Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
-
# app.py
|
| 2 |
"""
|
|
|
|
| 3 |
This script provides the Gradio web interface to run the evaluation.
|
| 4 |
-
|
| 5 |
-
It no longer performs file-type detection or prompt enhancement, as that responsibility
|
| 6 |
-
has been moved into the agent's 'multimodal_router'.
|
| 7 |
"""
|
| 8 |
|
| 9 |
import os
|
|
@@ -11,16 +9,14 @@ import re
|
|
| 11 |
import gradio as gr
|
| 12 |
import requests
|
| 13 |
import pandas as pd
|
| 14 |
-
|
| 15 |
-
from langchain_core.messages import HumanMessage
|
| 16 |
|
| 17 |
from agent import create_agent_executor
|
| 18 |
|
| 19 |
# --- Constants ---
|
| 20 |
-
# Ensure the URL is correctly formatted (remove trailing spaces)
|
| 21 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 22 |
|
| 23 |
-
# --- Helper function to parse the agent's output
|
| 24 |
def parse_final_answer(agent_response: str) -> str:
|
| 25 |
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
|
| 26 |
if match: return match.group(1).strip()
|
|
@@ -28,12 +24,74 @@ def parse_final_answer(agent_response: str) -> str:
|
|
| 28 |
if lines: return lines[-1].strip()
|
| 29 |
return "Could not parse a final answer."
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 39 |
"""
|
|
@@ -46,17 +104,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 46 |
username = profile.username
|
| 47 |
print(f"User logged in: {username}")
|
| 48 |
|
| 49 |
-
# --- Fix SPACE_ID retrieval and URL construction ---
|
| 50 |
-
# Ensure SPACE_ID environment variable is set correctly in your Hugging Face Space.
|
| 51 |
space_id = os.getenv("SPACE_ID")
|
| 52 |
-
if not space_id:
|
| 53 |
-
# Fallback or error handling if SPACE_ID is not set
|
| 54 |
-
# You might need to adjust this based on how your space is configured
|
| 55 |
-
# For example, if running locally, you might not have SPACE_ID.
|
| 56 |
-
# This is a placeholder; adjust as needed.
|
| 57 |
-
# Consider using a default or making it configurable.
|
| 58 |
-
space_id = "your-username/your-space-name" # Example placeholder
|
| 59 |
-
print(f"Warning: SPACE_ID environment variable not found. Using placeholder: {space_id}")
|
| 60 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 61 |
questions_url = f"{DEFAULT_API_URL}/questions"
|
| 62 |
submit_url = f"{DEFAULT_API_URL}/submit"
|
|
@@ -64,7 +112,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 64 |
# 1. Instantiate Agent
|
| 65 |
print("Initializing your custom agent...")
|
| 66 |
try:
|
| 67 |
-
agent_executor = create_agent_executor(provider="
|
| 68 |
except Exception as e:
|
| 69 |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
|
| 70 |
|
|
@@ -90,24 +138,21 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 90 |
|
| 91 |
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
|
| 92 |
|
|
|
|
| 93 |
file_url = item.get("file_url")
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
if file_url:
|
| 99 |
-
|
| 100 |
-
print(f"File
|
| 101 |
-
else:
|
| 102 |
-
full_question_text = question_text
|
| 103 |
|
| 104 |
-
print(f"
|
| 105 |
|
| 106 |
try:
|
| 107 |
-
#
|
| 108 |
-
|
| 109 |
-
input_state = {"messages": [HumanMessage(content=full_question_text)]}
|
| 110 |
-
result = agent_executor.invoke(input_state)
|
| 111 |
|
| 112 |
raw_answer = result['messages'][-1].content
|
| 113 |
submitted_answer = parse_final_answer(raw_answer)
|
|
@@ -120,6 +165,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 120 |
"Task ID": task_id,
|
| 121 |
"Question": question_text,
|
| 122 |
"File URL": file_url or "None",
|
|
|
|
| 123 |
"Submitted Answer": submitted_answer
|
| 124 |
})
|
| 125 |
|
|
@@ -131,13 +177,14 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 131 |
"Task ID": task_id,
|
| 132 |
"Question": question_text,
|
| 133 |
"File URL": file_url or "None",
|
|
|
|
| 134 |
"Submitted Answer": error_msg
|
| 135 |
})
|
| 136 |
|
| 137 |
if not answers_payload:
|
| 138 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 139 |
|
| 140 |
-
# 4. Prepare and 5. Submit
|
| 141 |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
|
| 142 |
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
|
| 143 |
try:
|
|
@@ -153,7 +200,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
| 153 |
print(status_message)
|
| 154 |
return status_message, pd.DataFrame(results_log)
|
| 155 |
|
| 156 |
-
# --- Gradio UI
|
| 157 |
with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
|
| 158 |
gr.Markdown("# Multimodal Agent Evaluation Runner")
|
| 159 |
gr.Markdown("This agent can process images, YouTube videos, audio files, and perform web searches.")
