Spaces:
Runtime error
Runtime error
| import argparse | |
| import sys | |
| from pathlib import Path | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| import torch.backends.cudnn as cudnn | |
| from models.experimental import attempt_load | |
| from utils.datasets import LoadImages, LoadStreams | |
| from utils.general import ( | |
| apply_classifier, | |
| check_img_size, | |
| check_imshow, | |
| check_requirements, | |
| check_suffix, | |
| colorstr, | |
| increment_path, | |
| is_ascii, | |
| non_max_suppression, | |
| save_one_box, | |
| scale_coords, | |
| set_logging, | |
| strip_optimizer, | |
| xyxy2xywh, | |
| ) | |
| from utils.plots import Annotator, colors | |
| from utils.torch_utils import load_classifier, select_device, time_sync | |
| # FILE = Path(__file__).resolve() | |
| # ROOT = FILE.parents[0] # YOLOv5 root directory | |
| # if str(ROOT) not in sys.path: | |
| # sys.path.append(str(ROOT)) # add ROOT to PATH | |
| def run_yolo_v5( | |
| weights="yolov5s.pt", # model.pt path(s) | |
| source="data/images", # file/dir/URL/glob, 0 for webcam | |
| imgsz=640, # inference size (pixels) | |
| conf_thres=0.25, # confidence threshold | |
| iou_thres=0.45, # NMS IOU threshold | |
| max_det=1000, # maximum detections per image | |
| device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| view_img=False, # show results | |
| save_txt=False, # save results to *.txt | |
| save_conf=False, # save confidences in --save-txt labels | |
| save_crop=False, # save cropped prediction boxes | |
| nosave=False, # do not save images/videos | |
| classes=None, # filter by class: --class 0, or --class 0 2 3 | |
| agnostic_nms=False, # class-agnostic NMS | |
| augment=False, # augmented inference | |
| visualize=False, # visualize features | |
| update=False, # update all models | |
| project="runs/detect", # save results to project/name | |
| name="exp", # save results to project/name | |
| exist_ok=False, # existing project/name ok, do not increment | |
| line_thickness=3, # bounding box thickness (pixels) | |
| hide_labels=False, # hide labels | |
| hide_conf=False, # hide confidences | |
| half=False, # use FP16 half-precision inference | |
| ): | |
| save_img = not nosave and not source.endswith( | |
| ".txt" | |
| ) # save inference images | |
| webcam = ( | |
| source.isnumeric() | |
| or source.endswith(".txt") | |
| or source.lower().startswith( | |
| ("rtsp://", "rtmp://", "http://", "https://") | |
| ) | |
| ) | |
| # Directories | |
| save_dir = increment_path( | |
| Path(project) / name, exist_ok=exist_ok | |
| ) # increment run | |
| (save_dir / "labels" if save_txt else save_dir).mkdir( | |
| parents=True, exist_ok=True | |
| ) # make dir | |
| # Initialize | |
| set_logging() | |
| device = select_device(device) | |
| half &= device.type != "cpu" # half precision only supported on CUDA | |
| # Load model | |
| w = weights[0] if isinstance(weights, list) else weights | |
| classify, suffix, suffixes = ( | |
| False, | |
| Path(w).suffix.lower(), | |
| [".pt", ".onnx", ".tflite", ".pb", ""], | |
| ) | |
| check_suffix(w, suffixes) # check weights have acceptable suffix | |
| pt, onnx, tflite, pb, saved_model = ( | |
| suffix == x for x in suffixes | |
| ) # backend booleans | |
| stride, names = 64, [f"class{i}" for i in range(1000)] # assign defaults | |
| if pt: | |
| model = attempt_load(weights, map_location=device) # load FP32 model | |
| stride = int(model.stride.max()) # model stride | |
| names = ( | |
| model.module.names if hasattr(model, "module") else model.names | |
| ) # get class names | |
| if half: | |
| model.half() # to FP16 | |
| if classify: # second-stage classifier | |
| modelc = load_classifier(name="resnet50", n=2) # initialize | |
| modelc.load_state_dict( | |
| torch.load("resnet50.pt", map_location=device)["model"] | |
| ).to(device).eval() | |
| elif onnx: | |
