Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,12 +27,13 @@ tasks = [
|
|
| 27 |
'summarization.csv'
|
| 28 |
]
|
| 29 |
|
|
|
|
|
|
|
| 30 |
def format_stars(score):
|
| 31 |
try:
|
| 32 |
score_int = int(score)
|
| 33 |
except Exception:
|
| 34 |
score_int = 0
|
| 35 |
-
# Render stars in green with a slightly larger font.
|
| 36 |
return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β
" * score_int}</span>'
|
| 37 |
|
| 38 |
def make_link(mname):
|
|
@@ -41,7 +42,6 @@ def make_link(mname):
|
|
| 41 |
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
|
| 42 |
|
| 43 |
def extract_link_text(html_link):
|
| 44 |
-
"""Extracts the inner text from an HTML link."""
|
| 45 |
start = html_link.find('>') + 1
|
| 46 |
end = html_link.rfind('</a>')
|
| 47 |
if start > 0 and end > start:
|
|
@@ -50,13 +50,7 @@ def extract_link_text(html_link):
|
|
| 50 |
return html_link
|
| 51 |
|
| 52 |
def generate_html_table_from_df(df):
|
| 53 |
-
|
| 54 |
-
Generates an HTML table with four columns:
|
| 55 |
-
- Model (with link)
|
| 56 |
-
- Provider (extracted from the model field)
|
| 57 |
-
- GPU Energy (Wh) plus a horizontal bar
|
| 58 |
-
- Score (as stars)
|
| 59 |
-
"""
|
| 60 |
if not df.empty:
|
| 61 |
max_length = max(len(extract_link_text(link)) for link in df['Model'])
|
| 62 |
else:
|
|
@@ -70,7 +64,7 @@ def generate_html_table_from_df(df):
|
|
| 70 |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
|
| 71 |
html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
|
| 72 |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
|
| 73 |
-
html += '<th style="text-align: left; padding: 8px;" title="Energy efficiency score">Score</th>'
|
| 74 |
html += '</tr></thead>'
|
| 75 |
html += '<tbody>'
|
| 76 |
for _, row in df.iterrows():
|
|
@@ -91,9 +85,30 @@ def generate_html_table_from_df(df):
|
|
| 91 |
html += '</tbody></table>'
|
| 92 |
return f'<div class="table-container">{html}</div>'
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
all_df = pd.DataFrame()
|
| 98 |
for task in tasks:
|
| 99 |
df = pd.read_csv('data/energy/' + task)
|
|
@@ -101,41 +116,10 @@ def get_efficiency_diff_for_all():
|
|
| 101 |
df = df.iloc[:, 1:]
|
| 102 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 103 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
min_val = all_df['gpu_energy_numeric'].min()
|
| 107 |
-
max_val = all_df['gpu_energy_numeric'].max()
|
| 108 |
-
diff = max_val - min_val
|
| 109 |
-
# A colorful gradient card for global stats.
|
| 110 |
-
return (
|
| 111 |
-
f"<div style='background: linear-gradient(135deg, #f6d365, #fda085); padding: 15px; "
|
| 112 |
-
f"border-radius: 8px; margin: 10px; color: #333;'>"
|
| 113 |
-
f"<strong>All Models:</strong> Efficiency difference is <strong>{diff:.2f} Wh</strong> "
|
| 114 |
-
f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
|
| 115 |
-
f"</div>"
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
def get_efficiency_diff_for_task(task_filename):
|
| 119 |
-
"""Calculates the efficiency difference for models in a given task."""
