Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
| import torch | |
| from PIL import Image, ImageDraw | |
| # Load the model and processor | |
| processor = AutoImageProcessor.from_pretrained("0llheaven/Conditional-detr-finetuned-V5") | |
| model = AutoModelForObjectDetection.from_pretrained("0llheaven/Conditional-detr-finetuned-V5") | |
| def detect_objects(image, score_threshold): | |
| # Convert image to RGB if it's grayscale | |
| if image.mode != "RGB": | |
| image = image.convert("RGB") | |
| # Prepare input for the model | |
| inputs = processor(images=image, return_tensors="pt") | |
| outputs = model(**inputs) | |
| # Filter predictions based on the user-defined score threshold | |
| target_sizes = torch.tensor([image.size[::-1]]) | |
| results = processor.post_process_object_detection(outputs, target_sizes=target_sizes) | |
| labels_output = [] | |
| no_detection = True | |
| # Draw bounding boxes around detected objects | |
| draw = ImageDraw.Draw(image) | |
| for result in results: | |
| scores = result["scores"] | |
| labels = result["labels"] | |
| boxes = result["boxes"] | |
| for score, label, box in zip(scores, labels, boxes): | |
| if score >= score_threshold: # Only draw if score is above threshold | |
| no_detection = False | |
| box = [round(i, 2) for i in box.tolist()] | |
| if label.item() == 0: | |
| label_name = "Pneumonia" | |
| else label.item() == 1: | |
| label_name = "Normal" | |
| draw.rectangle(box, outline="red", width=3) | |
| draw.text((box[0], box[1]), f"{label_name}: {round(score.item(), 3)}", fill="red") | |
| labels_output.append(f"{label_name}: {round(score.item(), 3)}") | |
| # If no detections, set label as 'Other' | |
| if no_detection: | |
| labels_output.append("Other") | |
| return image, "\n".join(labels_output) | |
| # Create the Gradio interface | |
| interface = gr.Interface( | |
| fn=detect_objects, | |
| inputs=[gr.Image(type="pil"), gr.Slider(0, 1, value=0.5, label="Score Threshold")], # Add slider for score threshold | |
| # outputs=gr.Image(type="pil"), # Corrected output type | |
| outputs=[gr.Image(type="pil"), gr.Textbox(label="Detected Objects")], | |
| title="Object Detection with Transformers", | |
| description="Upload an image to detect objects using a fine-tuned Conditional-DETR model." | |
| ) | |
| # Launch the interface | |
| interface.launch() |