| check_requirements(("onnx", "onnxruntime")) | |
| import onnxruntime | |
| session = onnxruntime.InferenceSession(w, None) | |
| else: # TensorFlow models | |
| check_requirements(("tensorflow>=2.4.1",)) | |
| import tensorflow as tf | |
| if ( | |
| pb | |
| ): # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt | |
| def wrap_frozen_graph(gd, inputs, outputs): | |
| x = tf.compat.v1.wrap_function( | |
| lambda: tf.compat.v1.import_graph_def(gd, name=""), [] | |
| ) # wrapped import | |
| return x.prune( | |
| tf.nest.map_structure(x.graph.as_graph_element, inputs), | |
| tf.nest.map_structure(x.graph.as_graph_element, outputs), | |
| ) | |
| graph_def = tf.Graph().as_graph_def() | |
| graph_def.ParseFromString(open(w, "rb").read()) | |
| frozen_func = wrap_frozen_graph( | |
| gd=graph_def, inputs="x:0", outputs="Identity:0" | |
| ) | |
| elif saved_model: | |
| model = tf.keras.models.load_model(w) | |
| elif tflite: | |
| interpreter = tf.lite.Interpreter( | |
| model_path=w | |
| ) # load TFLite model | |
| interpreter.allocate_tensors() # allocate | |
| input_details = interpreter.get_input_details() # inputs | |
| output_details = interpreter.get_output_details() # outputs | |
| int8 = ( | |
| input_details[0]["dtype"] == np.uint8 | |
| ) # is TFLite quantized uint8 model | |
| imgsz = check_img_size(imgsz, s=stride) # check image size | |
| ascii = is_ascii(names) # names are ascii (use PIL for UTF-8) | |
| # Dataloader | |
| print("Loading data from the source", source) | |
| if webcam: | |
| view_img = check_imshow() | |
| cudnn.benchmark = ( | |
| True # set True to speed up constant image size inference | |
| ) | |
| dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) | |
| bs = len(dataset) # batch_size | |
| else: | |
| dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) | |
| bs = 1 # batch_size | |
| vid_path, vid_writer = [None] * bs, [None] * bs | |
| # Run inference | |
| if pt and device.type != "cpu": | |
| model( | |
| torch.zeros(1, 3, *imgsz) | |
| .to(device) | |
| .type_as(next(model.parameters())) | |
| ) # run once | |
| dt, seen = [0.0, 0.0, 0.0], 0 | |
| results = [] | |
| for path, img, im0s, vid_cap in dataset: | |
| t1 = time_sync() | |
| if onnx: | |
| img = img.astype("float32") | |
| else: | |
| img = torch.from_numpy(img).to(device) | |
| img = img.half() if half else img.float() # uint8 to fp16/32 | |
| img = img / 255.0 # 0 - 255 to 0.0 - 1.0 | |
| if len(img.shape) == 3: | |
| img = img[None] # expand for batch dim | |
| t2 = time_sync() | |
| dt[0] += t2 - t1 | |
| # Inference | |
| if pt: | |
| visualize = ( | |
| increment_path(save_dir / Path(path).stem, mkdir=True) | |
| if visualize | |
| else False | |
| ) | |
| pred = model(img, augment=augment, visualize=visualize)[0] | |
| elif onnx: | |
| pred = torch.tensor( | |
| session.run( | |
| [session.get_outputs()[0].name], | |
| {session.get_inputs()[0].name: img}, | |
| ) | |
| ) | |
| else: # tensorflow model (tflite, pb, saved_model) | |
| imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy | |
| if pb: | |
| pred = frozen_func(x=tf.constant(imn)).numpy() | |
| elif saved_model: | |
| pred = model(imn, training=False).numpy() | |
| elif tflite: | |
| if int8: | |
| scale, zero_point = input_details[0]["quantization"] | |
| imn = (imn / scale + zero_point).astype( | |
| np.uint8 | |
| ) # de-scale | |
| interpreter.set_tensor(input_details[0]["index"], imn) | |
| interpreter.invoke() | |
| pred = interpreter.get_tensor(output_details[0]["index"]) | |
| if int8: | |
| scale, zero_point = output_details[0]["quantization"] | |
| pred = ( | |
| pred.astype(np.float32) - zero_point | |
| ) * scale # re-scale | |
| pred[..., 0] *= imgsz[1] # x | |
| pred[..., 1] *= imgsz[0] # y | |
| pred[..., 2] *= imgsz[1] # w | |
| pred[..., 3] *= imgsz[0] # h | |
| pred = torch.tensor(pred) | |
| t3 = time_sync() | |