|
| 120 |
-
df = pd.read_csv('data/energy/' + task_filename)
|
| 121 |
-
if df.columns[0].startswith("Unnamed:"):
|
| 122 |
-
df = df.iloc[:, 1:]
|
| 123 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 124 |
-
if df.empty:
|
| 125 |
-
return "<div>No data available</div>"
|
| 126 |
-
min_val = df['gpu_energy_numeric'].min()
|
| 127 |
-
max_val = df['gpu_energy_numeric'].max()
|
| 128 |
-
diff = max_val - min_val
|
| 129 |
-
# A different gradient for the selected task
|
| 130 |
-
return (
|
| 131 |
-
f"<div style='background: linear-gradient(135deg, #a8e063, #56ab2f); padding: 15px; "
|
| 132 |
-
f"border-radius: 8px; margin: 10px; color: #333;'>"
|
| 133 |
-
f"<strong>Selected Task:</strong> Efficiency difference is <strong>{diff:.2f} Wh</strong> "
|
| 134 |
-
f"(min: {min_val:.2f} Wh, max: {max_val:.2f} Wh)"
|
| 135 |
-
f"</div>"
|
| 136 |
-
)
|
| 137 |
|
| 138 |
-
|
| 139 |
def zip_csv_files():
|
| 140 |
data_dir = "data/energy"
|
| 141 |
zip_filename = "data.zip"
|
|
@@ -159,54 +143,8 @@ def get_zip_data_link():
|
|
| 159 |
)
|
| 160 |
return href
|
| 161 |
|
| 162 |
-
|
| 163 |
-
def get_model_names_html(task, sort_order="Low to High"):
|
| 164 |
-
df = pd.read_csv('data/energy/' + task)
|
| 165 |
-
if df.columns[0].startswith("Unnamed:"):
|
| 166 |
-
df = df.iloc[:, 1:]
|
| 167 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
| 168 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 169 |
-
# Add Provider column (text before the slash in the model field)
|
| 170 |
-
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
| 171 |
-
df['Model'] = df['model'].apply(make_link)
|
| 172 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
| 173 |
-
ascending = (sort_order == "Low to High")
|
| 174 |
-
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 175 |
-
return generate_html_table_from_df(df)
|
| 176 |
-
|
| 177 |
-
def get_all_model_names_html(sort_order="Low to High"):
|
| 178 |
-
all_df = pd.DataFrame()
|
| 179 |
-
for task in tasks:
|
| 180 |
-
df = pd.read_csv('data/energy/' + task)
|
| 181 |
-
if df.columns[0].startswith("Unnamed:"):
|
| 182 |
-
df = df.iloc[:, 1:]
|
| 183 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
| 184 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 185 |
-
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
| 186 |
-
df['Model'] = df['model'].apply(make_link)
|
| 187 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
| 188 |
-
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 189 |
-
all_df = all_df.drop_duplicates(subset=['model'])
|
| 190 |
-
ascending = (sort_order == "Low to High")
|
| 191 |
-
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 192 |
-
return generate_html_table_from_df(all_df)
|
| 193 |
-
|
| 194 |
-
def get_text_generation_model_names_html(model_class, sort_order="Low to High"):
|
| 195 |
-
df = pd.read_csv('data/energy/text_generation.csv')
|
| 196 |
-
if df.columns[0].startswith("Unnamed:"):
|
| 197 |
-
df = df.iloc[:, 1:]
|
| 198 |
-
if 'class' in df.columns:
|
| 199 |
-
df = df[df['class'] == model_class]
|
| 200 |
-
df['energy_score'] = df['energy_score'].astype(int)
|
| 201 |
-
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 202 |
-
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
| 203 |
-
df['Model'] = df['model'].apply(make_link)
|
| 204 |
-
df['Score'] = df['energy_score'].apply(format_stars)
|
| 205 |
-
ascending = (sort_order == "Low to High")
|
| 206 |
-
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 207 |
-
return generate_html_table_from_df(df)
|
| 208 |
|
| 209 |
-
# --- Update functions for dropdown changes ---
|
| 210 |
def update_text_generation(selected_display, sort_order):
|
| 211 |
