Spaces:
Sleeping
Sleeping
Yixiao Wang (Computer Science)
commited on
Commit
·
e358772
1
Parent(s):
2376772
add model selector
Browse files
app.py
CHANGED
|
@@ -20,6 +20,12 @@ DEVICE_MAP = "auto"
|
|
| 20 |
QUANTIZATION_BITS = None
|
| 21 |
TEMPERATURE = 0.0
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
SYSTEM_PROMPT = textwrap.dedent("""
|
| 25 |
You are an assistant tasked with grading answers to a mind reading ability test. You will be provided with the following information:
|
|
@@ -106,39 +112,38 @@ def format_prompt(story: str, question: str, grading_scheme: str, answer: str) -
|
|
| 106 |
|
| 107 |
|
| 108 |
@spaces.GPU
|
| 109 |
-
def
|
| 110 |
prompt = format_prompt(story, question, criteria, response)
|
| 111 |
|
| 112 |
-
if "longformer" in
|
| 113 |
-
model, tokenizer = get_outlines_model(
|
| 114 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
| 115 |
with torch.no_grad():
|
| 116 |
logits = model(**inputs).logits
|
| 117 |
predicted_class = torch.argmax(logits, dim=1).item()
|
| 118 |
return str(predicted_class)
|
| 119 |
else:
|
| 120 |
-
model = get_outlines_model(
|
| 121 |
generator = Generator(model)
|
| 122 |
with torch.no_grad():
|
| 123 |
result = generator(prompt)
|
| 124 |
return result.score
|
| 125 |
|
| 126 |
-
|
| 127 |
@spaces.GPU
|
| 128 |
-
def
|
| 129 |
df = pd.read_csv(response_file.name)
|
| 130 |
assert "response" in df.columns, "CSV must contain a 'response' column."
|
| 131 |
prompts = [format_prompt(story, question, criteria, resp) for resp in df["response"]]
|
| 132 |
|
| 133 |
-
if "longformer" in
|
| 134 |
-
model, tokenizer = get_outlines_model(
|
| 135 |
inputs = tokenizer(prompts, return_tensors="pt", truncation=True, padding=True)
|
| 136 |
with torch.no_grad():
|
| 137 |
logits = model(**inputs).logits
|
| 138 |
predicted_classes = torch.argmax(logits, dim=1).tolist()
|
| 139 |
scores = [str(cls) for cls in predicted_classes]
|
| 140 |
else:
|
| 141 |
-
model = get_outlines_model(
|
| 142 |
generator = Generator(model)
|
| 143 |
with torch.no_grad():
|
| 144 |
results = generator(prompts)
|
|
@@ -148,33 +153,53 @@ def label_multi_responses(story, question, criteria, response_file):
|
|
| 148 |
return df
|
| 149 |
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
if __name__ == "__main__":
|
| 180 |
iface.launch()
|
|
|
|
| 20 |
QUANTIZATION_BITS = None
|
| 21 |
TEMPERATURE = 0.0
|
| 22 |
|
| 23 |
+
AVAILABLE_MODELS = {
|
| 24 |
+
"Longformer": "rshwndsz/ft-longformer-base-4096",
|
| 25 |
+
"Llama 3.2 3B [Paraphrased]": "rshwndsz/ft_paraphrased-hermes-3-llama-3.2-3b"
|
| 26 |
+
}
|
| 27 |
+
DEFAULT_MODEL_ID = list(AVAILABLE_MODELS.values())[0]
|
| 28 |
+
|
| 29 |
|
| 30 |
SYSTEM_PROMPT = textwrap.dedent("""
|
| 31 |
You are an assistant tasked with grading answers to a mind reading ability test. You will be provided with the following information:
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
@spaces.GPU
|
| 115 |
+
def label_single_response_with_model(model_id, story, question, criteria, response):
|
| 116 |
prompt = format_prompt(story, question, criteria, response)
|
| 117 |
|
| 118 |
+
if "longformer" in model_id:
|
| 119 |
+
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 120 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
| 121 |
with torch.no_grad():
|
| 122 |
logits = model(**inputs).logits
|
| 123 |
predicted_class = torch.argmax(logits, dim=1).item()
|
| 124 |
return str(predicted_class)
|
| 125 |
else:
|
| 126 |
+
model = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 127 |
generator = Generator(model)
|
| 128 |
with torch.no_grad():
|
| 129 |
result = generator(prompt)
|
| 130 |
return result.score
|
| 131 |
|
|
|
|
| 132 |
@spaces.GPU
|
| 133 |
+
def label_multi_responses_with_model(model_id, story, question, criteria, response_file):
|
| 134 |
df = pd.read_csv(response_file.name)
|
| 135 |
assert "response" in df.columns, "CSV must contain a 'response' column."