| dt[1] += t3 - t2 | |
| # NMS | |
| pred = non_max_suppression( | |
| pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det | |
| ) | |
| dt[2] += time_sync() - t3 | |
| # Second-stage classifier (optional) | |
| if classify: | |
| pred = apply_classifier(pred, modelc, img, im0s) | |
| # Process predictions | |
| for i, det in enumerate(pred): # per image | |
| seen += 1 | |
| if webcam: # batch_size >= 1 | |
| p, s, im0, frame = ( | |
| path[i], | |
| f"{i}: ", | |
| im0s[i].copy(), | |
| dataset.count, | |
| ) | |
| else: | |
| p, s, im0, frame = ( | |
| path, | |
| "", | |
| im0s.copy(), | |
| getattr(dataset, "frame", 0), | |
| ) | |
| p = Path(p) # to Path | |
| save_path = str(save_dir / p.name) # img.jpg | |
| txt_path = str(save_dir / "labels" / p.stem) + ( | |
| "" if dataset.mode == "image" else f"_{frame}" | |
| ) # img.txt | |
| s += "%gx%g " % img.shape[2:] # print string | |
| gn = torch.tensor(im0.shape)[ | |
| [1, 0, 1, 0] | |
| ] # normalization gain whwh | |
| imc = im0.copy() if save_crop else im0 # for save_crop | |
| annotator = Annotator( | |
| im0, line_width=line_thickness, pil=not ascii | |
| ) | |
| if len(det): | |
| # Rescale boxes from img_size to im0 size | |
| det[:, :4] = scale_coords( | |
| img.shape[2:], det[:, :4], im0.shape | |
| ).round() | |
| results.append((im0, det)) | |
| # Print results | |
| for c in det[:, -1].unique(): | |
| n = (det[:, -1] == c).sum() # detections per class | |
| s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string | |
| # Write results | |
| for *xyxy, conf, cls in reversed(det): | |
| if save_txt: # Write to file | |
| xywh = ( | |
| (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn) | |
| .view(-1) | |
| .tolist() | |
| ) # normalized xywh | |
| line = ( | |
| (cls, *xywh, conf) if save_conf else (cls, *xywh) | |
| ) # label format | |
| with open(txt_path + ".txt", "a") as f: | |
| f.write(("%g " * len(line)).rstrip() % line + "\n") | |
| if save_img or save_crop or view_img: # Add bbox to image | |
| c = int(cls) # integer class | |
| label = ( | |
| None | |
| if hide_labels | |
| else ( | |
| names[c] | |
| if hide_conf | |
| else f"{names[c]} {conf:.2f}" | |
| ) | |
| ) | |
| annotator.box_label(xyxy, label, color=colors(c, True)) | |
| if save_crop: | |
| save_one_box( | |
| xyxy, | |
| imc, | |
| file=save_dir | |
| / "crops" | |
| / names[c] | |
| / f"{p.stem}.jpg", | |
| BGR=True, | |
| ) | |
| # Print time (inference-only) | |
| print(f"{s}Done. ({t3 - t2:.3f}s)") | |
| # Stream results | |
| im0 = annotator.result() | |
| if view_img: | |
| cv2.imshow(str(p), im0) | |
| cv2.waitKey(1) # 1 millisecond | |
| # Save results (image with detections) | |
| if save_img: | |
| if dataset.mode == "image": | |
| cv2.imwrite(save_path, im0) | |
| else: # 'video' or 'stream' | |
| if vid_path[i] != save_path: # new video | |
| vid_path[i] = save_path | |
| if isinstance(vid_writer[i], cv2.VideoWriter): | |
| vid_writer[ | |
| i | |
| ].release() # release previous video writer | |
| if vid_cap: # video | |
| fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
| w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| else: # stream | |
| fps, w, h = 30, im0.shape[1], im0.shape[0] | |
| save_path += ".mp4" | |
| vid_writer[i] = cv2.VideoWriter( | |
| save_path, | |
| cv2.VideoWriter_fourcc(*"mp4v"), | |
| fps, | |
| (w, h), | |
| ) | |
| vid_writer[i].write(im0) | |
| # Print results | |
| t = tuple(x / seen * 1e3 for x in dt) # speeds per image | |
| print( | |
| f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" | |
| % t | |
| ) | |
| return results | |
| # if save_txt or save_img: | |
| # s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | |
| # print(f"Results saved to {colorstr('bold', save_dir)}{s}") | |
| # if update: | |
| # strip_optimizer(weights) # update model (to fix SourceChangeWarning) | |