|
|
@@ -165,22 +212,11 @@ with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
|
|
| 165 |
label="Questions and Agent Answers",
|
| 166 |
wrap=True,
|
| 167 |
row_count=10,
|
| 168 |
-
|
| 169 |
-
# Adjust column widths if necessary based on actual content/columns
|
| 170 |
-
# column_widths=[80, 250, 200, 250]
|
| 171 |
)
|
| 172 |
|
| 173 |
-
|
| 174 |
-
# (Though it's not in the log anymore, this is a safe check)
|
| 175 |
-
def display_wrapper(profile):
|
| 176 |
-
status, df = run_and_submit_all(profile)
|
| 177 |
-
# Ensure df is a DataFrame before attempting operations
|
| 178 |
-
if isinstance(df, pd.DataFrame) and "File Type" in df.columns:
|
| 179 |
-
df = df.drop(columns=["File Type"])
|
| 180 |
-
return status, df
|
| 181 |
-
|
| 182 |
-
run_button.click(fn=display_wrapper, outputs=[status_output, results_table])
|
| 183 |
|
| 184 |
if __name__ == "__main__":
|
| 185 |
print("\n" + "-"*30 + " Multimodal App Starting " + "-"*30)
|
| 186 |
-
demo.launch()
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
app.py
|
| 3 |
This script provides the Gradio web interface to run the evaluation.
|
| 4 |
+
This version properly handles multimodal inputs including images, videos, and audio.
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
|
|
| 9 |
import gradio as gr
|
| 10 |
import requests
|
| 11 |
import pandas as pd
|
| 12 |
+
from urllib.parse import urlparse
|
|
|
|
| 13 |
|
| 14 |
from agent import create_agent_executor
|
| 15 |
|
| 16 |
# --- Constants ---
|
|
|
|
| 17 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 18 |
|
| 19 |
+
# --- Helper function to parse the agent's output ---
|
| 20 |
def parse_final_answer(agent_response: str) -> str:
|
| 21 |
match = re.search(r"FINAL ANSWER:\s*(.*)", agent_response, re.IGNORECASE | re.DOTALL)
|
| 22 |
if match: return match.group(1).strip()
|
|
|
|
| 24 |
if lines: return lines[-1].strip()
|
| 25 |
return "Could not parse a final answer."
|
| 26 |
|
| 27 |
+
def detect_file_type(url: str) -> str:
|
| 28 |
+
"""Detect the type of file from URL."""
|
| 29 |
+
if not url:
|
| 30 |
+
return "unknown"
|
| 31 |
+
|
| 32 |
+
url_lower = url.lower()
|
| 33 |
+
|
| 34 |
+
# Image extensions
|
| 35 |
+
if any(ext in url_lower for ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.svg']):
|
| 36 |
+
return "image"
|
| 37 |
+
|
| 38 |
+
# Video extensions and YouTube
|
| 39 |
+
if any(domain in url_lower for domain in ['youtube.com', 'youtu.be', 'vimeo.com']):
|
| 40 |
+
return "youtube"
|
| 41 |
+
if any(ext in url_lower for ext in ['.mp4', '.avi', '.mov', '.wmv', '.flv', '.webm']):
|
| 42 |
+
return "video"
|
| 43 |
+
|
| 44 |
+
# Audio extensions
|
| 45 |
+
if any(ext in url_lower for ext in ['.mp3', '.wav', '.flac', '.aac', '.ogg', '.m4a']):
|
| 46 |
+
return "audio"
|
| 47 |
+
|
| 48 |
+
# Try to detect from headers if possible
|
| 49 |
+
try:
|
| 50 |
+
response = requests.head(url, timeout=5)
|
| 51 |
+
content_type = response.headers.get('content-type', '').lower()
|
| 52 |
+
|
| 53 |
+
if 'image' in content_type:
|
| 54 |
+
return "image"
|
| 55 |
+
elif 'audio' in content_type:
|
| 56 |
+
return "audio"
|
| 57 |
+
elif 'video' in content_type:
|
| 58 |
+
return "video"
|
| 59 |
+
except:
|
| 60 |
+
pass
|
| 61 |
+
|
| 62 |
+
return "unknown"
|
| 63 |
+
|
| 64 |
+
def create_enhanced_prompt(question_text: str, file_url: str = None) -> str:
|
| 65 |
+
"""Create an enhanced prompt that guides the agent to use appropriate tools."""
|
| 66 |
+
|
| 67 |
+
if not file_url:
|
| 68 |
+
return question_text
|
| 69 |
+
|
| 70 |
+
file_type = detect_file_type(file_url)
|
| 71 |
+
|
| 72 |
+
if file_type == "image":
|
| 73 |
+
return f"""{question_text}
|
| 74 |
+
|
| 75 |
+
[IMAGE ATTACHMENT]: {file_url}
|
| 76 |
+
INSTRUCTION: There is an image attached to this question. You MUST use the 'describe_image' tool to analyze this image before answering the question."""
