Create transformer_sd3.py
Browse files- models/transformer_sd3.py +375 -0
models/transformer_sd3.py
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 17 |
+
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn as nn
|
| 20 |
+
|
| 21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 22 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 23 |
+
from .attention import JointTransformerBlock
|
| 24 |
+
from diffusers.models.attention_processor import Attention, AttentionProcessor, FusedJointAttnProcessor2_0
|
| 25 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 26 |
+
from diffusers.models.normalization import AdaLayerNormContinuous
|
| 27 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
| 28 |
+
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
| 29 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class SD3Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
| 36 |
+
"""
|
| 37 |
+
The Transformer model introduced in Stable Diffusion 3.
|
| 38 |
+
|
| 39 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 40 |
+
|
| 41 |
+
Parameters:
|
| 42 |
+
sample_size (`int`): The width of the latent images. This is fixed during training since
|
| 43 |
+
it is used to learn a number of position embeddings.
|
| 44 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 45 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 46 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
|
| 47 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 48 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 49 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 50 |
+
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
|
| 51 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 52 |
+
out_channels (`int`, defaults to 16): Number of output channels.
|
| 53 |
+
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
_supports_gradient_checkpointing = True
|
| 57 |
+
|
| 58 |
+
@register_to_config
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
sample_size: int = 128,
|
| 62 |
+
patch_size: int = 2,
|
| 63 |
+
in_channels: int = 16,
|
| 64 |
+
num_layers: int = 18,
|
| 65 |
+
attention_head_dim: int = 64,
|
| 66 |
+
num_attention_heads: int = 18,
|
| 67 |
+
joint_attention_dim: int = 4096,
|
| 68 |
+
caption_projection_dim: int = 1152,
|
| 69 |
+
pooled_projection_dim: int = 2048,
|
| 70 |
+
out_channels: int = 16,
|
| 71 |
+
pos_embed_max_size: int = 96,
|
| 72 |
+
dual_attention_layers: Tuple[
|
| 73 |
+
int, ...
|
| 74 |
+
] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
|
| 75 |
+
qk_norm: Optional[str] = None,
|
| 76 |
+
):
|
| 77 |
+
super().__init__()
|
| 78 |
+
default_out_channels = in_channels
|
| 79 |
+
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
| 80 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 81 |
+
|
| 82 |
+
self.pos_embed = PatchEmbed(
|
| 83 |
+
height=self.config.sample_size,
|
| 84 |
+
width=self.config.sample_size,
|
| 85 |
+
patch_size=self.config.patch_size,
|
| 86 |
+
in_channels=self.config.in_channels,
|
| 87 |
+
embed_dim=self.inner_dim,
|
| 88 |
+
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
| 89 |
+
)
|
| 90 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
| 91 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
| 92 |
+
)
|
| 93 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
|
| 94 |
+
|
| 95 |
+
# `attention_head_dim` is doubled to account for the mixing.
|
| 96 |
+
# It needs to crafted when we get the actual checkpoints.
|
| 97 |
+
self.transformer_blocks = nn.ModuleList(
|
| 98 |
+
[
|
| 99 |
+
JointTransformerBlock(
|
| 100 |
+
dim=self.inner_dim,
|
| 101 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 102 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 103 |
+
context_pre_only=i == num_layers - 1,
|
| 104 |
+
qk_norm=qk_norm,
|
| 105 |
+
use_dual_attention=True if i in dual_attention_layers else False,
|
| 106 |
+
)
|
| 107 |
+
for i in range(self.config.num_layers)
|
| 108 |
+
]
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 112 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 113 |
+
|
| 114 |
+
self.gradient_checkpointing = False
|
| 115 |
+
|
| 116 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
| 117 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
| 118 |
+
"""
|
| 119 |
+
Sets the attention processor to use [feed forward
|
| 120 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
| 121 |
+
|
| 122 |
+
Parameters:
|
| 123 |
+
chunk_size (`int`, *optional*):
|
| 124 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
| 125 |
+
over each tensor of dim=`dim`.
|
| 126 |
+
dim (`int`, *optional*, defaults to `0`):
|
| 127 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
| 128 |
+
or dim=1 (sequence length).