mapping = {
|
| 212 |
"A (Single Consumer GPU) <20B parameters": "A",
|
|
@@ -214,60 +152,102 @@ def update_text_generation(selected_display, sort_order):
|
|
| 214 |
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
| 215 |
}
|
| 216 |
model_class = mapping.get(selected_display, "A")
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
|
| 222 |
def update_image_generation(sort_order):
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
| 226 |
|
| 227 |
def update_text_classification(sort_order):
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
|
|
|
|
|
|
| 231 |
|
| 232 |
def update_image_classification(sort_order):
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
| 236 |
|
| 237 |
def update_image_captioning(sort_order):
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
| 241 |
|
| 242 |
def update_summarization(sort_order):
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
|
|
|
|
|
|
| 246 |
|
| 247 |
def update_asr(sort_order):
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
| 251 |
|
| 252 |
def update_object_detection(sort_order):
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
| 256 |
|
| 257 |
def update_sentence_similarity(sort_order):
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
| 261 |
|
| 262 |
def update_extractive_qa(sort_order):
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
| 266 |
|
| 267 |
def update_all_tasks(sort_order):
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
-
# --- Build the Gradio Interface ---
|
| 271 |
demo = gr.Blocks(css="""
|
| 272 |
.gr-dataframe table {
|
| 273 |
table-layout: fixed;
|
|
@@ -287,7 +267,7 @@ demo = gr.Blocks(css="""
|
|
| 287 |
""")
|
| 288 |
|
| 289 |
with demo:
|
| 290 |
-
# --- Header Links ---
|
| 291 |
gr.HTML(f'''
|
| 292 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
| 293 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
|
@@ -299,23 +279,22 @@ with demo:
|
|
| 299 |
</div>
|
| 300 |
''')
|
| 301 |
|
| 302 |
-
# --- Logo
|
| 303 |
gr.HTML('''
|
| 304 |
-
<div style="
|
| 305 |
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
|
| 306 |
alt="Logo"
|
| 307 |
-
style="max-width: 300px; height: auto;
|
| 308 |
</div>
|
| 309 |
''')
|
| 310 |
-
gr.Markdown('<div style="text-align: center; font-size: 1.2em;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
|
| 311 |
-
|
| 312 |
-
# --- Callout Cards (Row at the Top) ---
|
| 313 |
-
with gr.Row():
|
| 314 |
-
all_models_card = gr.HTML(get_efficiency_diff_for_all())
|
| 315 |
-
# Initially, we show the stats for text_generation as default for the selected task.
|
| 316 |
-
selected_task_card = gr.HTML(get_efficiency_diff_for_task('text_generation.csv'))
|
| 317 |
|
| 318 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
with gr.Tabs():
|
| 320 |
# --- Text Generation Tab ---
|
| 321 |
with gr.TabItem("Text Generation π¬"):
|
|
@@ -335,18 +314,14 @@ with demo:
|
|
| 335 |
label="Sort",
|
| 336 |
value="Low to High"
|
| 337 |
)
|
| 338 |
-
|
| 339 |
-
tg_table = gr.HTML(
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
)
|
| 345 |
-
sort_dropdown_tg.change(
|
| 346 |
-
fn=update_text_generation,
|
| 347 |
-
inputs=[model_class_dropdown, sort_dropdown_tg],
|
| 348 |
-
outputs=[tg_table, selected_task_card]
|
| 349 |
-
)
|
| 350 |
|
| 351 |
# --- Image Generation Tab ---
|
| 352 |
with gr.TabItem("Image Generation π·"):
|
|
@@ -355,12 +330,12 @@ with demo:
|
|
| 355 |
label="Sort",
|
| 356 |
value="Low to High"
|
| 357 |
)
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
)
|
| 364 |
|
| 365 |
# --- Text Classification Tab ---
|
| 366 |
with gr.TabItem("Text Classification π"):
|
|
@@ -369,12 +344,12 @@ with demo:
|
|
| 369 |
label="Sort",
