Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import logging
|
| 2 |
import textwrap
|
| 3 |
from typing import Literal, Optional
|
| 4 |
-
|
| 5 |
import gradio as gr
|
| 6 |
import outlines
|
| 7 |
import pandas as pd
|
|
@@ -17,16 +17,9 @@ from transformers import (
|
|
| 17 |
BitsAndBytesConfig,
|
| 18 |
)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
logging.basicConfig(level=logging.INFO)
|
| 23 |
logger = logging.getLogger(__name__)
|
| 24 |
|
| 25 |
-
MODEL_ID = "rshwndsz/ft-longformer-base-4096"
|
| 26 |
-
DEVICE_MAP = "auto"
|
| 27 |
-
QUANTIZATION_BITS = None
|
| 28 |
-
TEMPERATURE = 0.0
|
| 29 |
-
|
| 30 |
AVAILABLE_MODELS = [
|
| 31 |
"rshwndsz/ft-longformer-base-4096",
|
| 32 |
"rshwndsz/ft-hermes-3-llama-3.2-3b",
|
|
@@ -41,20 +34,18 @@ AVAILABLE_MODELS = [
|
|
| 41 |
]
|
| 42 |
DEFAULT_MODEL_ID = AVAILABLE_MODELS[0]
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
score: Literal["0", "1"]
|
| 47 |
|
| 48 |
SYSTEM_PROMPT = textwrap.dedent("""
|
| 49 |
You are an assistant tasked with grading answers to a mind reading ability test. You will be provided with the following information:
|
| 50 |
1. A story that was presented to participants as context
|
| 51 |
2. The question that participants were asked to answer
|
| 52 |
3. A grading scheme to evaluate the answers (Correct Responses:1, incorrect response:0, Incomplete response:0, Irrelevant:0)
|
| 53 |
-
4.
|
| 54 |
-
5. A participant answer
|
| 55 |
Your task is to grade each answer according to the grading scheme. For each answer, you should:
|
| 56 |
1. Carefully read and understand the answer and compare it to the grading criteria
|
| 57 |
-
2.
|
| 58 |
""").strip()
|
| 59 |
|
| 60 |
PROMPT_TEMPLATE = textwrap.dedent("""
|
|
@@ -72,28 +63,15 @@ PROMPT_TEMPLATE = textwrap.dedent("""
|
|
| 72 |
</Answer>
|
| 73 |
Score:""").strip()
|
| 74 |
|
| 75 |
-
if is_huggingface_space():
|
| 76 |
-
DEVICE_MAP = "cpu"
|
| 77 |
-
QUANTIZATION_BITS = None
|
| 78 |
-
else:
|
| 79 |
-
DEVICE_MAP = "auto"
|
| 80 |
-
QUANTIZATION_BITS = 4 # or whatever you prefer for local deployment
|
| 81 |
-
|
| 82 |
-
def is_huggingface_space():
|
| 83 |
-
return os.environ.get('SPACE_ID') is not None
|
| 84 |
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
|
| 87 |
def get_outlines_model(
|
| 88 |
-
model_id: str, device_map: str = "
|
| 89 |
):
|
| 90 |
-
# Skip quantization on CPU
|
| 91 |
-
if device_map == "cpu":
|
| 92 |
-
quantization_config = None
|
| 93 |
-
else:
|
| 94 |
-
# Your existing quantization logic
|
| 95 |
-
pass
|
| 96 |
-
|
| 97 |
if quantization_bits == 4:
|
| 98 |
quantization_config = BitsAndBytesConfig(
|
| 99 |
load_in_4bit=True,
|
|
@@ -118,15 +96,14 @@ def get_outlines_model(
|
|
| 118 |
base_model_id,
|
| 119 |
device_map=device_map,
|
| 120 |
quantization_config=quantization_config,
|
| 121 |
-
torch_dtype=torch.bfloat16,
|
| 122 |
)
|
| 123 |
hf_model = PeftModel.from_pretrained(base_model, model_id)
|
| 124 |
hf_tokenizer = AutoTokenizer.from_pretrained(
|
| 125 |
base_model_id, use_fast=True, clean_up_tokenization_spaces=True
|
| 126 |
)
|
| 127 |
-
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
| 128 |
|
| 129 |
-
|
|
|
|
| 130 |
|
| 131 |
|
| 132 |
def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -> str:
|
|
@@ -140,56 +117,95 @@ def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -
|
|
| 140 |
return full_prompt
|
| 141 |
|
| 142 |
|
| 143 |
-
|
| 144 |
def label_single_response_with_model(model_id, story, question, criteria, response):
|
| 145 |
prompt = format_prompt(story, question, criteria, response)
|
| 146 |
-
logger.info(f"Prompt: {prompt}")
|
| 147 |
|
| 148 |
if "longformer" in model_id:
|
| 149 |
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 150 |
-
inputs = tokenizer(
|
| 151 |
with torch.no_grad():
|
| 152 |
logits = model(**inputs).logits
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
else:
|
| 157 |
-
model
|
| 158 |
-
|
| 159 |
-
# Use structured generation with outlines
|
| 160 |
generator = generate.json(model, ResponseModel)
|
| 161 |
-
result = generator(prompt
|
| 162 |
-
|
| 163 |
-
return result.score
|
| 164 |
|
| 165 |
|
| 166 |
-
|
| 167 |
-
def label_multi_responses_with_model(
|
| 168 |
-
model_id, story, question, criteria, response_file
|
| 169 |
-
):
|
| 170 |
df = pd.read_csv(response_file.name)
|
| 171 |
assert "response" in df.columns, "CSV must contain a 'response' column."