|
| 129 |
+
"""
|
| 130 |
+
if dim not in [0, 1]:
|
| 131 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
| 132 |
+
|
| 133 |
+
# By default chunk size is 1
|
| 134 |
+
chunk_size = chunk_size or 1
|
| 135 |
+
|
| 136 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 137 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 138 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 139 |
+
|
| 140 |
+
for child in module.children():
|
| 141 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 142 |
+
|
| 143 |
+
for module in self.children():
|
| 144 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
| 145 |
+
|
| 146 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
|
| 147 |
+
def disable_forward_chunking(self):
|
| 148 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 149 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 150 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 151 |
+
|
| 152 |
+
for child in module.children():
|
| 153 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 154 |
+
|
| 155 |
+
for module in self.children():
|
| 156 |
+
fn_recursive_feed_forward(module, None, 0)
|
| 157 |
+
|
| 158 |
+
@property
|
| 159 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 160 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 161 |
+
r"""
|
| 162 |
+
Returns:
|
| 163 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 164 |
+
indexed by its weight name.
|
| 165 |
+
"""
|
| 166 |
+
# set recursively
|
| 167 |
+
processors = {}
|
| 168 |
+
|
| 169 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 170 |
+
if hasattr(module, "get_processor"):
|
| 171 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 172 |
+
|
| 173 |
+
for sub_name, child in module.named_children():
|
| 174 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 175 |
+
|
| 176 |
+
return processors
|
| 177 |
+
|
| 178 |
+
for name, module in self.named_children():
|
| 179 |
+
fn_recursive_add_processors(name, module, processors)
|
| 180 |
+
|
| 181 |
+
return processors
|
| 182 |
+
|
| 183 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 184 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 185 |
+
r"""
|
| 186 |
+
Sets the attention processor to use to compute attention.
|
| 187 |
+
|
| 188 |
+
Parameters:
|
| 189 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 190 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 191 |
+
for **all** `Attention` layers.
|
| 192 |
+
|
| 193 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 194 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 195 |
+
|
| 196 |
+
"""
|
| 197 |
+
count = len(self.attn_processors.keys())
|
| 198 |
+
|
| 199 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 200 |
+
raise ValueError(
|
| 201 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 202 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 206 |
+
if hasattr(module, "set_processor"):
|
| 207 |
+
if not isinstance(processor, dict):
|
| 208 |
+
module.set_processor(processor)
|
| 209 |
+
else:
|
| 210 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 211 |
+
|
| 212 |
+
for sub_name, child in module.named_children():
|
| 213 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 214 |
+
|
| 215 |
+
for name, module in self.named_children():
|
| 216 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 217 |
+
|
| 218 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
|
| 219 |
+
def fuse_qkv_projections(self):
|
| 220 |
+
"""
|
| 221 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 222 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 223 |
+
|
| 224 |
+
<Tip warning={true}>
|
| 225 |
+
|
| 226 |
+
This API is 🧪 experimental.
|
| 227 |
+
|
| 228 |
+
</Tip>
|
| 229 |
+
"""
|
| 230 |
+
self.original_attn_processors = None
|
| 231 |
+
|
| 232 |
+
for _, attn_processor in self.attn_processors.items():
|
| 233 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 234 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 235 |
+
|
| 236 |
+
self.original_attn_processors = self.attn_processors
|
| 237 |
+
|
| 238 |
+
for module in self.modules():
|
| 239 |
+
if isinstance(module, Attention):
|
| 240 |
+
module.fuse_projections(fuse=True)
|
| 241 |
+
|
| 242 |
+
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
| 243 |
+
|
| 244 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 245 |
+
def unfuse_qkv_projections(self):
|
| 246 |
+
"""Disables the fused QKV projection if enabled.
|
| 247 |
+
|
| 248 |
+
<Tip warning={true}>
|
| 249 |
+
|
| 250 |
+
This API is 🧪 experimental.
