": 0.5175296729197726,
|
| 1301 |
+
"rewards/format_reward": 0.0,
|
| 1302 |
+
"rewards/reasoning_steps_reward": 0.922023868560791,
|
| 1303 |
+
"step": 410
|
| 1304 |
+
},
|
| 1305 |
+
{
|
| 1306 |
+
"completion_length": 707.3071754455566,
|
| 1307 |
+
"epoch": 0.8853333333333333,
|
| 1308 |
+
"grad_norm": 22.277971267700195,
|
| 1309 |
+
"kl": 0.6788360595703125,
|
| 1310 |
+
"learning_rate": 1.1579243729307487e-07,
|
| 1311 |
+
"loss": 0.0272,
|
| 1312 |
+
"reward": 2.047066758573055,
|
| 1313 |
+
"reward_std": 0.6944912567734718,
|
| 1314 |
+
"rewards/accuracy_reward": 0.6767857410013676,
|
| 1315 |
+
"rewards/cosine_scaled_reward": 0.461352374125272,
|
| 1316 |
+
"rewards/format_reward": 0.0,
|
| 1317 |
+
"rewards/reasoning_steps_reward": 0.9089286208152771,
|
| 1318 |
+
"step": 415
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"completion_length": 699.7625297546386,
|
| 1322 |
+
"epoch": 0.896,
|
| 1323 |
+
"grad_norm": 7.57394552230835,
|
| 1324 |
+
"kl": 0.2780609130859375,
|
| 1325 |
+
"learning_rate": 9.519871314899092e-08,
|
| 1326 |
+
"loss": 0.0111,
|
| 1327 |
+
"reward": 2.196362778544426,
|
| 1328 |
+
"reward_std": 0.561077106744051,
|
| 1329 |
+
"rewards/accuracy_reward": 0.7553571626543999,
|
| 1330 |
+
"rewards/cosine_scaled_reward": 0.5237436585128308,
|
| 1331 |
+
"rewards/format_reward": 0.0,
|
| 1332 |
+
"rewards/reasoning_steps_reward": 0.9172619685530663,
|
| 1333 |
+
"step": 420
|
| 1334 |
+
},
|
| 1335 |
+
{
|
| 1336 |
+
"completion_length": 693.0428848266602,
|
| 1337 |
+
"epoch": 0.9066666666666666,
|
| 1338 |
+
"grad_norm": 3.5068612098693848,
|
| 1339 |
+
"kl": 0.4284149169921875,
|
| 1340 |
+
"learning_rate": 7.656040910844358e-08,
|
| 1341 |
+
"loss": 0.0171,
|
| 1342 |
+
"reward": 2.159999814629555,
|
| 1343 |
+
"reward_std": 0.7004330482333898,
|
| 1344 |
+
"rewards/accuracy_reward": 0.7267857469618321,
|
| 1345 |
+
"rewards/cosine_scaled_reward": 0.4992854680866003,
|
| 1346 |
+
"rewards/format_reward": 0.0,
|
| 1347 |
+
"rewards/reasoning_steps_reward": 0.9339286342263222,
|
| 1348 |
+
"step": 425
|
| 1349 |
+
},
|
| 1350 |
+
{
|
| 1351 |
+
"completion_length": 689.8589553833008,
|
| 1352 |
+
"epoch": 0.9173333333333333,
|
| 1353 |
+
"grad_norm": 2.3973488807678223,
|
| 1354 |
+
"kl": 0.8845184326171875,
|
| 1355 |
+
"learning_rate": 5.990346885098235e-08,
|
| 1356 |
+
"loss": 0.0354,
|
| 1357 |
+
"reward": 2.224926471710205,
|
| 1358 |
+
"reward_std": 0.6631423626095057,
|
| 1359 |
+
"rewards/accuracy_reward": 0.7696428894996643,
|
| 1360 |
+
"rewards/cosine_scaled_reward": 0.5511168725788593,
|
| 1361 |
+
"rewards/format_reward": 0.0,
|
| 1362 |
+
"rewards/reasoning_steps_reward": 0.9041667267680168,
|
| 1363 |
+
"step": 430
|
| 1364 |
+
},
|
| 1365 |
+
{
|
| 1366 |
+
"completion_length": 690.8053848266602,
|
| 1367 |
+
"epoch": 0.928,
|
| 1368 |
+
"grad_norm": 45.488250732421875,
|
| 1369 |
+
"kl": 0.7797271728515625,
|
| 1370 |
+