|
| 77 |
+
|
| 78 |
+
elif file_type == "youtube":
|
| 79 |
+
return f"""{question_text}
|
| 80 |
+
|
| 81 |
+
[YOUTUBE VIDEO]: {file_url}
|
| 82 |
+
INSTRUCTION: There is a YouTube video attached to this question. You MUST use the 'process_youtube_video' tool to analyze this video before answering the question."""
|
| 83 |
|
| 84 |
+
elif file_type == "audio":
|
| 85 |
+
return f"""{question_text}
|
| 86 |
+
|
| 87 |
+
[AUDIO FILE]: {file_url}
|
| 88 |
+
INSTRUCTION: There is an audio file attached to this question. You MUST use the 'process_audio_file' tool to analyze this audio before answering the question."""
|
| 89 |
+
|
| 90 |
+
else:
|
| 91 |
+
return f"""{question_text}
|
| 92 |
+
|
| 93 |
+
[ATTACHMENT]: {file_url}
|
| 94 |
+
INSTRUCTION: There is a file attachment. Analyze the URL and use the appropriate tool to process this content before answering the question."""
|
| 95 |
|
| 96 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 97 |
"""
|
|
|
|
| 104 |
username = profile.username
|
| 105 |
print(f"User logged in: {username}")
|
| 106 |
|
|
|
|
|
|
|
| 107 |
space_id = os.getenv("SPACE_ID")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 109 |
questions_url = f"{DEFAULT_API_URL}/questions"
|
| 110 |
submit_url = f"{DEFAULT_API_URL}/submit"
|
|
|
|
| 112 |
# 1. Instantiate Agent
|
| 113 |
print("Initializing your custom agent...")
|
| 114 |
try:
|
| 115 |
+
agent_executor = create_agent_executor(provider="google") # Using Google for better multimodal support
|
| 116 |
except Exception as e:
|
| 117 |
return f"Fatal Error: Could not initialize agent. Check logs. Details: {e}", None
|
| 118 |
|
|
|
|
| 138 |
|
| 139 |
print(f"\n--- Running Task {i+1}/{len(questions_data)} (ID: {task_id}) ---")
|
| 140 |
|
| 141 |
+
# Get file URL if it exists
|
| 142 |
file_url = item.get("file_url")
|
| 143 |
|
| 144 |
+
# Create enhanced prompt that instructs the agent to use appropriate tools
|
| 145 |
+
full_question_text = create_enhanced_prompt(question_text, file_url)
|
| 146 |
+
|
| 147 |
if file_url:
|
| 148 |
+
file_type = detect_file_type(file_url)
|
| 149 |
+
print(f"File detected: {file_url} (Type: {file_type})")
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
print(f"Enhanced Prompt for Agent:\n{full_question_text}")
|
| 152 |
|
| 153 |
try:
|
| 154 |
+
# Pass the enhanced question to the agent
|
| 155 |
+
result = agent_executor.invoke({"messages": [("user", full_question_text)]})
|
|
|
|
|
|
|
| 156 |
|
| 157 |
raw_answer = result['messages'][-1].content
|
| 158 |
submitted_answer = parse_final_answer(raw_answer)
|
|
|
|
| 165 |
"Task ID": task_id,
|
| 166 |
"Question": question_text,
|
| 167 |
"File URL": file_url or "None",
|
| 168 |
+
"File Type": detect_file_type(file_url) if file_url else "None",
|
| 169 |
"Submitted Answer": submitted_answer
|
| 170 |
})
|
| 171 |
|
|
|
|
| 177 |
"Task ID": task_id,
|
| 178 |
"Question": question_text,
|
| 179 |
"File URL": file_url or "None",
|
| 180 |
+
"File Type": detect_file_type(file_url) if file_url else "None",
|
| 181 |
"Submitted Answer": error_msg
|
| 182 |
})
|
| 183 |
|
| 184 |
if not answers_payload:
|
| 185 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 186 |
|
| 187 |
+
# 4. Prepare and 5. Submit
|
| 188 |
submission_data = {"username": username, "agent_code": agent_code, "answers": answers_payload}
|
| 189 |
print(f"\nSubmitting {len(answers_payload)} answers for user '{username}'...")
|
| 190 |
try:
|
|
|
|
| 200 |
print(status_message)
|
| 201 |
return status_message, pd.DataFrame(results_log)
|
| 202 |
|
| 203 |
+
# --- Gradio UI ---
|
| 204 |
with gr.Blocks(title="Multimodal Agent Evaluation") as demo:
|
| 205 |
gr.Markdown("# Multimodal Agent Evaluation Runner")
|
| 206 |
gr.Markdown("This agent can process images, YouTube videos, audio files, and perform web searches.")
|
|
|
|
| 212 |
label="Questions and Agent Answers",
|
| 213 |
wrap=True,
|
| 214 |
row_count=10,
|
| 215 |
+
column_widths=[80, 200, 150, 80, 200]
|
|
|
|
|
|
|
| 216 |
)
|
| 217 |
|
| 218 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
if __name__ == "__main__":
|
| 221 |
print("\n" + "-"*30 + " Multimodal App Starting " + "-"*30)
|
| 222 |
+
demo.launch()
|