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
| 173 |
if "longformer" in model_id:
|
| 174 |
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 175 |
-
|
| 176 |
-
format_prompt(story, question, criteria, resp) for resp in df["response"]
|
| 177 |
-
]
|
| 178 |
-
inputs = tokenizer(prompts, return_tensors="pt", truncation=True, padding=True, max_length=4096)
|
| 179 |
with torch.no_grad():
|
| 180 |
logits = model(**inputs).logits
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
| 183 |
else:
|
| 184 |
-
model
|
| 185 |
generator = generate.json(model, ResponseModel)
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
prompt = format_prompt(story, question, criteria, resp)
|
| 189 |
-
result = generator(prompt, max_tokens=20)
|
| 190 |
-
scores.append(result.score)
|
| 191 |
|
| 192 |
df["score"] = scores
|
| 193 |
return df
|
| 194 |
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
import textwrap
|
| 3 |
from typing import Literal, Optional
|
| 4 |
+
|
| 5 |
import gradio as gr
|
| 6 |
import outlines
|
| 7 |
import pandas as pd
|
|
|
|
| 17 |
BitsAndBytesConfig,
|
| 18 |
)
|
| 19 |
|
|
|
|
|
|
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
AVAILABLE_MODELS = [
|
| 24 |
"rshwndsz/ft-longformer-base-4096",
|
| 25 |
"rshwndsz/ft-hermes-3-llama-3.2-3b",
|
|
|
|
| 34 |
]
|
| 35 |
DEFAULT_MODEL_ID = AVAILABLE_MODELS[0]
|
| 36 |
|
| 37 |
+
DEVICE_MAP = "auto"
|
| 38 |
+
QUANTIZATION_BITS = None
|
|
|
|
| 39 |
|
| 40 |
SYSTEM_PROMPT = textwrap.dedent("""
|
| 41 |
You are an assistant tasked with grading answers to a mind reading ability test. You will be provided with the following information:
|
| 42 |
1. A story that was presented to participants as context
|
| 43 |
2. The question that participants were asked to answer
|
| 44 |
3. A grading scheme to evaluate the answers (Correct Responses:1, incorrect response:0, Incomplete response:0, Irrelevant:0)
|
| 45 |
+
4. A participant answer
|
|
|
|
| 46 |
Your task is to grade each answer according to the grading scheme. For each answer, you should:
|
| 47 |
1. Carefully read and understand the answer and compare it to the grading criteria
|
| 48 |
+
2. Assign a score 1 or 0 for each answer.
|
| 49 |
""").strip()
|
| 50 |
|
| 51 |
PROMPT_TEMPLATE = textwrap.dedent("""
|
|
|
|
| 63 |
</Answer>
|
| 64 |
Score:""").strip()
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
class ResponseModel(BaseModel):
|
| 68 |
+
model_config = ConfigDict(extra="forbid")
|
| 69 |
+
score: Literal["0", "1"]
|
| 70 |
|
| 71 |
|
| 72 |
def get_outlines_model(
|
| 73 |
+
model_id: str, device_map: str = "auto", quantization_bits: Optional[int] = 4
|
| 74 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
if quantization_bits == 4:
|
| 76 |
quantization_config = BitsAndBytesConfig(
|
| 77 |
load_in_4bit=True,
|
|
|
|
| 96 |
base_model_id,
|
| 97 |
device_map=device_map,
|
| 98 |
quantization_config=quantization_config,
|
|
|
|
| 99 |
)
|
| 100 |
hf_model = PeftModel.from_pretrained(base_model, model_id)
|
| 101 |
hf_tokenizer = AutoTokenizer.from_pretrained(
|
| 102 |
base_model_id, use_fast=True, clean_up_tokenization_spaces=True
|
| 103 |
)
|
|
|
|
| 104 |
|
| 105 |
+
model = outlines.from_transformers(hf_model, hf_tokenizer)
|
| 106 |
+
return model
|
| 107 |
|
| 108 |
|
| 109 |
def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -> str:
|
|
|
|
| 117 |
return full_prompt
|
| 118 |
|
| 119 |
|
| 120 |
+
@spaces.GPU
|
| 121 |
def label_single_response_with_model(model_id, story, question, criteria, response):
|
| 122 |
prompt = format_prompt(story, question, criteria, response)
|
|
|
|
| 123 |
