Spaces:
Runtime error
Runtime error
| # YOLOv5 🚀 by Ultralytics, GPL-3.0 license | |
| """ | |
| Validate a trained YOLOv5 model accuracy on a custom dataset | |
| Usage: | |
| $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 | |
| """ | |
| import argparse | |
| import json | |
| import os | |
| import sys | |
| from pathlib import Path | |
| from threading import Thread | |
| import numpy as np | |
| import torch | |
| from tqdm import tqdm | |
| FILE = Path(__file__).absolute() | |
| sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path | |
| from models.experimental import attempt_load | |
| from utils.callbacks import Callbacks | |
| from utils.datasets import create_dataloader | |
| from utils.general import ( | |
| box_iou, | |
| check_dataset, | |
| check_img_size, | |
| check_requirements, | |
| check_suffix, | |
| check_yaml, | |
| coco80_to_coco91_class, | |
| colorstr, | |
| increment_path, | |
| non_max_suppression, | |
| scale_coords, | |
| set_logging, | |
| xywh2xyxy, | |
| xyxy2xywh, | |
| ) | |
| from utils.metrics import ConfusionMatrix, ap_per_class | |
| from utils.plots import output_to_target, plot_images, plot_study_txt | |
| from utils.torch_utils import select_device, time_sync | |
| def save_one_txt(predn, save_conf, shape, file): | |
| # Save one txt result | |
| gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh | |
| for *xyxy, conf, cls in predn.tolist(): | |
| xywh = ( | |
| (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() | |
| ) # normalized xywh | |
| line = ( | |
| (cls, *xywh, conf) if save_conf else (cls, *xywh) | |
| ) # label format | |
| with open(file, "a") as f: | |
| f.write(("%g " * len(line)).rstrip() % line + "\n") | |
| def save_one_json(predn, jdict, path, class_map): | |
| # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} | |
| image_id = int(path.stem) if path.stem.isnumeric() else path.stem | |
| box = xyxy2xywh(predn[:, :4]) # xywh | |
| box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner | |
| for p, b in zip(predn.tolist(), box.tolist()): | |
| jdict.append( | |
| { | |
| "image_id": image_id, | |
| "category_id": class_map[int(p[5])], | |
| "bbox": [round(x, 3) for x in b], | |
| "score": round(p[4], 5), | |
| } | |
| ) | |
| def process_batch(detections, labels, iouv): | |
| """ | |
| Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. | |
| Arguments: | |
| detections (Array[N, 6]), x1, y1, x2, y2, conf, class | |
| labels (Array[M, 5]), class, x1, y1, x2, y2 | |
| Returns: | |
| correct (Array[N, 10]), for 10 IoU levels | |
| """ | |
| correct = torch.zeros( | |
| detections.shape[0], | |
| iouv.shape[0], | |
| dtype=torch.bool, | |
| device=iouv.device, | |
| ) | |
| iou = box_iou(labels[:, 1:], detections[:, :4]) | |
| x = torch.where( | |
| (iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5]) | |
| ) # IoU above threshold and classes match | |
| if x[0].shape[0]: | |
| matches = ( | |
| torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1) | |
| .cpu() | |
| .numpy() | |
| ) # [label, detection, iou] | |
| if x[0].shape[0] > 1: | |
| matches = matches[matches[:, 2].argsort()[::-1]] | |
| matches = matches[np.unique(matches[:, 1], return_index=True)[1]] | |
| # matches = matches[matches[:, 2].argsort()[::-1]] | |
| matches = matches[np.unique(matches[:, 0], return_index=True)[1]] | |
| matches = torch.Tensor(matches).to(iouv.device) | |
| correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv | |
| return correct | |
| def run( | |
| data, | |