|
| 251 |
+
|
| 252 |
+
</Tip>
|
| 253 |
+
|
| 254 |
+
"""
|
| 255 |
+
if self.original_attn_processors is not None:
|
| 256 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 257 |
+
|
| 258 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 259 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 260 |
+
module.gradient_checkpointing = value
|
| 261 |
+
|
| 262 |
+
def forward(
|
| 263 |
+
self,
|
| 264 |
+
hidden_states: torch.FloatTensor,
|
| 265 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 266 |
+
pooled_projections: torch.FloatTensor = None,
|
| 267 |
+
timestep: torch.LongTensor = None,
|
| 268 |
+
block_controlnet_hidden_states: List = None,
|
| 269 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 270 |
+
return_dict: bool = True,
|
| 271 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 272 |
+
"""
|
| 273 |
+
The [`SD3Transformer2DModel`] forward method.
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 277 |
+
Input `hidden_states`.
|
| 278 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 279 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 280 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 281 |
+
from the embeddings of input conditions.
|
| 282 |
+
timestep ( `torch.LongTensor`):
|
| 283 |
+
Used to indicate denoising step.
|
| 284 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 285 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 286 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 287 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 288 |
+
`self.processor` in
|
| 289 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 290 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 291 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 292 |
+
tuple.
|
| 293 |
+
|
| 294 |
+
Returns:
|
| 295 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 296 |
+
`tuple` where the first element is the sample tensor.
|
| 297 |
+
"""
|
| 298 |
+
if joint_attention_kwargs is not None:
|
| 299 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 300 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 301 |
+
else:
|
| 302 |
+
lora_scale = 1.0
|
| 303 |
+
|
| 304 |
+
if USE_PEFT_BACKEND:
|
| 305 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 306 |
+
scale_lora_layers(self, lora_scale)
|
| 307 |
+
else:
|
| 308 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 309 |
+
logger.warning(
|
| 310 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
height, width = hidden_states.shape[-2:]
|
| 314 |
+
|
| 315 |
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
| 316 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
| 317 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 318 |
+
|
| 319 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 320 |
+
if self.training and self.gradient_checkpointing:
|
| 321 |
+
|
| 322 |
+
def create_custom_forward(module, return_dict=None):
|
| 323 |
+
def custom_forward(*inputs):
|
| 324 |
+
if return_dict is not None:
|
| 325 |
+
return module(*inputs, return_dict=return_dict)
|
| 326 |
+
else:
|
| 327 |
+
return module(*inputs)
|
| 328 |
+
|
| 329 |
+
return custom_forward
|
| 330 |
+
|
| 331 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 332 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
| 333 |
+
create_custom_forward(block),
|
| 334 |
+
hidden_states,
|
| 335 |
+
encoder_hidden_states,
|
| 336 |
+
temb,
|
| 337 |
+
joint_attention_kwargs,
|
| 338 |
+
**ckpt_kwargs,
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
else:
|
| 342 |
+
encoder_hidden_states, hidden_states = block(
|
| 343 |
+
hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb,
|
| 344 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 345 |
+
)
|
| 346 |
+
|
| 347 |
+
# controlnet residual
|
| 348 |
+
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
| 349 |
+
interval_control = len(self.transformer_blocks) // len(block_controlnet_hidden_states)
|
| 350 |
+
hidden_states = hidden_states + block_controlnet_hidden_states[index_block // interval_control]
|
| 351 |
+
|
| 352 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 353 |
+
hidden_states = self.proj_out(hidden_states)
|
| 354 |
+
|
| 355 |
+
# unpatchify
|
| 356 |
+
patch_size = self.config.patch_size
|
| 357 |
+
height = height // patch_size
|
| 358 |
+
width = width // patch_size
|
| 359 |
+
|
| 360 |
+
hidden_states = hidden_states.reshape(
|
| 361 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
| 362 |
+
)
|
| 363 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 364 |
+
output = hidden_states.reshape(
|
| 365 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
if USE_PEFT_BACKEND:
|
| 369 |
+
# remove `lora_scale` from each PEFT layer
|
| 370 |
+
unscale_lora_layers(self, lora_scale)
|
| 371 |
+
|
| 372 |
+
if not return_dict:
|
| 373 |
+
return (output,)
|
| 374 |
+
|
| 375 |
+
return Transformer2DModelOutput(sample=output)
|