Spaces:
Sleeping
Sleeping
File size: 19,919 Bytes
506884b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
import gradio as gr
import asyncio
from typing import Optional, List, Dict
from contextlib import AsyncExitStack
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
import json
from datetime import datetime
import plotly.graph_objects as go
import plotly.express as px
class MCPClient:
def __init__(self):
self.session: Optional[ClientSession] = None
self.exit_stack = AsyncExitStack()
async def connect_to_server(self, server_script_path: str = "mcp_server.py"):
"""Connect to MCP server"""
is_python = server_script_path.endswith('.py')
is_js = server_script_path.endswith('.js')
if not (is_python or is_js):
raise ValueError("Server script must be a .py or .js file")
command = "python" if is_python else "node"
server_params = StdioServerParameters(
command=command,
args=[server_script_path],
env=None
)
stdio_transport = await self.exit_stack.enter_async_context(
stdio_client(server_params)
)
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(
ClientSession(self.stdio, self.write)
)
await self.session.initialize()
# List available tools
response = await self.session.list_tools()
tools = response.tools
print("Connected to server with tools:", [tool.name for tool in tools])
async def call_tool(self, tool_name: str, arguments: dict):
"""Call a tool on the MCP server"""
if not self.session:
raise RuntimeError("Not connected to server")
response = await self.session.call_tool(tool_name, arguments)
return response.content
async def close(self):
"""Close the MCP client connection"""
await self.exit_stack.aclose()
# Global MCP client instance
mcp_client = MCPClient()
# Async wrapper functions for Gradio
def run_async(coro):
"""Helper to run async functions in Gradio"""
try:
loop = asyncio.get_event_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
# Auto-connect to MCP server on startup
def initialize_mcp_connection():
"""Initialize MCP connection on startup"""
try:
run_async(mcp_client.connect_to_server())
print("Successfully connected to MCP server on startup")
return True
except Exception as e:
print(f"Failed to connect to MCP server on startup: {e}")
return False
# MCP client functions
def get_models_from_db():
"""Get all models from database via MCP"""
try:
result = run_async(mcp_client.call_tool("get_all_models", {}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error getting models: {e}")
# Fallback data for demonstration
return [
{"name": "llama-3.1-8b-instant", "created": "2025-01-15", "description": "Fast and efficient model for instant responses."},
{"name": "llama3-8b-8192", "created": "2025-02-10", "description": "Extended context window model with 8192 tokens."},
{"name": "gemini-2.5-pro-preview-06-05", "created": "2025-06-05", "description": "Professional preview version of Gemini 2.5."},
{"name": "gemini-2.5-flash-preview-05-20", "created": "2025-05-20", "description": "Flash preview with optimized speed."},
{"name": "gemini-1.5-pro", "created": "2024-12-01", "description": "Stable professional release of Gemini 1.5."}
]
def get_available_model_names():
"""Get list of available model names for dropdown"""
models = get_models_from_db()
return [model["name"] for model in models]
def search_models_in_db(search_term: str):
"""Search models in database via MCP"""
try:
result = run_async(mcp_client.call_tool("search_models", {"search_term": search_term}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error searching models: {e}")
# Fallback search for demonstration
all_models = get_models_from_db()
if not search_term:
return all_models
term = search_term.lower()
return [model for model in all_models if term in model["name"].lower() or term in model["description"].lower()]
def format_dropdown_items(models):
"""Format dropdown items to show model name, creation date, and description preview"""
formatted_items = []
model_mapping = {}
for model in models:
desc_preview = model["description"][:40] + ("..." if len(model["description"]) > 40 else "")
item_label = f"{model['name']} (Created: {model['created']}) - {desc_preview}"
formatted_items.append(item_label)
model_mapping[item_label] = model["name"]
return formatted_items, model_mapping
def extract_model_name_from_dropdown(dropdown_value, model_mapping):
"""Extract actual model name from formatted dropdown value"""
return model_mapping.get(dropdown_value, dropdown_value.split(" (")[0] if dropdown_value else "")
def get_model_details(model_name: str):
"""Get model details from database via MCP"""
try:
result = run_async(mcp_client.call_tool("get_model_details", {"model_name": model_name}))
return result
except Exception as e:
print(f"Error getting model details: {e}")
return {"name": model_name, "system_prompt": "You are a helpful AI assistant.", "description": ""}
def enhance_prompt_via_mcp(prompt: str):
"""Enhance prompt using MCP server"""
try:
result = run_async(mcp_client.call_tool("enhance_prompt", {"prompt": prompt}))
return result.get("enhanced_prompt", prompt)
except Exception as e:
print(f"Error enhancing prompt: {e}")
return f"Enhanced: {prompt}\n\nAdditional context: Be more specific, helpful, and provide detailed responses while maintaining a professional tone."