| weights=None, # model.pt path(s) | |
| batch_size=32, # batch size | |
| imgsz=640, # inference size (pixels) | |
| conf_thres=0.001, # confidence threshold | |
| iou_thres=0.6, # NMS IoU threshold | |
| task="val", # train, val, test, speed or study | |
| device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| single_cls=False, # treat as single-class dataset | |
| augment=False, # augmented inference | |
| verbose=False, # verbose output | |
| save_txt=False, # save results to *.txt | |
| save_hybrid=False, # save label+prediction hybrid results to *.txt | |
| save_conf=False, # save confidences in --save-txt labels | |
| save_json=False, # save a COCO-JSON results file | |
| project="runs/val", # save to project/name | |
| name="exp", # save to project/name | |
| exist_ok=False, # existing project/name ok, do not increment | |
| half=True, # use FP16 half-precision inference | |
| model=None, | |
| dataloader=None, | |
| save_dir=Path(""), | |
| plots=True, | |
| callbacks=Callbacks(), | |
| compute_loss=None, | |
| ): | |
| # Initialize/load model and set device | |
| training = model is not None | |
| if training: # called by train.py | |
| device = next(model.parameters()).device # get model device | |
| else: # called directly | |
| device = select_device(device, batch_size=batch_size) | |
| # Directories | |
| save_dir = increment_path( | |
| Path(project) / name, exist_ok=exist_ok | |
| ) # increment run | |
| (save_dir / "labels" if save_txt else save_dir).mkdir( | |
| parents=True, exist_ok=True | |
| ) # make dir | |
| # Load model | |
| check_suffix(weights, ".pt") | |
| model = attempt_load(weights, map_location=device) # load FP32 model | |
| gs = max(int(model.stride.max()), 32) # grid size (max stride) | |
| imgsz = check_img_size(imgsz, s=gs) # check image size | |
| # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 | |
| # if device.type != 'cpu' and torch.cuda.device_count() > 1: | |
| # model = nn.DataParallel(model) | |
| # Data | |
| data = check_dataset(data) # check | |
| # Half | |
| half &= device.type != "cpu" # half precision only supported on CUDA | |
| if half: | |
| model.half() | |
| # Configure | |
| model.eval() | |
| is_coco = isinstance(data.get("val"), str) and data["val"].endswith( | |
| "coco/val2017.txt" | |
| ) # COCO dataset | |
| nc = 1 if single_cls else int(data["nc"]) # number of classes | |
| iouv = torch.linspace(0.5, 0.95, 10).to( | |
| device | |
| ) # iou vector for [email protected]:0.95 | |
| niou = iouv.numel() | |
| # Dataloader | |
| if not training: | |
| if device.type != "cpu": | |
| model( | |
| torch.zeros(1, 3, imgsz, imgsz) | |
| .to(device) | |
| .type_as(next(model.parameters())) | |
| ) # run once | |
| task = ( | |
| task if task in ("train", "val", "test") else "val" | |
| ) # path to train/val/test images | |
| dataloader = create_dataloader( | |
| data[task], | |
| imgsz, | |
| batch_size, | |
| gs, | |
| single_cls, | |
| pad=0.5, | |
| rect=True, | |
| prefix=colorstr(f"{task}: "), | |
| )[0] | |
| seen = 0 | |
| confusion_matrix = ConfusionMatrix(nc=nc) | |
| names = { | |
| k: v | |
| for k, v in enumerate( | |
| model.names if hasattr(model, "names") else model.module.names | |
| ) | |
| } | |
| class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) | |
| s = ("%20s" + "%11s" * 6) % ( | |
| "Class", | |
| "Images", | |
| "Labels", | |
| "P", | |
| "R", | |
| "[email protected]", | |
| "[email protected]:.95", | |
| ) | |
| dt, p, r, f1, mp, mr, map50, map = ( | |