|
| 370 |
value="Low to High"
|
| 371 |
)
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
)
|
| 378 |
|
| 379 |
# --- Image Classification Tab ---
|
| 380 |
with gr.TabItem("Image Classification πΌοΈ"):
|
|
@@ -383,12 +358,12 @@ with demo:
|
|
| 383 |
label="Sort",
|
| 384 |
value="Low to High"
|
| 385 |
)
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
)
|
| 392 |
|
| 393 |
# --- Image Captioning Tab ---
|
| 394 |
with gr.TabItem("Image Captioning π"):
|
|
@@ -397,12 +372,12 @@ with demo:
|
|
| 397 |
label="Sort",
|
| 398 |
value="Low to High"
|
| 399 |
)
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
)
|
| 406 |
|
| 407 |
# --- Summarization Tab ---
|
| 408 |
with gr.TabItem("Summarization π"):
|
|
@@ -411,12 +386,12 @@ with demo:
|
|
| 411 |
label="Sort",
|
| 412 |
value="Low to High"
|
| 413 |
)
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
)
|
| 420 |
|
| 421 |
# --- Automatic Speech Recognition Tab ---
|
| 422 |
with gr.TabItem("Automatic Speech Recognition π¬"):
|
|
@@ -425,12 +400,12 @@ with demo:
|
|
| 425 |
label="Sort",
|
| 426 |
value="Low to High"
|
| 427 |
)
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
)
|
| 434 |
|
| 435 |
# --- Object Detection Tab ---
|
| 436 |
with gr.TabItem("Object Detection π"):
|
|
@@ -439,12 +414,12 @@ with demo:
|
|
| 439 |
label="Sort",
|
| 440 |
value="Low to High"
|
| 441 |
)
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
)
|
| 448 |
|
| 449 |
# --- Sentence Similarity Tab ---
|
| 450 |
with gr.TabItem("Sentence Similarity π"):
|
|
@@ -453,12 +428,12 @@ with demo:
|
|
| 453 |
label="Sort",
|
| 454 |
value="Low to High"
|
| 455 |
)
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
)
|
| 462 |
|
| 463 |
# --- Extractive QA Tab ---
|
| 464 |
with gr.TabItem("Extractive QA β"):
|
|
@@ -467,22 +442,26 @@ with demo:
|
|
| 467 |
label="Sort",
|
| 468 |
value="Low to High"
|
| 469 |
)
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
)
|
| 476 |
|
| 477 |
-
# --- All Tasks Tab
|
| 478 |
with gr.TabItem("All Tasks π‘"):
|
| 479 |
sort_dropdown_all = gr.Dropdown(
|
| 480 |
choices=["Low to High", "High to Low"],
|
| 481 |
label="Sort",
|
| 482 |
value="Low to High"
|
| 483 |
)
|
| 484 |
-
|
| 485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
with gr.Accordion("π Citation", open=False):
|
| 488 |
citation_button = gr.Textbox(
|
|
|
|
| 27 |
'summarization.csv'
|
| 28 |
]
|
| 29 |
|
| 30 |
+
### HELPER FUNCTIONS ###
|
| 31 |
+
|
| 32 |
def format_stars(score):
|
| 33 |
try:
|
| 34 |
score_int = int(score)
|
| 35 |
except Exception:
|
| 36 |
score_int = 0
|
|
|
|
| 37 |
return f'<span style="color: #3fa45bff; font-size:1.5em;">{"β
" * score_int}</span>'
|
| 38 |
|
| 39 |
def make_link(mname):
|
|
|
|
| 42 |
return f'<a href="https://huggingface.co/{mname}" target="_blank">{display_name}</a>'
|
| 43 |
|
| 44 |
def extract_link_text(html_link):
|
|
|
|
| 45 |
start = html_link.find('>') + 1
|
| 46 |
end = html_link.rfind('</a>')
|
| 47 |
if start > 0 and end > start:
|
|
|
|
| 50 |
return html_link
|
| 51 |
|
| 52 |
def generate_html_table_from_df(df):
|
| 53 |
+
# Compute a static width for the Model column based on the longest model name.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
if not df.empty:
|
| 55 |
max_length = max(len(extract_link_text(link)) for link in df['Model'])
|
| 56 |
else:
|
|
|
|
| 64 |
html += '<th style="text-align: left; padding: 8px;" title="Model name with link to Hugging Face">Model</th>'
|
| 65 |
html += '<th style="text-align: left; padding: 8px;" title="AI Provider extracted from the model name">Provider</th>'
|
| 66 |
html += '<th style="text-align: left; padding: 8px;" title="GPU energy consumed in Watt-hours for 1,000 queries">GPU Energy (Wh)</th>'