"learning_rate": 4.5251078087033493e-08,
|
| 1371 |
+
"loss": 0.0312,
|
| 1372 |
+
"reward": 2.2093738108873366,
|
| 1373 |
+
"reward_std": 0.6439491007477045,
|
| 1374 |
+
"rewards/accuracy_reward": 0.7589286059141159,
|
| 1375 |
+
"rewards/cosine_scaled_reward": 0.5242547009140253,
|
| 1376 |
+
"rewards/format_reward": 0.0,
|
| 1377 |
+
"rewards/reasoning_steps_reward": 0.9261905267834664,
|
| 1378 |
+
"step": 435
|
| 1379 |
+
},
|
| 1380 |
+
{
|
| 1381 |
+
"completion_length": 697.6786079406738,
|
| 1382 |
+
"epoch": 0.9386666666666666,
|
| 1383 |
+
"grad_norm": 2.601253032684326,
|
| 1384 |
+
"kl": 0.8488525390625,
|
| 1385 |
+
"learning_rate": 3.262363228443427e-08,
|
| 1386 |
+
"loss": 0.034,
|
| 1387 |
+
"reward": 2.0766124978661535,
|
| 1388 |
+
"reward_std": 0.705447631329298,
|
| 1389 |
+
"rewards/accuracy_reward": 0.7142857477068901,
|
| 1390 |
+
"rewards/cosine_scaled_reward": 0.4629219459369779,
|
| 1391 |
+
"rewards/format_reward": 0.0,
|
| 1392 |
+
"rewards/reasoning_steps_reward": 0.8994048193097115,
|
| 1393 |
+
"step": 440
|
| 1394 |
+
},
|
| 1395 |
+
{
|
| 1396 |
+
"completion_length": 705.3661033630372,
|
| 1397 |
+
"epoch": 0.9493333333333334,
|
| 1398 |
+
"grad_norm": 8.506255149841309,
|
| 1399 |
+
"kl": 0.8570648193359375,
|
| 1400 |
+
"learning_rate": 2.2038708278862952e-08,
|
| 1401 |
+
"loss": 0.0343,
|
| 1402 |
+
"reward": 2.007576309144497,
|
| 1403 |
+
"reward_std": 0.5604014500975609,
|
| 1404 |
+
"rewards/accuracy_reward": 0.6571428844705224,
|
| 1405 |
+
"rewards/cosine_scaled_reward": 0.44210004140622916,
|
| 1406 |
+
"rewards/format_reward": 0.0,
|
| 1407 |
+
"rewards/reasoning_steps_reward": 0.9083333998918534,
|
| 1408 |
+
"step": 445
|
| 1409 |
+
},
|
| 1410 |
+
{
|
| 1411 |
+
"completion_length": 663.2571716308594,
|
| 1412 |
+
"epoch": 0.96,
|
| 1413 |
+
"grad_norm": 24.591154098510742,
|
| 1414 |
+
"kl": 0.5593414306640625,
|
| 1415 |
+
"learning_rate": 1.3511039807673209e-08,
|
| 1416 |
+
"loss": 0.0224,
|
| 1417 |
+
"reward": 2.1817306116223336,
|
| 1418 |
+
"reward_std": 0.6179227635264397,
|
| 1419 |
+
"rewards/accuracy_reward": 0.7482143232598901,
|
| 1420 |
+
"rewards/cosine_scaled_reward": 0.5144686248153448,
|
| 1421 |
+
"rewards/format_reward": 0.0,
|
| 1422 |
+
"rewards/reasoning_steps_reward": 0.9190476790070534,
|
| 1423 |
+
"step": 450
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"completion_length": 652.6625297546386,
|
| 1427 |
+
"epoch": 0.9706666666666667,
|
| 1428 |
+
"grad_norm": 2.691333770751953,
|
| 1429 |
+
"kl": 0.5278656005859375,
|
| 1430 |
+
"learning_rate": 7.0524970011963675e-09,
|
| 1431 |
+
"loss": 0.0211,
|
| 1432 |
+
"reward": 2.30428284406662,
|
| 1433 |
+
"reward_std": 0.5599341684952378,
|
| 1434 |
+
"rewards/accuracy_reward": 0.8071428835391998,
|
| 1435 |
+
"rewards/cosine_scaled_reward": 0.5864256478380412,
|
| 1436 |
+
"rewards/format_reward": 0.0,
|
| 1437 |
+
"rewards/reasoning_steps_reward": 0.9107143521308899,
|
| 1438 |
+
"step": 455
|
| 1439 |
+
},
|
| 1440 |
+
{
|
| 1441 |
+
"completion_length": 659.8589561462402,
|
| 1442 |
+
"epoch": 0.9813333333333333,
|
| 1443 |
+
"grad_norm": 9.438557624816895,
|
| 1444 |
+
"kl": 0.751141357421875,
|
| 1445 |
+
"learning_rate": 2.6720698600553595e-09,
|
| 1446 |
+
"loss": 0.0301,
|
| 1447 |
+
"reward": 2.1261632844805716,
|
| 1448 |
+
"reward_std": 0.6333575483411551,
|
| 1449 |
+
"rewards/accuracy_reward": 0.7285714544355869,
|
| 1450 |
+
"rewards/cosine_scaled_reward": 0.49997273324988784,
|
| 1451 |
+
"rewards/format_reward": 0.0,
|
| 1452 |
+
"rewards/reasoning_steps_reward": 0.897619104385376,
|
| 1453 |
+
"step": 460
|
| 1454 |
+
},
|
| 1455 |
+
{
|
| 1456 |
+
"completion_length": 698.3178894042969,
|
| 1457 |
+
"epoch": 0.992,
|
| 1458 |
+
"grad_norm": 4.72813081741333,
|
| 1459 |
+
"kl": 0.8891571044921875,
|
| 1460 |
+
"learning_rate": 3.7585574148779613e-10,
|
| 1461 |
+
"loss": 0.0356,
|
| 1462 |
+
"reward": 2.1171563625335694,
|
| 1463 |
+
"reward_std": 0.7153698660433292,
|
| 1464 |
+
"rewards/accuracy_reward": 0.7089286103844643,
|
| 1465 |
+
"rewards/cosine_scaled_reward": 0.48382292576134206,
|
| 1466 |
+
"rewards/format_reward": 0.0,
|
| 1467 |
+
"rewards/reasoning_steps_reward": 0.9244048178195954,
|
| 1468 |
+
"step": 465
|
| 1469 |
+
},
|
| 1470 |
+
{
|
| 1471 |
+
"completion_length": 698.711343129476,
|
| 1472 |
+
"epoch": 0.9984,
|
| 1473 |
+
"kl": 1.0117034912109375,
|
| 1474 |
+
"reward": 2.194051335255305,
|
| 1475 |
+
"reward_std": 0.6752708829008043,
|
| 1476 |
+
"rewards/accuracy_reward": 0.7619047996898493,
|
| 1477 |
+
"rewards/cosine_scaled_reward": 0.5353211159817874,
|
| 1478 |
+
"rewards/format_reward": 0.0,
|
| 1479 |
+
"rewards/reasoning_steps_reward": 0.8968254625797272,
|
| 1480 |
+
"step": 468,
|
| 1481 |
+
"total_flos": 0.0,
|
| 1482 |
+
"train_loss": 0.036631251517900455,
|
| 1483 |
+
"train_runtime": 117440.362,
|
| 1484 |
+
"train_samples_per_second": 0.064,
|
| 1485 |
+
"train_steps_per_second": 0.004
|
| 1486 |
+
}
|
| 1487 |
+
],
|
| 1488 |
+
"logging_steps": 5,
|
| 1489 |
+
"max_steps": 468,
|
| 1490 |
+
"num_input_tokens_seen": 0,
|
| 1491 |
+
"num_train_epochs": 1,
|
| 1492 |
+
"save_steps": 500,
|
| 1493 |
+
"stateful_callbacks": {
|
| 1494 |
+
"TrainerControl": {
|
| 1495 |
+
"args": {
|
| 1496 |
+
"should_epoch_stop": false,
|
| 1497 |
+
"should_evaluate": false,
|
| 1498 |
+
"should_log": false,
|
| 1499 |
+
"should_save": false,
|
| 1500 |
+
"should_training_stop": false
|
| 1501 |
+
},
|
| 1502 |
+
"attributes": {}
|
| 1503 |
+
}
|
| 1504 |
+
},
|
| 1505 |
+
"total_flos": 0.0,
|
| 1506 |
+
"train_batch_size": 2,
|
| 1507 |
+
"trial_name": null,
|
| 1508 |
+
"trial_params": null
|
| 1509 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c4b1da28688cc64f93aacef34e5f7dce536508527fffab3bcf6a0314f8b6bb24
|
| 3 |
+
size 7480
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|