| [0.0, 0.0, 0.0], | |
| 0.0, | |
| 0.0, | |
| 0.0, | |
| 0.0, | |
| 0.0, | |
| 0.0, | |
| 0.0, | |
| ) | |
| loss = torch.zeros(3, device=device) | |
| jdict, stats, ap, ap_class = [], [], [], [] | |
| for batch_i, (img, targets, paths, shapes) in enumerate( | |
| tqdm(dataloader, desc=s) | |
| ): | |
| t1 = time_sync() | |
| img = img.to(device, non_blocking=True) | |
| img = img.half() if half else img.float() # uint8 to fp16/32 | |
| img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
| targets = targets.to(device) | |
| nb, _, height, width = img.shape # batch size, channels, height, width | |
| t2 = time_sync() | |
| dt[0] += t2 - t1 | |
| # Run model | |
| out, train_out = model( | |
| img, augment=augment | |
| ) # inference and training outputs | |
| dt[1] += time_sync() - t2 | |
| # Compute loss | |
| if compute_loss: | |
| loss += compute_loss([x.float() for x in train_out], targets)[ | |
| 1 | |
| ] # box, obj, cls | |
| # Run NMS | |
| targets[:, 2:] *= torch.Tensor([width, height, width, height]).to( | |
| device | |
| ) # to pixels | |
| lb = ( | |
| [targets[targets[:, 0] == i, 1:] for i in range(nb)] | |
| if save_hybrid | |
| else [] | |
| ) # for autolabelling | |
| t3 = time_sync() | |
| out = non_max_suppression( | |
| out, | |
| conf_thres, | |
| iou_thres, | |
| labels=lb, | |
| multi_label=True, | |
| agnostic=single_cls, | |
| ) | |
| dt[2] += time_sync() - t3 | |
| # Statistics per image | |
| for si, pred in enumerate(out): | |
| labels = targets[targets[:, 0] == si, 1:] | |
| nl = len(labels) | |
| tcls = labels[:, 0].tolist() if nl else [] # target class | |
| path, shape = Path(paths[si]), shapes[si][0] | |
| seen += 1 | |
| if len(pred) == 0: | |
| if nl: | |
| stats.append( | |
| ( | |
| torch.zeros(0, niou, dtype=torch.bool), | |
| torch.Tensor(), | |
| torch.Tensor(), | |
| tcls, | |
| ) | |
| ) | |
| continue | |
| # Predictions | |
| if single_cls: | |
| pred[:, 5] = 0 | |
| predn = pred.clone() | |
| scale_coords( | |
| img[si].shape[1:], predn[:, :4], shape, shapes[si][1] | |
| ) # native-space pred | |
| # Evaluate | |
| if nl: | |
| tbox = xywh2xyxy(labels[:, 1:5]) # target boxes | |
| scale_coords( | |
| img[si].shape[1:], tbox, shape, shapes[si][1] | |
| ) # native-space labels | |
| labelsn = torch.cat( | |
| (labels[:, 0:1], tbox), 1 | |
| ) # native-space labels | |
| correct = process_batch(predn, labelsn, iouv) | |
| if plots: | |
| confusion_matrix.process_batch(predn, labelsn) | |
| else: | |
| correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) | |
| stats.append( | |
| (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls) | |
| ) # (correct, conf, pcls, tcls) | |
| # Save/log | |
| if save_txt: | |
| save_one_txt( | |
| predn, | |
| save_conf, | |
| shape, | |
| file=save_dir / "labels" / (path.stem + ".txt"), | |
| ) | |
| if save_json: | |
| save_one_json( | |
| predn, jdict, path, class_map | |
| ) # append to COCO-JSON dictionary | |
| callbacks.run( | |
| "on_val_image_end", pred, predn, path, names, img[si] | |
| ) | |
| # Plot images | |
| if plots and batch_i < 3: | |
| f = save_dir / f"val_batch{batch_i}_labels.jpg" # labels | |
| Thread( | |
| target=plot_images, | |
| args=(img, targets, paths, f, names), | |
| daemon=True, | |
| ).start() | |
| f = save_dir / f"val_batch{batch_i}_pred.jpg" # predictions | |
| Thread( | |
| target=plot_images, | |
| args=(img, output_to_target(out), paths, f, names), | |
| daemon=True, | |
| ).start() | |
| # Compute statistics | |
| stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy | |
| if len(stats) and stats[0].any(): | |
| p, r, ap, f1, ap_class = ap_per_class( | |
| *stats, plot=plots, save_dir=save_dir, names=names | |
| ) | |
| ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95 | |
| mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() | |
| nt = np.bincount( | |
| stats[3].astype(np.int64), minlength=nc | |
| ) # number of targets per class | |
| else: | |
| nt = torch.zeros(1) | |
| # Print results | |
| pf = "%20s" + "%11i" * 2 + "%11.3g" * 4 # print format | |
| print(pf % ("all", seen, nt.sum(), mp, mr, map50, map)) | |
| # Print results per class | |
| if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): | |
| for i, c in enumerate(ap_class): | |
| print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) | |
| # Print speeds | |
| t = tuple(x / seen * 1e3 for x in dt) # speeds per image | |
| if not training: | |
| shape = (batch_size, 3, imgsz, imgsz) | |
| print( | |
| f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}" | |
| % t | |
| ) | |
| # Plots | |
| if plots: | |
| confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) | |
| callbacks.run("on_val_end") | |
| # Save JSON | |
| if save_json and len(jdict): | |
| w = ( | |
| Path(weights[0] if isinstance(weights, list) else weights).stem | |
| if weights is not None | |
| else "" | |
| ) # weights | |
| anno_json = str( | |
| Path(data.get("path", "../coco")) | |
| / "annotations/instances_val2017.json" | |
| ) # annotations json | |
| pred_json = str(save_dir / f"{w}_predictions.json") # predictions json | |
| print(f"\nEvaluating pycocotools mAP... saving {pred_json}...") | |
| with open(pred_json, "w") as f: | |
| json.dump(jdict, f) | |
| try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb | |
| check_requirements(["pycocotools"]) | |
| from pycocotools.coco import COCO | |
| from pycocotools.cocoeval import COCOeval | |
| anno = COCO(anno_json) # init annotations api | |
| pred = anno.loadRes(pred_json) # init predictions api | |
| eval = COCOeval(anno, pred, "bbox") | |
| if is_coco: | |
| eval.params.imgIds = [ | |
| int(Path(x).stem) for x in dataloader.dataset.img_files | |
| ] # image IDs to evaluate | |
| eval.evaluate() | |
| eval.accumulate() | |
| eval.summarize() | |
| map, map50 = eval.stats[ | |
| :2 | |
| ] # update results ([email protected]:0.95, [email protected]) | |
| except Exception as e: | |
| print(f"pycocotools unable to run: {e}") | |
| # Return results | |
| model.float() # for training | |
| if not training: | |
| s = ( | |
| f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" | |
| if save_txt | |
| else "" | |
| ) | |
| print(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
| maps = np.zeros(nc) + map | |
| for i, c in enumerate(ap_class): | |
| maps[c] = ap[i] | |
| return ( | |
| (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), | |
| maps, | |
| t, | |
| ) | |
| def parse_opt(): | |
| parser = argparse.ArgumentParser(prog="val.py") | |
| parser.add_argument( | |
| "--data", | |
| type=str, | |
| default="data/coco128.yaml", | |
| help="dataset.yaml path", | |
| ) | |
| parser.add_argument( | |
| "--weights", | |
| nargs="+", | |
| type=str, | |
| default="yolov5s.pt", | |
| help="model.pt path(s)", | |
| ) | |
| parser.add_argument( | |
| "--batch-size", type=int, default=32, help="batch size" | |
| ) | |
| parser.add_argument( | |
| "--imgsz", | |
| "--img", | |
| "--img-size", | |
| type=int, | |
| default=640, | |
| help="inference size (pixels)", | |