|
| 67 |
+
html += '<th style="text-align: left; padding: 8px;" title="Energy efficiency score (stars)">Score</th>'
|
| 68 |
html += '</tr></thead>'
|
| 69 |
html += '<tbody>'
|
| 70 |
for _, row in df.iterrows():
|
|
|
|
| 85 |
html += '</tbody></table>'
|
| 86 |
return f'<div class="table-container">{html}</div>'
|
| 87 |
|
| 88 |
+
def process_df(task, sort_order="Low to High", filter_fn=None):
|
| 89 |
+
df = pd.read_csv('data/energy/' + task)
|
| 90 |
+
if df.columns[0].startswith("Unnamed:"):
|
| 91 |
+
df = df.iloc[:, 1:]
|
| 92 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 93 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 94 |
+
if filter_fn is not None:
|
| 95 |
+
df = filter_fn(df)
|
| 96 |
+
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
| 97 |
+
df['Model'] = df['model'].apply(make_link)
|
| 98 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
| 99 |
+
ascending = True if sort_order == "Low to High" else False
|
| 100 |
+
df = df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 101 |
+
return df
|
| 102 |
+
|
| 103 |
+
def compute_efficiency_ratio(df):
|
| 104 |
+
if df.empty:
|
| 105 |
+
return 1
|
| 106 |
+
min_val = df['gpu_energy_numeric'].min()
|
| 107 |
+
max_val = df['gpu_energy_numeric'].max()
|
| 108 |
+
ratio = max_val / min_val if min_val > 0 else 1
|
| 109 |
+
return ratio
|
| 110 |
+
|
| 111 |
+
def get_global_callout():
|
| 112 |
all_df = pd.DataFrame()
|
| 113 |
for task in tasks:
|
| 114 |
df = pd.read_csv('data/energy/' + task)
|
|
|
|
| 116 |
df = df.iloc[:, 1:]
|
| 117 |
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 118 |
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 119 |
+
ratio = compute_efficiency_ratio(all_df)
|
| 120 |
+
return f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in leaderboard.</div>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
### ZIP DOWNLOAD (unchanged) ###
|
| 123 |
def zip_csv_files():
|
| 124 |
data_dir = "data/energy"
|
| 125 |
zip_filename = "data.zip"
|
|
|
|
| 143 |
)
|
| 144 |
return href
|
| 145 |
|
| 146 |
+
### UPDATE FUNCTIONS FOR TASKS (returning both callout and table) ###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
|
|
|
| 148 |
def update_text_generation(selected_display, sort_order):
|
| 149 |
mapping = {
|
| 150 |
"A (Single Consumer GPU) <20B parameters": "A",
|
|
|
|
| 152 |
"C (Multiple Cloud GPUs) >66B parameters": "C"
|
| 153 |
}
|
| 154 |
model_class = mapping.get(selected_display, "A")
|
| 155 |
+
def filter_fn(df):
|
| 156 |
+
if 'class' in df.columns:
|
| 157 |
+
return df[df['class'] == model_class]
|
| 158 |
+
return df
|
| 159 |
+
df = process_df('text_generation.csv', sort_order, filter_fn)
|
| 160 |
+
ratio = compute_efficiency_ratio(df)
|
| 161 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 162 |
+
table_html = generate_html_table_from_df(df)
|
| 163 |
+
return callout, table_html
|
| 164 |
|
| 165 |
def update_image_generation(sort_order):
|
| 166 |
+
df = process_df('image_generation.csv', sort_order)
|
| 167 |
+
ratio = compute_efficiency_ratio(df)
|
| 168 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 169 |
+
table_html = generate_html_table_from_df(df)
|
| 170 |
+
return callout, table_html
|
| 171 |
|
| 172 |
def update_text_classification(sort_order):
|
| 173 |
+
df = process_df('text_classification.csv', sort_order)
|
| 174 |
+
ratio = compute_efficiency_ratio(df)
|
| 175 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 176 |
+
table_html = generate_html_table_from_df(df)
|
| 177 |
+
return callout, table_html
|
| 178 |
|
| 179 |
def update_image_classification(sort_order):
|
| 180 |
+
