magilogi
commited on
Commit
Β·
5542fa4
1
Parent(s):
cbf54c8
layout and adjusted score
Browse files
app.py
CHANGED
|
@@ -3,34 +3,84 @@ import gradio as gr
|
|
| 3 |
import plotly.express as px
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
|
|
|
|
| 6 |
explanation_data = {
|
| 7 |
-
"Accuracy Scores
|
| 8 |
-
"
|
| 9 |
-
"
|
| 10 |
-
"
|
| 11 |
-
"
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
| 16 |
],
|
| 17 |
"Description": [
|
| 18 |
-
"
|
| 19 |
-
"[How do we best explain this?]",
|
| 20 |
"G2B Refers to the 'Generic' to 'Brand' name swap. This is model accuracy on MedMCQA task where generic drug names are substituted with brand names.",
|
| 21 |
"Model accuracy on MedMCQA task with original data. (Only includes questions that overlap with the g2b dataset)",
|
| 22 |
"Difference in MedMCQA accuracy for swapped and non-swapped datasets, highlighting the impact of G2B drug name substitution on performance.",
|
| 23 |
"Model accuracy on MedQA (4 options) task where generic drug names are substituted with brand names.",
|
| 24 |
"Model accuracy on MedQA (4 options) task with original data. (Only includes questions that overlap with the g2b dataset)",
|
| 25 |
-
"Difference in MedMCQA accuracy for swapped and non-swapped datasets, highlighting the impact of G2B drug name substitution on performance."
|
|
|
|
| 26 |
]
|
| 27 |
}
|
| 28 |
explanation_df = pd.DataFrame(explanation_data)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
df = pd.read_csv("data/csv/models_data.csv")
|
| 31 |
df['average_g2b'] = df[['medmcqa_g2b', 'medqa_4options_g2b']].mean(axis=1).round(2)
|
| 32 |
-
df['
|
| 33 |
df['average_diff'] = df[['medmcqa_diff', 'medqa_diff']].mean(axis=1).round(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
filter_mapping = {
|
| 36 |
"all": "all",
|
|
@@ -69,7 +119,7 @@ def create_scatter_plot(df, x_col, y_col, title, x_title, y_title):
|
|
| 69 |
return fig
|
| 70 |
|
| 71 |
def create_lm_plot(df, x_col, y_col, title, x_title, y_title):
|
| 72 |
-
fig = px.scatter(df, x=x_col, y=y_col, color='Model', title=title,
|
| 73 |
|
| 74 |
fig.update_layout(
|
| 75 |
xaxis_title=x_title,
|
|
@@ -80,6 +130,7 @@ def create_lm_plot(df, x_col, y_col, title, x_title, y_title):
|
|
| 80 |
return fig
|
| 81 |
|
| 82 |
def create_bar_plot(df, col, title):
|
|
|
|
| 83 |
sorted_df = df.sort_values(by=col, ascending=True)
|
| 84 |
fig = px.bar(sorted_df,
|
| 85 |
x=col,
|
|
@@ -87,15 +138,32 @@ def create_bar_plot(df, col, title):
|
|
| 87 |
orientation='h',
|
| 88 |
title=title,
|
| 89 |
color=col,
|
| 90 |
-
color_continuous_scale='
|
| 91 |
fig.update_layout(xaxis_title=col, yaxis_title='Model', height=600, coloraxis_showscale=False)
|
|
|
|
| 92 |
return fig
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
with gr.Blocks(css="custom.css") as demo:
|
| 95 |
with gr.Column():
|
| 96 |
gr.Markdown(
|
| 97 |
-
"""<div style="text-align: center;"><h1> <span style='color: #
|
| 98 |
-
<span style='color: #
|
| 99 |
)
|
| 100 |
with gr.Row():
|
| 101 |
gr.Markdown(""" """)
|
|
@@ -107,20 +175,17 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 107 |
)
|
| 108 |
with gr.Row():
|
| 109 |
gr.Markdown(""" """)
|
| 110 |
-
with gr.Row():
|
| 111 |
-
gr.Image(value="workflow-1-2.svg", width=200, height=450)
|
| 112 |
-
gr.Image(value="workflow-3-4.svg", width=200, height=450)
|
| 113 |
|
| 114 |
with gr.Row():
|
| 115 |
gr.Markdown(""" """)
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
bar1 = gr.Plot(
|
| 119 |
-
value=create_bar_plot(df, "
|
| 120 |
elem_id="bar1"
|
| 121 |
)
|
| 122 |
bar2 = gr.Plot(
|
| 123 |
-
value=create_bar_plot(df, "
|
| 124 |
elem_id="bar2"
|
| 125 |
)
|
| 126 |
|
|
@@ -131,7 +196,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 131 |
with gr.Row():
|
| 132 |
gr.Markdown(""" """)
|
| 133 |
|
| 134 |
-
default_visible_columns = [
|
| 135 |
|
| 136 |
with gr.Tabs(elem_classes="tab-buttons"):
|
| 137 |
with gr.TabItem("π Evaluation table"):
|
|
@@ -199,31 +264,37 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 199 |
with gr.Column():
|
| 200 |
with gr.Row():
|
| 201 |
scatter1 = gr.Plot(
|
| 202 |
-
value=create_scatter_plot(df, "
|
| 203 |
-
"MedMCQA: Orig vs G2B", "
|
| 204 |
elem_id="scatter1"
|
| 205 |
)
|
| 206 |
scatter2 = gr.Plot(
|
| 207 |
-
value=create_scatter_plot(df, "
|
| 208 |
-
"MedQA: Orig vs G2B", "
|
| 209 |
elem_id="scatter2"
|
| 210 |
)
|
| 211 |
-
with gr.Row():
|
| 212 |
-
scatter3 = gr.Plot(
|
| 213 |
-
value=create_scatter_plot(df, "b4bqa", "b4b",
|
| 214 |
-
"b4bqa vs b4b", "b4bqa", "b4b"),
|
| 215 |
-
elem_id="scatter3"
|
| 216 |
-
)
|
| 217 |
|
| 218 |
with gr.TabItem("π About"):
|
| 219 |
-
gr.
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
with gr.TabItem("π Submit Here!"):
|
| 229 |
gr.Markdown(
|
|
@@ -238,25 +309,20 @@ with gr.Blocks(css="custom.css") as demo:
|
|
| 238 |
elem_classes="markdown-text"
|
| 239 |
)
|
| 240 |
|
| 241 |
-
|
| 242 |
-
gr.Dataframe(
|
| 243 |
-
value=explanation_df,
|
| 244 |
-
headers="keys",
|
| 245 |
-
datatype=["str", "str"],
|
| 246 |
-
interactive=False,
|
| 247 |
-
label="Explanation of Scores"
|
| 248 |
-
)
|
| 249 |
|
| 250 |
with gr.Row():
|
| 251 |
bar3 = gr.Plot(
|
| 252 |
-
value=
|
| 253 |
elem_id="bar3"
|
| 254 |
)
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
value=create_lm_plot(df, "b4bqa", "average_g2b", "Does that matching accuracy correlate with biomedical task robustness?", "b4bqa", "average_diff"),
|
| 259 |
)
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
|
| 262 |
|
|
|
|
| 3 |
import plotly.express as px
|
| 4 |
import plotly.graph_objects as go
|
| 5 |
|
| 6 |
+
# Creating data for explanation df in about section
|
| 7 |
explanation_data = {
|
| 8 |
+
"Accuracy Scores": [
|
| 9 |
+
"DrugMatchQA",
|
| 10 |
+
"MedMCQA: G2B",
|
| 11 |
+
"MedMCQA: Original",
|
| 12 |
+
"MedMCQA: Difference",
|
| 13 |
+
"MedQA: G2B",
|
| 14 |
+
"MedQA: Original",
|
| 15 |
+
"MedQA: Difference",
|
| 16 |
+
"Adjusted Robustness Score"
|
| 17 |
],
|
| 18 |
"Description": [
|
| 19 |
+
"A custom MC task where the model is asked to match a brand name to its generic counterpart and vice versa. This task is designed to test the model's ability to understand drug name synonyms.",
|
|
|
|
| 20 |
"G2B Refers to the 'Generic' to 'Brand' name swap. This is model accuracy on MedMCQA task where generic drug names are substituted with brand names.",
|
| 21 |
"Model accuracy on MedMCQA task with original data. (Only includes questions that overlap with the g2b dataset)",
|
| 22 |
"Difference in MedMCQA accuracy for swapped and non-swapped datasets, highlighting the impact of G2B drug name substitution on performance.",
|
| 23 |
"Model accuracy on MedQA (4 options) task where generic drug names are substituted with brand names.",
|
| 24 |
"Model accuracy on MedQA (4 options) task with original data. (Only includes questions that overlap with the g2b dataset)",
|
| 25 |
+
"Difference in MedMCQA accuracy for swapped and non-swapped datasets, highlighting the impact of G2B drug name substitution on performance.",
|
| 26 |
+
"A score given by Avg Difference / Avg G2B Accuracy. A higher score indicates a model that is more robust to drug name synonym substitution."