| ) | |
| parser.add_argument( | |
| "--conf-thres", type=float, default=0.001, help="confidence threshold" | |
| ) | |
| parser.add_argument( | |
| "--iou-thres", type=float, default=0.6, help="NMS IoU threshold" | |
| ) | |
| parser.add_argument( | |
| "--task", default="val", help="train, val, test, speed or study" | |
| ) | |
| parser.add_argument( | |
| "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu" | |
| ) | |
| parser.add_argument( | |
| "--single-cls", | |
| action="store_true", | |
| help="treat as single-class dataset", | |
| ) | |
| parser.add_argument( | |
| "--augment", action="store_true", help="augmented inference" | |
| ) | |
| parser.add_argument( | |
| "--verbose", action="store_true", help="report mAP by class" | |
| ) | |
| parser.add_argument( | |
| "--save-txt", action="store_true", help="save results to *.txt" | |
| ) | |
| parser.add_argument( | |
| "--save-hybrid", | |
| action="store_true", | |
| help="save label+prediction hybrid results to *.txt", | |
| ) | |
| parser.add_argument( | |
| "--save-conf", | |
| action="store_true", | |
| help="save confidences in --save-txt labels", | |
| ) | |
| parser.add_argument( | |
| "--save-json", | |
| action="store_true", | |
| help="save a COCO-JSON results file", | |
| ) | |
| parser.add_argument( | |
| "--project", default="runs/val", help="save to project/name" | |
| ) | |
| parser.add_argument("--name", default="exp", help="save to project/name") | |
| parser.add_argument( | |
| "--exist-ok", | |
| action="store_true", | |
| help="existing project/name ok, do not increment", | |
| ) | |
| parser.add_argument( | |
| "--half", action="store_true", help="use FP16 half-precision inference" | |
| ) | |
| opt = parser.parse_args() | |
| opt.save_json |= opt.data.endswith("coco.yaml") | |
| opt.save_txt |= opt.save_hybrid | |
| opt.data = check_yaml(opt.data) # check YAML | |
| return opt | |
| def main(opt): | |
| set_logging() | |
| print( | |
| colorstr("val: ") + ", ".join(f"{k}={v}" for k, v in vars(opt).items()) | |
| ) | |
| check_requirements( | |
| requirements=FILE.parent / "requirements.txt", | |
| exclude=("tensorboard", "thop"), | |
| ) | |
| if opt.task in ("train", "val", "test"): # run normally | |
| run(**vars(opt)) | |
| elif opt.task == "speed": # speed benchmarks | |
| for w in ( | |
| opt.weights if isinstance(opt.weights, list) else [opt.weights] | |
| ): | |
| run( | |
| opt.data, | |
| weights=w, | |
| batch_size=opt.batch_size, | |
| imgsz=opt.imgsz, | |
| conf_thres=0.25, | |
| iou_thres=0.45, | |
| save_json=False, | |
| plots=False, | |
| ) | |
| elif opt.task == "study": # run over a range of settings and save/plot | |
| # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt | |
| x = list(range(256, 1536 + 128, 128)) # x axis (image sizes) | |
| for w in ( | |
| opt.weights if isinstance(opt.weights, list) else [opt.weights] | |
| ): | |
| f = f"study_{Path(opt.data).stem}_{Path(w).stem}.txt" # filename to save to | |
| y = [] # y axis | |
| for i in x: # img-size | |
| print(f"\nRunning {f} point {i}...") | |
| r, _, t = run( | |
| opt.data, | |
| weights=w, | |
| batch_size=opt.batch_size, | |
| imgsz=i, | |
| conf_thres=opt.conf_thres, | |
| iou_thres=opt.iou_thres, | |
| save_json=opt.save_json, | |
| plots=False, | |
| ) | |
| y.append(r + t) # results and times | |
| np.savetxt(f, y, fmt="%10.4g") # save | |
| os.system("zip -r study.zip study_*.txt") | |
| plot_study_txt(x=x) # plot | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |