Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import logging
|
| 2 |
import textwrap
|
| 3 |
-
import
|
| 4 |
-
from typing import Literal, Optional, Tuple, Union
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import outlines
|
|
@@ -21,11 +20,9 @@ from transformers import (
|
|
| 21 |
logging.basicConfig(level=logging.INFO)
|
| 22 |
logger = logging.getLogger(__name__)
|
| 23 |
|
| 24 |
-
|
| 25 |
-
MODEL_CACHE = {}
|
| 26 |
-
MODEL_LOCK = threading.Lock()
|
| 27 |
DEVICE_MAP = "auto"
|
| 28 |
-
QUANTIZATION_BITS =
|
| 29 |
TEMPERATURE = 0.0
|
| 30 |
|
| 31 |
AVAILABLE_MODELS = [
|
|
@@ -42,6 +39,10 @@ AVAILABLE_MODELS = [
|
|
| 42 |
]
|
| 43 |
DEFAULT_MODEL_ID = AVAILABLE_MODELS[0]
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
SYSTEM_PROMPT = textwrap.dedent("""
|
| 46 |
You are an assistant tasked with grading answers to a mind reading ability test. You will be provided with the following information:
|
| 47 |
1. A story that was presented to participants as context
|
|
@@ -69,68 +70,44 @@ PROMPT_TEMPLATE = textwrap.dedent("""
|
|
| 69 |
</Answer>
|
| 70 |
Score:""").strip()
|
| 71 |
|
| 72 |
-
class ResponseModel(BaseModel):
|
| 73 |
-
model_config = ConfigDict(extra="forbid")
|
| 74 |
-
score: Literal["0", "1"]
|
| 75 |
|
| 76 |
-
def
|
| 77 |
-
model_id: str,
|
| 78 |
-
|
| 79 |
-
quantization_bits
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
# For sequence classification models
|
| 101 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
| 102 |
-
model_id,
|
| 103 |
-
device_map=device_map
|
| 104 |
-
)
|
| 105 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 106 |
-
if tokenizer.pad_token is None:
|
| 107 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 108 |
-
else:
|
| 109 |
-
# For causal LM models
|
| 110 |
-
peft_config = PeftConfig.from_pretrained(model_id)
|
| 111 |
-
base_model_id = peft_config.base_model_name_or_path
|
| 112 |
-
|
| 113 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 114 |
-
base_model_id,
|
| 115 |
-
device_map=device_map,
|
| 116 |
-
quantization_config=quantization_config,
|
| 117 |
-
torch_dtype=torch.bfloat16,
|
| 118 |
-
)
|
| 119 |
-
model = PeftModel.from_pretrained(model, model_id)
|
| 120 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 121 |
-
base_model_id,
|
| 122 |
-
use_fast=True,
|
| 123 |
-
clean_up_tokenization_spaces=True
|
| 124 |
-
)
|
| 125 |
-
if tokenizer.pad_token is None:
|
| 126 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 127 |
|
| 128 |
-
MODEL_CACHE[model_id] = (model, tokenizer)
|
| 129 |
-
return model, tokenizer
|
| 130 |
-
|
| 131 |
-
except Exception as e:
|
| 132 |
-
logger.error(f"Error loading model {model_id}: {str(e)}")
|
| 133 |
-
raise
|
| 134 |
|
| 135 |
def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -> str:
|
| 136 |
prompt = PROMPT_TEMPLATE.format(
|
|
@@ -142,128 +119,57 @@ def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -
|
|
| 142 |
full_prompt = SYSTEM_PROMPT + "\n\n" + prompt
|
| 143 |
return full_prompt
|
| 144 |
|
|
|
|
| 145 |
@spaces.GPU
|
| 146 |
def label_single_response_with_model(model_id, story, question, criteria, response):
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
-
if "longformer" in model_id:
|
| 152 |
-
# Sequence classification approach
|
| 153 |
-
inputs = tokenizer(
|
| 154 |
-
prompt,
|
| 155 |
-
return_tensors="pt",
|
| 156 |
-
truncation=True,
|
| 157 |
-
padding=True,
|
| 158 |
-
max_length=4096
|
| 159 |
-
)
|
| 160 |
-
with torch.no_grad():
|
| 161 |
-
logits = model(**inputs).logits
|
| 162 |
-
predicted_class = torch.argmax(logits, dim=1).item()
|
| 163 |
-
return str(predicted_class)
|
| 164 |
-
else:
|
| 165 |
-
# Structured generation with outlines
|
| 166 |
-
generator = generate.json(model, ResponseModel, max_tokens=20)
|
| 167 |
-
result = generator(prompt)
|
| 168 |
-
return result.score
|
| 169 |
-
|
| 170 |
-
except Exception as e:
|
| 171 |
-
logger.error(f"Error in single response labeling: {str(e)}")
|
| 172 |
-
return f"Error: {str(e)}"
|
| 173 |
|
| 174 |
@spaces.GPU
|
| 175 |
-
def label_multi_responses_with_model(
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
scores = []
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
