drift-detector / app.py
Anurag Prasad
made changes in chatbot response
5c9e521
raw
history blame
22.7 kB
import os
import gradio as gr
import asyncio
from typing import Optional, List, Dict
from contextlib import AsyncExitStack
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from database_module.db import SessionLocal
from database_module.models import ModelEntry
from langchain.chat_models import init_chat_model
# Modify imports section to include all required tools
from database_module import (
init_db,
# get_all_models_handler,
# search_models_handler,
# save_model_handler,
# get_model_details_handler,
# calculate_drift_handler,
# get_drift_history_handler
)
import json
from datetime import datetime
import plotly.graph_objects as go
# --- Initialize database and MCP tool registration ---
# Create tables and register MCP handlers
init_db()
# Ensure server.py imports and registers these tools:
# app.register_tool("get_all_models", get_all_models_handler)
# app.register_tool("search_models", search_models_handler)
# Replace the existing MCP client class with this updated version
class MCPClient:
def __init__(self):
self.session: Optional[ClientSession] = None
self.exit_stack = AsyncExitStack()
async def connect_to_server(self, server_script_path: str = "server.py"):
"""Connect to MCP server"""
try:
server_params = StdioServerParameters(
command="python",
args=[server_script_path],
env=None
)
stdio_transport = await self.exit_stack.enter_async_context(
stdio_client(server_params)
)
self.stdio, self.write = stdio_transport
self.session = await self.exit_stack.enter_async_context(
ClientSession(self.stdio, self.write)
)
await self.session.initialize()
# Get available tools from server
tools_response = await self.session.list_tools()
available_tools = [t.name for t in tools_response.tools]
print("Connected to server with tools:", available_tools)
return True
except Exception as e:
print(f"Failed to connect to MCP server: {e}")
return False
async def call_tool(self, tool_name: str, arguments: dict):
"""Call a tool on the MCP server"""
if not self.session:
raise RuntimeError("Not connected to MCP server")
try:
response = await self.session.call_tool(tool_name, arguments)
return response.content
except Exception as e:
print(f"Error calling tool {tool_name}: {e}")
raise
async def close(self):
"""Close the MCP client connection"""
if self.session:
await self.exit_stack.aclose()
# Global MCP client instance
mcp_client = MCPClient()
# Helper to run async functions
def run_async(coro):
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return loop.run_until_complete(coro)
else:
# return result if coroutine returns value, else schedule
task = loop.create_task(coro)
return loop.run_until_complete(task) if not task.done() else task
def run_initial_diagnostics(model_name: str, capabilities: str):
"""Run initial diagnostics for a new model"""
try:
result = run_async(mcp_client.call_tool("run_initial_diagnostics", {
"model": model_name,
"model_capabilities": capabilities
}))
return result
except Exception as e:
print(f"Error running diagnostics: {e}")
return None
def check_model_drift(model_name: str):
"""Check drift for existing model"""
try:
result = run_async(mcp_client.call_tool("check_drift", {
"model": model_name
}))
return result
except Exception as e:
print(f"Error checking drift: {e}")
return None
# Initialize MCP connection on startup
def initialize_mcp_connection():
try:
run_async(mcp_client.connect_to_server())
print("Successfully connected to MCP server")
return True
except Exception as e:
print(f"Failed to connect to MCP server: {e}")
return False
# Wrapper functions remain unchanged but now call real DB-backed MCP tools
def get_models_from_db():
try:
result = run_async(mcp_client.call_tool("get_all_models", {}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error getting models: {e}")
return []
def get_available_model_names():
return [m["name"] for m in get_models_from_db()]
def search_models_in_db(search_term: str):
try:
result = run_async(mcp_client.call_tool("search_models", {"search_term": search_term}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error searching models: {e}")
return [m for m in get_models_from_db() if search_term.lower() in m["name"].lower()]
def format_dropdown_items(models):
"""Format dropdown items to show model name, creation date, and description preview"""
formatted_items = []
model_mapping = {}
for model in models:
desc_preview = model["description"][:40] + ("..." if len(model["description"]) > 40 else "")
item_label = f"{model['name']} (Created: {model['created']}) - {desc_preview}"
formatted_items.append(item_label)
model_mapping[item_label] = model["name"]
return formatted_items, model_mapping
def extract_model_name_from_dropdown(dropdown_value, model_mapping):
"""Extract actual model name from formatted dropdown value"""
return model_mapping.get(dropdown_value, dropdown_value.split(" (")[0] if dropdown_value else "")
def get_model_details(model_name: str):
"""Get model details from database via MCP"""
try:
result = run_async(mcp_client.call_tool("get_model_details", {"model_name": model_name}))
return result
except Exception as e:
print(f"Error getting model details: {e}")
return {"name": model_name, "system_prompt": "You are a helpful AI assistant.", "description": ""}
def enhance_prompt_via_mcp(prompt: str):
"""Enhance prompt using MCP server"""
try:
result = run_async(mcp_client.call_tool("enhance_prompt", {"prompt": prompt}))
return result.get("enhanced_prompt", prompt)
except Exception as e:
print(f"Error enhancing prompt: {e}")
return f"Enhanced: {prompt}\n\nAdditional context: Be more specific, helpful, and provide detailed responses while maintaining a professional tone."