df = process_df('image_classification.csv', sort_order)
|
| 181 |
+
ratio = compute_efficiency_ratio(df)
|
| 182 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 183 |
+
table_html = generate_html_table_from_df(df)
|
| 184 |
+
return callout, table_html
|
| 185 |
|
| 186 |
def update_image_captioning(sort_order):
|
| 187 |
+
df = process_df('image_captioning.csv', sort_order)
|
| 188 |
+
ratio = compute_efficiency_ratio(df)
|
| 189 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 190 |
+
table_html = generate_html_table_from_df(df)
|
| 191 |
+
return callout, table_html
|
| 192 |
|
| 193 |
def update_summarization(sort_order):
|
| 194 |
+
df = process_df('summarization.csv', sort_order)
|
| 195 |
+
ratio = compute_efficiency_ratio(df)
|
| 196 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 197 |
+
table_html = generate_html_table_from_df(df)
|
| 198 |
+
return callout, table_html
|
| 199 |
|
| 200 |
def update_asr(sort_order):
|
| 201 |
+
df = process_df('asr.csv', sort_order)
|
| 202 |
+
ratio = compute_efficiency_ratio(df)
|
| 203 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 204 |
+
table_html = generate_html_table_from_df(df)
|
| 205 |
+
return callout, table_html
|
| 206 |
|
| 207 |
def update_object_detection(sort_order):
|
| 208 |
+
df = process_df('object_detection.csv', sort_order)
|
| 209 |
+
ratio = compute_efficiency_ratio(df)
|
| 210 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 211 |
+
table_html = generate_html_table_from_df(df)
|
| 212 |
+
return callout, table_html
|
| 213 |
|
| 214 |
def update_sentence_similarity(sort_order):
|
| 215 |
+
df = process_df('sentence_similarity.csv', sort_order)
|
| 216 |
+
ratio = compute_efficiency_ratio(df)
|
| 217 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 218 |
+
table_html = generate_html_table_from_df(df)
|
| 219 |
+
return callout, table_html
|
| 220 |
|
| 221 |
def update_extractive_qa(sort_order):
|
| 222 |
+
df = process_df('question_answering.csv', sort_order)
|
| 223 |
+
ratio = compute_efficiency_ratio(df)
|
| 224 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in task.</div>'
|
| 225 |
+
table_html = generate_html_table_from_df(df)
|
| 226 |
+
return callout, table_html
|
| 227 |
|
| 228 |
def update_all_tasks(sort_order):
|
| 229 |
+
# Process all CSV files together
|
| 230 |
+
all_df = pd.DataFrame()
|
| 231 |
+
for task in tasks:
|
| 232 |
+
df = pd.read_csv('data/energy/' + task)
|
| 233 |
+
if df.columns[0].startswith("Unnamed:"):
|
| 234 |
+
df = df.iloc[:, 1:]
|
| 235 |
+
df['energy_score'] = df['energy_score'].astype(int)
|
| 236 |
+
df['gpu_energy_numeric'] = pd.to_numeric(df['total_gpu_energy'], errors='raise') * 1000
|
| 237 |
+
df['Provider'] = df['model'].apply(lambda x: str(x).split('/')[0])
|
| 238 |
+
df['Model'] = df['model'].apply(make_link)
|
| 239 |
+
df['Score'] = df['energy_score'].apply(format_stars)
|
| 240 |
+
all_df = pd.concat([all_df, df], ignore_index=True)
|
| 241 |
+
all_df = all_df.drop_duplicates(subset=['model'])
|
| 242 |
+
ascending = True if sort_order == "Low to High" else False
|
| 243 |
+
all_df = all_df.sort_values(by='gpu_energy_numeric', ascending=ascending)
|
| 244 |
+
ratio = compute_efficiency_ratio(all_df)
|
| 245 |
+
callout = f'<div style="background-color: #f2f2f2; padding: 10px; border-radius: 5px; margin-bottom:10px;">Energy efficiency difference of <strong>{round(ratio, 1)}x</strong> for all models in leaderboard.</div>'
|
| 246 |
+
table_html = generate_html_table_from_df(all_df)
|
| 247 |
+
return callout, table_html
|
| 248 |
+
|
| 249 |
+
### BUILD THE GRADIO INTERFACE ###
|
| 250 |
|
|
|
|
| 251 |
demo = gr.Blocks(css="""
|
| 252 |
.gr-dataframe table {
|