format_prompt(story, question, criteria, resp)
|
| 187 |
-
for resp in df["response"]
|
| 188 |
-
]
|
| 189 |
-
inputs = tokenizer(
|
| 190 |
-
prompts,
|
| 191 |
-
return_tensors="pt",
|
| 192 |
-
truncation=True,
|
| 193 |
-
padding=True,
|
| 194 |
-
max_length=4096
|
| 195 |
-
)
|
| 196 |
-
with torch.no_grad():
|
| 197 |
-
logits = model(**inputs).logits
|
| 198 |
-
predicted_classes = torch.argmax(logits, dim=1).tolist()
|
| 199 |
-
scores = [str(cls) for cls in predicted_classes]
|
| 200 |
-
else:
|
| 201 |
-
# Sequential processing for generative models
|
| 202 |
-
generator = generate.json(model, ResponseModel, max_tokens=20)
|
| 203 |
-
for response in df["response"]:
|
| 204 |
-
prompt = format_prompt(story, question, criteria, response)
|
| 205 |
-
result = generator(prompt)
|
| 206 |
-
scores.append(result.score)
|
| 207 |
-
|
| 208 |
-
df["score"] = scores
|
| 209 |
-
return df
|
| 210 |
-
|
| 211 |
-
except Exception as e:
|
| 212 |
-
logger.error(f"Error in multi response labeling: {str(e)}")
|
| 213 |
-
return pd.DataFrame({"error": [str(e)]})
|
| 214 |
-
|
| 215 |
-
def single_response_ui(model_id):
|
| 216 |
-
return gr.Interface(
|
| 217 |
-
fn=lambda story, question, criteria, response: label_single_response_with_model(
|
| 218 |
-
model_id, story, question, criteria, response
|
| 219 |
-
),
|
| 220 |
-
inputs=[
|
| 221 |
-
gr.Textbox(label="Story", lines=6),
|
| 222 |
-
gr.Textbox(label="Question", lines=2),
|
| 223 |
-
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
|
| 224 |
-
gr.Textbox(label="Single Response", lines=3),
|
| 225 |
-
],
|
| 226 |
-
outputs=gr.Textbox(label="Score"),
|
| 227 |
-
live=False,
|
| 228 |
-
title="Single Response Grader",
|
| 229 |
-
description="Grade a single response against the story, question, and criteria"
|
| 230 |
-
)
|
| 231 |
|
| 232 |
-
|
| 233 |
-
return
|
| 234 |
-
fn=lambda story, question, criteria, response_file: label_multi_responses_with_model(
|
| 235 |
-
model_id, story, question, criteria, response_file
|
| 236 |
-
),
|
| 237 |
-
inputs=[
|
| 238 |
-
gr.Textbox(label="Story", lines=6),
|
| 239 |
-
gr.Textbox(label="Question", lines=2),
|
| 240 |
-
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
|
| 241 |
-
gr.File(
|
| 242 |
-
label="Responses CSV (.csv with 'response' column)",
|
| 243 |
-
file_types=[".csv"]
|
| 244 |
-
),
|
| 245 |
-
],
|
| 246 |
-
outputs=gr.Dataframe(label="Labeled Responses", type="pandas"),
|
| 247 |
-
live=False,
|
| 248 |
-
title="Batch Response Grader",
|
| 249 |
-
description="Upload a CSV file with responses to grade them in batch"
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
with gr.Blocks(title="Zero-Shot Evaluation Grader") as iface:
|
| 253 |
-
gr.Markdown("# Zero-Shot Evaluation Grader")
|
| 254 |
-
gr.Markdown("Select a model and then use either the single response or batch processing tab.")
|
| 255 |
-
|
| 256 |
-
model_selector = gr.Dropdown(
|
| 257 |
-
label="Select Model",
|
| 258 |
-
choices=AVAILABLE_MODELS,
|
| 259 |
-
value=DEFAULT_MODEL_ID,
|
| 260 |
-
)
|
| 261 |
-
|
| 262 |
-
with gr.Tabs():
|
| 263 |
-
with gr.Tab("Single Response"):
|
| 264 |
-
single_response_ui(model_selector.value)
|
| 265 |
-
with gr.Tab("Batch Processing (CSV)"):
|
| 266 |
-
multi_response_ui(model_selector.value)
|
| 267 |
|
| 268 |
-
|
| 269 |
-
iface.launch(share=True)
|
|
|
|
| 1 |
import logging
|
| 2 |
import textwrap
|
| 3 |
+
from typing import Literal, Optional
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import outlines
|
|
|
|
| 20 |
logging.basicConfig(level=logging.INFO)
|
| 21 |
logger = logging.getLogger(__name__)
|
| 22 |
|
| 23 |
+
MODEL_ID = "rshwndsz/ft-longformer-base-4096"
|
|
|
|
|
|
|
| 24 |
DEVICE_MAP = "auto"
|
| 25 |
+
QUANTIZATION_BITS = None
|
| 26 |
TEMPERATURE = 0.0
|
| 27 |
|
| 28 |
AVAILABLE_MODELS = [
|
|
|
|
| 39 |
]
|
| 40 |
DEFAULT_MODEL_ID = AVAILABLE_MODELS[0]
|
| 41 |
|
| 42 |
+
# Define response model
|
| 43 |
+
class ResponseModel(BaseModel):
|
| 44 |
+
score: Literal["0", "1"]
|
| 45 |
+
|
| 46 |
SYSTEM_PROMPT = textwrap.dedent("""
|
| 47 |
You are an assistant tasked with grading answers to a mind reading ability test. You will be provided with the following information:
|
| 48 |
1. A story that was presented to participants as context