|
| 136 |
prompts = [format_prompt(story, question, criteria, resp) for resp in df["response"]]
|
| 137 |
|
| 138 |
+
if "longformer" in model_id:
|
| 139 |
+
model, tokenizer = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 140 |
inputs = tokenizer(prompts, return_tensors="pt", truncation=True, padding=True)
|
| 141 |
with torch.no_grad():
|
| 142 |
logits = model(**inputs).logits
|
| 143 |
predicted_classes = torch.argmax(logits, dim=1).tolist()
|
| 144 |
scores = [str(cls) for cls in predicted_classes]
|
| 145 |
else:
|
| 146 |
+
model = get_outlines_model(model_id, DEVICE_MAP, QUANTIZATION_BITS)
|
| 147 |
generator = Generator(model)
|
| 148 |
with torch.no_grad():
|
| 149 |
results = generator(prompts)
|
|
|
|
| 153 |
return df
|
| 154 |
|
| 155 |
|
| 156 |
+
def single_response_ui(model_id):
|
| 157 |
+
return gr.Interface(
|
| 158 |
+
fn=lambda story, question, criteria, response: label_single_response_with_model(
|
| 159 |
+
model_id.value, story, question, criteria, response
|
| 160 |
+
),
|
| 161 |
+
inputs=[
|
| 162 |
+
gr.Textbox(label="Story", lines=6),
|
| 163 |
+
gr.Textbox(label="Question", lines=2),
|
| 164 |
+
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
|
| 165 |
+
gr.Textbox(label="Single Response", lines=3),
|
| 166 |
+
],
|
| 167 |
+
outputs=gr.Textbox(label="Score"),
|
| 168 |
+
live=False,
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
def multi_response_ui(model_id):
|
| 172 |
+
return gr.Interface(
|
| 173 |
+
fn=lambda story, question, criteria, response_file: label_multi_responses_with_model(
|
| 174 |
+
model_id.value, story, question, criteria, response_file
|
| 175 |
+
),
|
| 176 |
+
inputs=[
|
| 177 |
+
gr.Textbox(label="Story", lines=6),
|
| 178 |
+
gr.Textbox(label="Question", lines=2),
|
| 179 |
+
gr.Textbox(label="Criteria (Grading Scheme)", lines=4),
|
| 180 |
+
gr.File(label="Responses CSV (.csv with 'response' column)", file_types=[".csv"]),
|
| 181 |
+
],
|
| 182 |
+
outputs=gr.Dataframe(label="Labeled Responses", type="pandas"),
|
| 183 |
+
live=False,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
with gr.Blocks(title="Zero-Shot Evaluation Grader") as iface:
|
| 187 |
+
model_selector = gr.Dropdown(
|
| 188 |
+
label="Select Model",
|
| 189 |
+
choices=list(AVAILABLE_MODELS.keys()),
|
| 190 |
+
value=list(AVAILABLE_MODELS.keys())[0],
|
| 191 |
+
)
|
| 192 |
+
selected_model_id = gr.State(value=DEFAULT_MODEL_ID)
|
| 193 |
+
|
| 194 |
+
def update_model_id(choice):
|
| 195 |
+
return AVAILABLE_MODELS[choice]
|
| 196 |
+
|
| 197 |
+
model_selector.change(fn=update_model_id, inputs=model_selector, outputs=selected_model_id)
|
| 198 |
+
|
| 199 |
+
gr.TabbedInterface(
|
| 200 |
+
[single_response_ui(selected_model_id), multi_response_ui(selected_model_id)],
|
| 201 |
+
["Single Response", "Batch (CSV)"],
|
| 202 |
+
).render()
|
| 203 |
|
| 204 |
if __name__ == "__main__":
|
| 205 |
iface.launch()
|