| 253 |
table-layout: fixed;
|
|
|
|
| 267 |
""")
|
| 268 |
|
| 269 |
with demo:
|
| 270 |
+
# --- Header Links (evenly spaced) ---
|
| 271 |
gr.HTML(f'''
|
| 272 |
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
|
| 273 |
<a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Submission Portal</a>
|
|
|
|
| 279 |
</div>
|
| 280 |
''')
|
| 281 |
|
| 282 |
+
# --- Centered Logo ---
|
| 283 |
gr.HTML('''
|
| 284 |
+
<div style="text-align: center; margin-top: 0px;">
|
| 285 |
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
|
| 286 |
alt="Logo"
|
| 287 |
+
style="display: inline-block; max-width: 300px; height: auto;">
|
| 288 |
</div>
|
| 289 |
''')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
+
# --- Global Callout (for all models in leaderboard) ---
|
| 292 |
+
global_callout = gr.HTML(get_global_callout())
|
| 293 |
+
|
| 294 |
+
# --- Welcome Text (moved below the callouts) ---
|
| 295 |
+
gr.Markdown('<div style="text-align: center; margin-top: 10px;">Welcome to the AI Energy Score leaderboard. Select different tasks to see scored models.</div>')
|
| 296 |
+
|
| 297 |
+
# --- Tabs for the different tasks ---
|
| 298 |
with gr.Tabs():
|
| 299 |
# --- Text Generation Tab ---
|
| 300 |
with gr.TabItem("Text Generation π¬"):
|
|
|
|
| 314 |
label="Sort",
|
| 315 |
value="Low to High"
|
| 316 |
)
|
| 317 |
+
tg_callout = gr.HTML()
|
| 318 |
+
tg_table = gr.HTML()
|
| 319 |
+
# Set initial values
|
| 320 |
+
init_callout, init_table = update_text_generation(model_class_options[0], "Low to High")
|
| 321 |
+
tg_callout.value = init_callout
|
| 322 |
+
tg_table.value = init_table
|
| 323 |
+
model_class_dropdown.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_callout, tg_table])
|
| 324 |
+
sort_dropdown_tg.change(fn=update_text_generation, inputs=[model_class_dropdown, sort_dropdown_tg], outputs=[tg_callout, tg_table])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
|
| 326 |
# --- Image Generation Tab ---
|
| 327 |
with gr.TabItem("Image Generation π·"):
|
|
|
|
| 330 |
label="Sort",
|
| 331 |
value="Low to High"
|
| 332 |
)
|
| 333 |
+
img_callout = gr.HTML()
|
| 334 |
+
img_table = gr.HTML()
|
| 335 |
+
init_callout, init_table = update_image_generation("Low to High")
|
| 336 |
+
img_callout.value = init_callout
|
| 337 |
+
img_table.value = init_table
|
| 338 |
+
sort_dropdown_img.change(fn=update_image_generation, inputs=sort_dropdown_img, outputs=[img_callout, img_table])
|
| 339 |
|
| 340 |
# --- Text Classification Tab ---
|
| 341 |
with gr.TabItem("Text Classification π"):
|
|
|
|
| 344 |
label="Sort",
|
| 345 |
value="Low to High"
|
| 346 |
)
|
| 347 |
+
tc_callout = gr.HTML()
|
| 348 |
+
tc_table = gr.HTML()
|
| 349 |
+
init_callout, init_table = update_text_classification("Low to High")
|
| 350 |
+
tc_callout.value = init_callout
|
| 351 |
+
tc_table.value = init_table
|
| 352 |
+
sort_dropdown_tc.change(fn=update_text_classification, inputs=sort_dropdown_tc, outputs=[tc_callout, tc_table])
|
| 353 |
|
| 354 |
# --- Image Classification Tab ---
|
| 355 |
with gr.TabItem("Image Classification πΌοΈ"):
|
|
|
|
| 358 |
label="Sort",
|
| 359 |
value="Low to High"
|
| 360 |
)
|
| 361 |
+
ic_callout = gr.HTML()
|
| 362 |
+
ic_table = gr.HTML()
|
| 363 |
+
init_callout, init_table = update_image_classification("Low to High")
|
| 364 |
+
ic_callout.value = init_callout
|
| 365 |
+
ic_table.value = init_table
|
| 366 |
+
sort_dropdown_ic.change(fn=update_image_classification, inputs=sort_dropdown_ic, outputs=[ic_callout, ic_table])
|
| 367 |
|
| 368 |
# --- Image Captioning Tab ---
|
| 369 |
with gr.TabItem("Image Captioning π"):
|
|
|
|
| 372 |
label="Sort",
|
| 373 |
value="Low to High"
|