|
| 27 |
]
|
| 28 |
}
|
| 29 |
explanation_df = pd.DataFrame(explanation_data)
|
| 30 |
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
#Loading and cleaning eval data processed by json2df.py
|
| 35 |
+
|
| 36 |
df = pd.read_csv("data/csv/models_data.csv")
|
| 37 |
df['average_g2b'] = df[['medmcqa_g2b', 'medqa_4options_g2b']].mean(axis=1).round(2)
|
| 38 |
+
df['average_original_acc'] = df[['medmcqa_orig_filtered', 'medqa_4options_orig_filtered']].mean(axis=1).round(2)
|
| 39 |
df['average_diff'] = df[['medmcqa_diff', 'medqa_diff']].mean(axis=1).round(2)
|
| 40 |
+
df.drop(columns=['b4b'], inplace=True)
|
| 41 |
+
#Rename columns for clarity
|
| 42 |
+
|
| 43 |
+
df.rename(columns={
|
| 44 |
+
'medmcqa_g2b': 'MedMCQA: G2B',
|
| 45 |
+
'medmcqa_orig_filtered': 'MedMCQA: Original',
|
| 46 |
+
'medmcqa_diff': 'MedMCQA: Difference',
|
| 47 |
+
'medqa_4options_g2b': 'MedQA: G2B',
|
| 48 |
+
'medqa_4options_orig_filtered': 'MedQA: Original',
|
| 49 |
+
'medqa_diff': 'MedQA: Difference',
|
| 50 |
+
'b4bqa': 'DrugMatchQA',
|
| 51 |
+
'average_g2b': 'Average G2B Accuracy',
|
| 52 |
+
'average_original_acc': 'Average Original Accuracy',
|
| 53 |
+
'average_diff': 'Average Difference'
|
| 54 |
+
}, inplace=True)
|
| 55 |
+
|
| 56 |
+
#Create adjusted robustness score that accounts for g2b accuracy and difference in accuracy
|
| 57 |
+
# (models with low difference like phi will seem robust, but its simply because they are bad / random at both tasks)
|
| 58 |
+
df['Average Accuracy (Original and G2B)'] = (df['Average G2B Accuracy'] + df['Average Original Accuracy']) / 2
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# Introduce a penalty factor for low average accuracy
|
| 63 |
+
penalty_factor = 1 / (df['Average Accuracy (Original and G2B)'] ** 2)
|
| 64 |
+
|
| 65 |
+
# Calculate the adjusted robustness score with penalty
|
| 66 |
+
df['Adjusted Robustness Score'] = df['Average Difference'] * penalty_factor
|
| 67 |
+
df['Adjusted Robustness Score'] = df['Adjusted Robustness Score'].round(2)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
#if acc is 0 in DrugMatchQA column, set it to none
|
| 75 |
+
df['DrugMatchQA'] = df['DrugMatchQA'].apply(lambda x: None if x == 0 else x)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
#Defining functions for filtering and plotting
|
| 84 |
|
| 85 |
filter_mapping = {
|
| 86 |
"all": "all",
|
|
|
|
| 119 |
return fig
|
| 120 |
|
| 121 |
def create_lm_plot(df, x_col, y_col, title, x_title, y_title):
|
| 122 |
+
fig = px.scatter(df, x=x_col, y=y_col, color='Model', title=title, trendline='ols')
|
| 123 |
|
| 124 |
fig.update_layout(
|
| 125 |
xaxis_title=x_title,
|
|
|
|
| 130 |
return fig
|
| 131 |
|
| 132 |
def create_bar_plot(df, col, title):
|
| 133 |
+
|
| 134 |
sorted_df = df.sort_values(by=col, ascending=True)
|
| 135 |
fig = px.bar(sorted_df,
|
| 136 |
x=col,
|
|
|
|
| 138 |
orientation='h',
|
| 139 |
title=title,
|
| 140 |
color=col,
|
| 141 |
+
color_continuous_scale='Aggrnyl')
|
| 142 |
fig.update_layout(xaxis_title=col, yaxis_title='Model', height=600, coloraxis_showscale=False)
|
| 143 |
+
fig.update_xaxes(range=[-20, 20])
|
| 144 |
return fig
|
| 145 |
|
| 146 |
+
|
| 147 |
+
def create_bar_plot_drugmatchqa(df, col, title):
|
| 148 |
+
clean_df = df.dropna(subset=['DrugMatchQA'])
|
| 149 |
+
sorted_df = clean_df.sort_values(by=col, ascending=True)
|
| 150 |
+
fig = px.bar(sorted_df,
|
| 151 |
+
x=col,
|
| 152 |
+
y='Model',
|
| 153 |
+
orientation='h',
|
| 154 |
+
title=title,
|
| 155 |
+
color=col,
|
| 156 |
+
color_continuous_scale='Aggrnyl')
|
| 157 |
+
fig.update_layout(xaxis_title=col, yaxis_title='Model', height=600, coloraxis_showscale=False)
