Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tensorflow as tf
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# Load the trained model
|
| 6 |
+
model = tf.keras.models.load_model('model.h5')
|
| 7 |
+
print("Model loaded successfully!")
|
| 8 |
+
|
| 9 |
+
def preprocess_image(image):
|
| 10 |
+
"""Process the input image to match MNIST format"""
|
| 11 |
+
# Convert to grayscale
|
| 12 |
+
image = image.convert('L')
|
| 13 |
+
# Resize to 28x28
|
| 14 |
+
image = image.resize((28, 28))
|
| 15 |
+
# Convert to numpy array and normalize
|
| 16 |
+
image_array = np.array(image)
|
| 17 |
+
image_array = image_array / 255.0
|
| 18 |
+
# Reshape to match model input
|
| 19 |
+
image_array = np.expand_dims(image_array, axis=0)
|
| 20 |
+
return image_array
|
| 21 |
+
|
| 22 |
+
def predict_digit(image):
|
| 23 |
+
if image is None:
|
| 24 |
+
return None
|
| 25 |
+
|
| 26 |
+
# Preprocess the image
|
| 27 |
+
processed_image = preprocess_image(image)
|
| 28 |
+
|
| 29 |
+
# Make prediction
|
| 30 |
+
predictions = model.predict(processed_image)
|
| 31 |
+
pred_scores = tf.nn.softmax(predictions[0]).numpy()
|
| 32 |
+
pred_class = np.argmax(pred_scores)
|
| 33 |
+
|
| 34 |
+
# Create result string
|
| 35 |
+
result = f"Prediction: {pred_class}"
|
| 36 |
+
|
| 37 |
+
return result
|
| 38 |
+
|
| 39 |
+
# Create Gradio interface
|
| 40 |
+
demo = gr.Interface(
|
| 41 |
+
fn=predict_digit,
|
| 42 |
+
inputs=gr.Image(type="pil"),
|
| 43 |
+
outputs=gr.Textbox(label="Result"),
|
| 44 |
+
title="MNIST Digit Recognizer",
|
| 45 |
+
description="Upload a digit from 0-9 and the model will predict which digit it is.",
|
| 46 |
+
examples=None,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
demo.launch()
|