|
| 124 |
if "longformer" in model_id:
|
| 125 |
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 126 |
+
inputs = tokenizer(response, return_tensors="pt", truncation=True, padding=True)
|
| 127 |
with torch.no_grad():
|
| 128 |
logits = model(**inputs).logits
|
| 129 |
+
|
| 130 |
+
if logits.shape[1] == 1:
|
| 131 |
+
# Regression-style: apply sigmoid threshold at 0.5
|
| 132 |
+
score = int(torch.sigmoid(logits).item() > 0.5)
|
| 133 |
+
else:
|
| 134 |
+
# Classification-style: argmax over 2 labels
|
| 135 |
+
score = torch.argmax(logits, dim=1).item()
|
| 136 |
+
return str(score)
|
| 137 |
+
|
| 138 |
else:
|
| 139 |
+
model = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
|
|
|
|
|
|
| 140 |
generator = generate.json(model, ResponseModel)
|
| 141 |
+
result = generator(prompt)
|
| 142 |
+
return result["score"]
|
|
|
|
| 143 |
|
| 144 |
|
| 145 |
+
@spaces.GPU
|
| 146 |
+
def label_multi_responses_with_model(model_id, story, question, criteria, response_file):
|
|
|
|
|
|
|
| 147 |
df = pd.read_csv(response_file.name)
|
| 148 |
assert "response" in df.columns, "CSV must contain a 'response' column."
|
| 149 |
+
prompts = [
|
| 150 |
+
format_prompt(story, question, criteria, resp) for resp in df["response"]
|
| 151 |
+
]
|
| 152 |
+
|
| 153 |
if "longformer" in model_id:
|
| 154 |
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 155 |
+
inputs = tokenizer(df["response"].tolist(), return_tensors="pt", truncation=True, padding=True)
|
|
|
|
|
|
|
|
|
|
| 156 |
with torch.no_grad():
|
| 157 |
logits = model(**inputs).logits
|
| 158 |
+
if logits.shape[1] == 1:
|
| 159 |
+
scores = [str(int(torch.sigmoid(l) > 0.5)) for l in logits]
|
| 160 |
+
else:
|
| 161 |
+
scores = [str(cls) for cls in torch.argmax(logits, dim=1).tolist()]
|
| 162 |
else:
|
| 163 |
+
model = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 164 |
generator = generate.json(model, ResponseModel)
|
| 165 |
+
results = [generator(p) for p in prompts]
|
| 166 |
+
scores = [r["score"] for r in results]
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
df["score"] = scores
|
| 169 |
return df
|
| 170 |
|
| 171 |
+
|
| 172 |
+
with gr.Blocks(title="Zero-Shot Evaluation Grader") as iface:
|
| 173 |
+
model_selector = gr.Dropdown(
|
| 174 |
+
label="Select Model",
|
| 175 |
+
choices=AVAILABLE_MODELS,
|
| 176 |
+
value=DEFAULT_MODEL_ID,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
with gr.Tabs():
|
| 180 |
+
with gr.Tab("Single Response"):
|
| 181 |
+
gr.Interface(
|
| 182 |
+
fn=label_single_response_with_model,
|
| 183 |
+
inputs=[
|
| 184 |
+
model_selector,
|
| 185 |
+
gr.Textbox(label="Story", lines=6),
|
| 186 |
+
gr.Textbox(label="Question", lines=2),
|
| 187 |
+
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
|
| 188 |
+
gr.Textbox(label="Single Response", lines=3),
|
| 189 |
+
],
|
| 190 |
+
outputs=gr.Textbox(label="Score"),
|
| 191 |
+
live=False,
|
| 192 |
+
)
|
| 193 |
+
with gr.Tab("Batch (CSV)"):
|
| 194 |
+
gr.Interface(
|
| 195 |
+
fn=label_multi_responses_with_model,
|
| 196 |
+
inputs=[
|
| 197 |
+
model_selector,
|
| 198 |
+
gr.Textbox(label="Story", lines=6),
|
| 199 |
+
gr.Textbox(label="Question", lines=2),
|
| 200 |
+
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
|
| 201 |
+
gr.File(
|
| 202 |
+
label="Responses CSV (.csv with 'response' column)",
|
| 203 |
+
file_types=[".csv"]
|
| 204 |
+
),
|
| 205 |
+
],
|
| 206 |
+
outputs=gr.Dataframe(label="Labeled Responses", type="pandas"),
|
| 207 |
+
live=False,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
if __name__ == "__main__":
|
| 211 |
+
iface.launch(share=True)
|