def save_model_to_db(model_name: str, system_prompt: str):
"""Save model to database via MCP"""
try:
result = run_async(mcp_client.call_tool("save_model", {
"model_name": model_name,
"system_prompt": system_prompt
}))
return result.get("message", "Model saved successfully!")
except Exception as e:
print(f"Error saving model: {e}")
return f"Error saving model: {e}"
def calculate_drift_via_mcp(model_name: str):
"""Calculate drift for model via MCP"""
try:
result = run_async(mcp_client.call_tool("calculate_drift", {"model_name": model_name}))
return result
except Exception as e:
print(f"Error calculating drift: {e}")
import random
drift_score = round(random.uniform(0.05, 0.25), 3)
return {"drift_score": drift_score, "message": f"Drift calculated and saved for {model_name}"}
def get_drift_history_from_db(model_name: str):
"""Get drift history from database via MCP"""
try:
result = run_async(mcp_client.call_tool("get_drift_history", {"model_name": model_name}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error getting drift history: {e}")
# Fallback data for demonstration
return [
{"date": "2025-06-01", "drift_score": 0.12},
{"date": "2025-06-05", "drift_score": 0.18},
{"date": "2025-06-09", "drift_score": 0.15}
]
def create_drift_chart(drift_history):
"""Create drift chart using plotly"""
if not drift_history:
return gr.update(value=None)
dates = [entry["date"] for entry in drift_history]
scores = [entry["drift_score"] for entry in drift_history]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=dates,
y=scores,
mode='lines+markers',
name='Drift Score',
line=dict(color='#ff6b6b', width=3),
marker=dict(size=8, color='#ff6b6b')
))
fig.update_layout(
title='Model Drift Over Time',
xaxis_title='Date',
yaxis_title='Drift Score',
template='plotly_white',
height=400,
showlegend=True
)
return fig
# Global variable to store model mapping
current_model_mapping = {}
# Gradio interface functions
def update_model_dropdown(search_term):
"""Update dropdown choices based on search term"""
global current_model_mapping
if search_term.strip():
models = search_models_in_db(search_term.strip())
else:
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
current_model_mapping = model_mapping
return gr.update(choices=formatted_items, value=formatted_items[0] if formatted_items else None)
def on_model_select(dropdown_value):
"""Handle model selection"""
if not dropdown_value:
return "", ""
actual_model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
return actual_model_name, actual_model_name
def toggle_create_new():
"""Toggle create new model section visibility"""
return gr.update(visible=True)
def cancel_create_new():
"""Cancel create new model"""
return [
gr.update(visible=False), # create_new_section
None, # new_model_name (dropdown)
"", # new_system_prompt
gr.update(visible=False), # enhanced_prompt_display
gr.update(visible=False), # prompt_choice
gr.update(visible=False), # save_model_button
gr.update(visible=False) # save_status
]
def enhance_prompt(original_prompt):
"""Enhance prompt and show options"""
if not original_prompt.strip():
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
]
enhanced = enhance_prompt_via_mcp(original_prompt.strip())
return [
gr.update(value=enhanced, visible=True),
gr.update(visible=True),
gr.update(visible=True)
]
def save_new_model(selected_model_name, original_prompt, enhanced_prompt, choice):
"""Save new model to database"""
if not selected_model_name or not original_prompt.strip():
return [
"Please select a model and enter a system prompt",
gr.update(visible=True),
gr.update()
]
final_prompt = enhanced_prompt if choice == "Keep Enhanced" else original_prompt
status = save_model_to_db(selected_model_name, final_prompt)
# Update dropdown choices
updated_models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(updated_models)
global current_model_mapping
current_model_mapping = model_mapping
return [
status,
gr.update(visible=True),
gr.update(choices=formatted_items)
]
def chatbot_response(message, history, dropdown_value):
"""Generate chatbot response"""
if not message.strip() or not dropdown_value:
return history, ""
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
model_details = get_model_details(model_name)
system_prompt = model_details.get("system_prompt", "")
# Simulate response (replace with actual LLM call)
response = f"[{model_name}] Response to: {message}\n(Using system prompt: {system_prompt[:50]}...)"