|
|
|
|
| 70 |
</Answer>
|
| 71 |
Score:""").strip()
|
| 72 |
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
+
def get_outlines_model(
|
| 75 |
+
model_id: str, device_map: str = "auto", quantization_bits: Optional[int] = 4
|
| 76 |
+
):
|
| 77 |
+
if quantization_bits == 4:
|
| 78 |
+
quantization_config = BitsAndBytesConfig(
|
| 79 |
+
load_in_4bit=True,
|
| 80 |
+
bnb_4bit_quant_type="nf4",
|
| 81 |
+
bnb_4bit_use_double_quant=True,
|
| 82 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 83 |
+
)
|
| 84 |
+
elif quantization_bits == 8:
|
| 85 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 86 |
+
else:
|
| 87 |
+
quantization_config = None
|
| 88 |
+
|
| 89 |
+
if "longformer" in model_id:
|
| 90 |
+
hf_model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 91 |
+
hf_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 92 |
+
return hf_model, hf_tokenizer
|
| 93 |
+
|
| 94 |
+
peft_config = PeftConfig.from_pretrained(model_id)
|
| 95 |
+
base_model_id = peft_config.base_model_name_or_path
|
| 96 |
+
|
| 97 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 98 |
+
base_model_id,
|
| 99 |
+
device_map=device_map,
|
| 100 |
+
quantization_config=quantization_config,
|
| 101 |
+
torch_dtype=torch.bfloat16,
|
| 102 |
+
)
|
| 103 |
+
hf_model = PeftModel.from_pretrained(base_model, model_id)
|
| 104 |
+
hf_tokenizer = AutoTokenizer.from_pretrained(
|
| 105 |
+
base_model_id, use_fast=True, clean_up_tokenization_spaces=True
|
| 106 |
+
)
|
| 107 |
+
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
| 108 |
|
| 109 |
+
return hf_model, hf_tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -> str:
|
| 113 |
prompt = PROMPT_TEMPLATE.format(
|
|
|
|
| 119 |
full_prompt = SYSTEM_PROMPT + "\n\n" + prompt
|
| 120 |
return full_prompt
|
| 121 |
|
| 122 |
+
|
| 123 |
@spaces.GPU
|
| 124 |
def label_single_response_with_model(model_id, story, question, criteria, response):
|
| 125 |
+
prompt = format_prompt(story, question, criteria, response)
|
| 126 |
+
logger.info(f"Prompt: {prompt}")
|
| 127 |
+
|
| 128 |
+
if "longformer" in model_id:
|
| 129 |
+
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 130 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=4096)
|
| 131 |
+
with torch.no_grad():
|
| 132 |
+
logits = model(**inputs).logits
|
| 133 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 134 |
+
logger.info(f"Predicted class: {predicted_class}")
|
| 135 |
+
return str(predicted_class)
|
| 136 |
+
else:
|
| 137 |
+
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 138 |
+
|
| 139 |
+
# Use structured generation with outlines
|
| 140 |
+
generator = generate.json(model, ResponseModel)
|
| 141 |
+
result = generator(prompt, max_tokens=20)
|
| 142 |
+
logger.info(f"Generated result: {result}")
|
| 143 |
+
return result.score
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
@spaces.GPU
|
| 147 |
+
def label_multi_responses_with_model(
|
| 148 |
+
model_id, story, question, criteria, response_file
|
| 149 |
+
):
|
| 150 |
+
df = pd.read_csv(response_file.name)
|
| 151 |
+
assert "response" in df.columns, "CSV must contain a 'response' column."
|
| 152 |
+
|
| 153 |
+
if "longformer" in model_id:
|
| 154 |
+
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 155 |
+
prompts = [
|
| 156 |
+
format_prompt(story, question, criteria, resp) for resp in df["response"]
|
| 157 |
+
]
|
| 158 |
+
inputs = tokenizer(prompts, return_tensors="pt", truncation=True, padding=True, max_length=4096)
|
| 159 |
+
with torch.no_grad():
|
| 160 |
+
logits = model(**inputs).logits
|
| 161 |
+
predicted_classes = torch.argmax(logits, dim=1).tolist()
|
| 162 |
+
scores = [str(cls) for cls in predicted_classes]
|
| 163 |
+
else:
|
| 164 |
+
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 165 |
+
generator = generate.json(model, ResponseModel)
|
| 166 |
scores = []
|
| 167 |
+
for resp in df["response"]:
|
| 168 |
+
prompt = format_prompt(story, question, criteria, resp)
|
| 169 |
+
result = generator(prompt, max_tokens=20)
|
| 170 |
+
scores.append(result.score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
df["score"] = scores
|
| 173 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
# Rest of the code remains the same...
|
|
|