| 374 |
)
|
| 375 |
+
icap_callout = gr.HTML()
|
| 376 |
+
icap_table = gr.HTML()
|
| 377 |
+
init_callout, init_table = update_image_captioning("Low to High")
|
| 378 |
+
icap_callout.value = init_callout
|
| 379 |
+
icap_table.value = init_table
|
| 380 |
+
sort_dropdown_icap.change(fn=update_image_captioning, inputs=sort_dropdown_icap, outputs=[icap_callout, icap_table])
|
| 381 |
|
| 382 |
# --- Summarization Tab ---
|
| 383 |
with gr.TabItem("Summarization π"):
|
|
|
|
| 386 |
label="Sort",
|
| 387 |
value="Low to High"
|
| 388 |
)
|
| 389 |
+
sum_callout = gr.HTML()
|
| 390 |
+
sum_table = gr.HTML()
|
| 391 |
+
init_callout, init_table = update_summarization("Low to High")
|
| 392 |
+
sum_callout.value = init_callout
|
| 393 |
+
sum_table.value = init_table
|
| 394 |
+
sort_dropdown_sum.change(fn=update_summarization, inputs=sort_dropdown_sum, outputs=[sum_callout, sum_table])
|
| 395 |
|
| 396 |
# --- Automatic Speech Recognition Tab ---
|
| 397 |
with gr.TabItem("Automatic Speech Recognition π¬"):
|
|
|
|
| 400 |
label="Sort",
|
| 401 |
value="Low to High"
|
| 402 |
)
|
| 403 |
+
asr_callout = gr.HTML()
|
| 404 |
+
asr_table = gr.HTML()
|
| 405 |
+
init_callout, init_table = update_asr("Low to High")
|
| 406 |
+
asr_callout.value = init_callout
|
| 407 |
+
asr_table.value = init_table
|
| 408 |
+
sort_dropdown_asr.change(fn=update_asr, inputs=sort_dropdown_asr, outputs=[asr_callout, asr_table])
|
| 409 |
|
| 410 |
# --- Object Detection Tab ---
|
| 411 |
with gr.TabItem("Object Detection π"):
|
|
|
|
| 414 |
label="Sort",
|
| 415 |
value="Low to High"
|
| 416 |
)
|
| 417 |
+
od_callout = gr.HTML()
|
| 418 |
+
od_table = gr.HTML()
|
| 419 |
+
init_callout, init_table = update_object_detection("Low to High")
|
| 420 |
+
od_callout.value = init_callout
|
| 421 |
+
od_table.value = init_table
|
| 422 |
+
sort_dropdown_od.change(fn=update_object_detection, inputs=sort_dropdown_od, outputs=[od_callout, od_table])
|
| 423 |
|
| 424 |
# --- Sentence Similarity Tab ---
|
| 425 |
with gr.TabItem("Sentence Similarity π"):
|
|
|
|
| 428 |
label="Sort",
|
| 429 |
value="Low to High"
|
| 430 |
)
|
| 431 |
+
ss_callout = gr.HTML()
|
| 432 |
+
ss_table = gr.HTML()
|
| 433 |
+
init_callout, init_table = update_sentence_similarity("Low to High")
|
| 434 |
+
ss_callout.value = init_callout
|
| 435 |
+
ss_table.value = init_table
|
| 436 |
+
sort_dropdown_ss.change(fn=update_sentence_similarity, inputs=sort_dropdown_ss, outputs=[ss_callout, ss_table])
|
| 437 |
|
| 438 |
# --- Extractive QA Tab ---
|
| 439 |
with gr.TabItem("Extractive QA β"):
|
|
|
|
| 442 |
label="Sort",
|
| 443 |
value="Low to High"
|
| 444 |
)
|
| 445 |
+
qa_callout = gr.HTML()
|
| 446 |
+
qa_table = gr.HTML()
|
| 447 |
+
init_callout, init_table = update_extractive_qa("Low to High")
|
| 448 |
+
qa_callout.value = init_callout
|
| 449 |
+
qa_table.value = init_table
|
| 450 |
+
sort_dropdown_qa.change(fn=update_extractive_qa, inputs=sort_dropdown_qa, outputs=[qa_callout, qa_table])
|
| 451 |
|
| 452 |
+
# --- All Tasks Tab ---
|
| 453 |
with gr.TabItem("All Tasks π‘"):
|
| 454 |
sort_dropdown_all = gr.Dropdown(
|
| 455 |
choices=["Low to High", "High to Low"],
|
| 456 |
label="Sort",
|
| 457 |
value="Low to High"
|
| 458 |
)
|
| 459 |
+
all_callout = gr.HTML()
|
| 460 |
+
all_table = gr.HTML()
|
| 461 |
+
init_callout, init_table = update_all_tasks("Low to High")
|
| 462 |
+
all_callout.value = init_callout
|
| 463 |
+
all_table.value = init_table
|
| 464 |
+
sort_dropdown_all.change(fn=update_all_tasks, inputs=sort_dropdown_all, outputs=[all_callout, all_table])
|
| 465 |
|
| 466 |
with gr.Accordion("π Citation", open=False):
|
| 467 |
citation_button = gr.Textbox(
|