|
| 158 |
+
return fig
|
| 159 |
+
|
| 160 |
+
#Create UI/Layout
|
| 161 |
+
|
| 162 |
with gr.Blocks(css="custom.css") as demo:
|
| 163 |
with gr.Column():
|
| 164 |
gr.Markdown(
|
| 165 |
+
"""<div style="text-align: center;"><h1> <span style='color: #00BF63;'>π° RABBITS</span>: <span style='color: #00BF63;'>R</span>obust <span style='color: #00BF63;'>A</span>ssessment of <span style='color: #00BF63;'>B</span>iomedical <span style='color: #00BF63;'>B</span>enchmarks <span style='color: #00BF63;'>I</span>nvolving drug
|
| 166 |
+
<span style='color: #00BF63;'>T</span>erm <span style='color: #00BF63;'>S</span>ubstitutions<span style='color: #00BF63;'></span></h1></div>"""
|
| 167 |
)
|
| 168 |
with gr.Row():
|
| 169 |
gr.Markdown(""" """)
|
|
|
|
| 175 |
)
|
| 176 |
with gr.Row():
|
| 177 |
gr.Markdown(""" """)
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
with gr.Row():
|
| 180 |
gr.Markdown(""" """)
|
| 181 |
|
| 182 |
with gr.Row():
|
| 183 |
bar1 = gr.Plot(
|
| 184 |
+
value=create_bar_plot(df, "MedMCQA: Difference", "Impact of Generic2Brand swap on MedMCQA Accuracy"),
|
| 185 |
elem_id="bar1"
|
| 186 |
)
|
| 187 |
bar2 = gr.Plot(
|
| 188 |
+
value=create_bar_plot(df, "MedQA: Difference", "Impact of Generic2Brand swap on MedQA Accuracy"),
|
| 189 |
elem_id="bar2"
|
| 190 |
)
|
| 191 |
|
|
|
|
| 196 |
with gr.Row():
|
| 197 |
gr.Markdown(""" """)
|
| 198 |
|
| 199 |
+
#default_visible_columns = []
|
| 200 |
|
| 201 |
with gr.Tabs(elem_classes="tab-buttons"):
|
| 202 |
with gr.TabItem("π Evaluation table"):
|
|
|
|
| 264 |
with gr.Column():
|
| 265 |
with gr.Row():
|
| 266 |
scatter1 = gr.Plot(
|
| 267 |
+
value=create_scatter_plot(df, "MedMCQA: Original", "MedMCQA: G2B",
|
| 268 |
+
"MedMCQA: Orig vs G2B", "MedMCQA: Original", "MedMCQA: G2B"),
|
| 269 |
elem_id="scatter1"
|
| 270 |
)
|
| 271 |
scatter2 = gr.Plot(
|
| 272 |
+
value=create_scatter_plot(df, "MedQA: Original", "MedQA: G2B",
|
| 273 |
+
"MedQA: Orig vs G2B", "MedQA: Original", "MedQA: G2B"),
|
| 274 |
elem_id="scatter2"
|
| 275 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
|
| 277 |
with gr.TabItem("π About"):
|
| 278 |
+
with gr.Column():
|
| 279 |
+
gr.Markdown(
|
| 280 |
+
"""<div style="text-align: center;">
|
| 281 |
+
<h2>About the RABBITS LLM Leaderboard</h2>
|
| 282 |
+
<p>The following is an overview of the framework, along with an explanation of scores in the evaluation table.</p>
|
| 283 |
+
</div>""",
|
| 284 |
+
elem_classes="markdown-text"
|
| 285 |
+
)
|
| 286 |
+
with gr.Row():
|
| 287 |
+
gr.Image(value="workflow-1-2.svg", width=200, height=450)
|
| 288 |
+
gr.Image(value="workflow-3-4.svg", width=200, height=450)
|
| 289 |
+
with gr.Row():
|
| 290 |
+
gr.Dataframe(
|
| 291 |
+
value=explanation_df,
|
| 292 |
+
headers="keys",
|
| 293 |
+
datatype=["str", "str"],
|
| 294 |
+
interactive=False,
|
| 295 |
+
label="Explanation of Scores"
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
|
| 299 |
with gr.TabItem("π Submit Here!"):
|
| 300 |
gr.Markdown(
|
|
|
|
| 309 |
elem_classes="markdown-text"
|
| 310 |
)
|
| 311 |
|
| 312 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
with gr.Row():
|
| 315 |
bar3 = gr.Plot(
|
| 316 |
+
value=create_bar_plot_drugmatchqa(df, "DrugMatchQA", "Which LLMs are best at matching brand names to generic drug names?"),
|
| 317 |
elem_id="bar3"
|
| 318 |
)
|
| 319 |
+
bar4 = gr.Plot(
|
| 320 |
+
value=create_bar_plot_drugmatchqa(df, "Adjusted Robustness Score", "Which LLMs are most robust to drug name synonym substitution?"),
|
| 321 |
+
elem_id="bar4"
|
|
|
|
| 322 |
)
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
|
| 326 |
|
| 327 |
|
| 328 |
|