history.append([message, response])
return history, ""
def calculate_drift(dropdown_value):
"""Calculate drift for selected model"""
if not dropdown_value:
return "Please select a model first"
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
result = calculate_drift_via_mcp(model_name)
drift_score = result.get("drift_score", 0.0)
message = result.get("message", "")
return f"Drift Score: {drift_score:.3f}\n{message}"
def refresh_drift_history(dropdown_value):
"""Refresh drift history for selected model"""
if not dropdown_value:
return [], gr.update(value=None)
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
history = get_drift_history_from_db(model_name)
chart = create_drift_chart(history)
return history, chart
def initialize_interface():
"""Initialize interface with MCP connection and default data"""
# Connect to MCP server
mcp_connected = initialize_mcp_connection()
# Get initial model data
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
global current_model_mapping
current_model_mapping = model_mapping
# Get available model names for create new model dropdown
available_models = get_available_model_names()
return (
formatted_items, # model_dropdown choices
formatted_items[0] if formatted_items else None, # model_dropdown value
available_models, # new_model_name choices
formatted_items[0].split(" (")[0] if formatted_items else "", # selected_model_display
formatted_items[0].split(" (")[0] if formatted_items else "" # drift_model_display
)
# Create Gradio interface
with gr.Blocks(title="AI Model Management & Interaction Platform") as demo:
gr.Markdown("# AI Model Management & Interaction Platform")
with gr.Row():
# Left Column - Model Selection
with gr.Column(scale=1):
gr.Markdown("### Model Selection")
model_dropdown = gr.Dropdown(
choices=[],
label="Select Model",
interactive=True
)
search_box = gr.Textbox(
placeholder="Search by model name or description...",
label="Search Models"
)
create_new_button = gr.Button("Create New Model", variant="secondary")
# Create New Model Section (Initially Hidden)
with gr.Group(visible=False) as create_new_section:
gr.Markdown("#### Create New Model")
new_model_name = gr.Dropdown(
choices=[],
label="Select Model Name",
interactive=True
)
new_system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Enter system prompt",
lines=3
)
with gr.Row():
enhance_button = gr.Button("Enhance Prompt", variant="primary")
cancel_button = gr.Button("Cancel", variant="secondary")
enhanced_prompt_display = gr.Textbox(
label="Enhanced Prompt",
interactive=False,
lines=4,
visible=False
)
prompt_choice = gr.Radio(
choices=["Keep Enhanced", "Keep Original"],
label="Choose Prompt to Use",
visible=False
)
save_model_button = gr.Button("Save Model", variant="primary", visible=False)
save_status = gr.Textbox(label="Status", interactive=False, visible=False)
# Right Column - Model Operations
with gr.Column(scale=2):
gr.Markdown("### Model Operations")
with gr.Tabs():
# Chatbot Tab
with gr.TabItem("Chatbot"):
selected_model_display = gr.Textbox(
label="Currently Selected Model",
interactive=False
)
chatbot_interface = gr.Chatbot(height=400)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Enter your message...",
label="Message",
scale=4
)
send_button = gr.Button("Send", variant="primary", scale=1)
clear_chat = gr.Button("Clear Chat", variant="secondary")
# Drift Analysis Tab
with gr.TabItem("Drift Analysis"):
drift_model_display = gr.Textbox(
label="Model for Drift Analysis",
interactive=False
)
with gr.Row():
calculate_drift_button = gr.Button("Calculate New Drift", variant="primary")
refresh_history_button = gr.Button("Refresh History", variant="secondary")
drift_result = gr.Textbox(label="Latest Drift Calculation", interactive=False)
gr.Markdown("#### Drift History")
drift_history_display = gr.JSON(label="Drift History Data")
gr.Markdown("#### Drift Chart")
drift_chart = gr.Plot(label="Drift Over Time")
# Event Handlers
# Search functionality - Dynamic update
search_box.change(
update_model_dropdown,
inputs=[search_box],
outputs=[model_dropdown]
)
# Model selection updates
model_dropdown.change(
on_model_select,
inputs=[model_dropdown],
outputs=[selected_model_display, drift_model_display]
)
# Create new model functionality
def show_create_new():
available_models = get_available_model_names()
return gr.update(visible=True), gr.update(choices=available_models)
create_new_button.click(
show_create_new,
outputs=[create_new_section, new_model_name]
)
cancel_button.click(cancel_create_new, outputs=[
create_new_section, new_model_name, new_system_prompt,
enhanced_prompt_display, prompt_choice, save_model_button, save_status
])
# Enhance prompt
enhance_button.click(
enhance_prompt,
inputs=[new_system_prompt],
outputs=[enhanced_prompt_display, prompt_choice, save_model_button]
)
# Save model
save_model_button.click(
save_new_model,
inputs=[new_model_name, new_system_prompt, enhanced_prompt_display, prompt_choice],
outputs=[save_status, save_status, model_dropdown]
)
# Chatbot functionality
send_button.click(
chatbot_response,
inputs=[msg_input, chatbot_interface, model_dropdown],
outputs=[chatbot_interface, msg_input]
)
msg_input.submit(
chatbot_response,
inputs=[msg_input, chatbot_interface, model_dropdown],
outputs=[chatbot_interface, msg_input]
)
clear_chat.click(lambda: [], outputs=[chatbot_interface])
# Drift analysis functionality
calculate_drift_button.click(
calculate_drift,
inputs=[model_dropdown],
outputs=[drift_result]
)
refresh_history_button.click(
refresh_drift_history,
inputs=[model_dropdown],
outputs=[drift_history_display, drift_chart]
)
# Initialize interface on load
demo.load(
initialize_interface,
outputs=[model_dropdown, model_dropdown, new_model_name, selected_model_display, drift_model_display]
)
if __name__ == "__main__":
demo.launch(share=True)
|