def save_model_to_db(model_name: str, system_prompt: str):
"""Save model to database via MCP"""
try:
result = run_async(mcp_client.call_tool("save_model", {
"model_name": model_name,
"system_prompt": system_prompt
}))
return result.get("message", "Model saved successfully!")
except Exception as e:
print(f"Error saving model: {e}")
return f"Error saving model: {e}"
def get_drift_history_from_db(model_name: str):
"""Get drift history from database via MCP"""
try:
result = run_async(mcp_client.call_tool("get_drift_history", {"model_name": model_name}))
return result if isinstance(result, list) else []
except Exception as e:
print(f"Error getting drift history: {e}")
# Fallback data for demonstration
return [
{"date": "2025-06-01", "drift_score": 0.12},
{"date": "2025-06-05", "drift_score": 0.18},
{"date": "2025-06-09", "drift_score": 0.15}
]
def create_drift_chart(drift_history):
"""Create drift chart using plotly"""
if not drift_history:
return gr.update(value=None)
dates = [entry["date"] for entry in drift_history]
scores = [entry["drift_score"] for entry in drift_history]
fig = go.Figure()
fig.add_trace(go.Scatter(
x=dates,
y=scores,
mode='lines+markers',
name='Drift Score',
line=dict(color='#ff6b6b', width=3),
marker=dict(size=8, color='#ff6b6b')
))
fig.update_layout(
title='Model Drift Over Time',
xaxis_title='Date',
yaxis_title='Drift Score',
template='plotly_white',
height=400,
showlegend=True
)
return fig
# Global variable to store model mapping
current_model_mapping = {}
# Gradio interface functions
def update_model_dropdown(search_term):
"""Update dropdown choices based on search term"""
global current_model_mapping
if search_term.strip():
models = search_models_in_db(search_term.strip())
else:
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
current_model_mapping = model_mapping
return gr.update(choices=formatted_items, value=formatted_items[0] if formatted_items else None)
def on_model_select(dropdown_value):
"""Handle model selection"""
if not dropdown_value:
return "", ""
actual_model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
return actual_model_name, actual_model_name
def cancel_create_new():
"""Cancel create new model"""
return [
gr.update(visible=False), # create_new_section
None, # new_model_name (dropdown)
"", # new_system_prompt
gr.update(visible=False), # enhanced_prompt_display
gr.update(visible=False), # prompt_choice
gr.update(visible=False), # save_model_button
gr.update(visible=False) # save_status
]
def enhance_prompt(original_prompt):
"""Enhance prompt and show options"""
if not original_prompt.strip():
return [
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
]
enhanced = enhance_prompt_via_mcp(original_prompt.strip())
return [
gr.update(value=enhanced, visible=True),
gr.update(visible=True),
gr.update(visible=True)
]
def save_new_model(selected_model_name, selected_llm, original_prompt, enhanced_prompt, choice):
"""Save new model to database"""
if not selected_model_name or not original_prompt.strip() or not selected_llm:
return [
"Please provide model name, LLM selection, and system prompt",
gr.update(visible=True),
gr.update()
]
final_prompt = enhanced_prompt if choice == "Keep Enhanced" else original_prompt
try:
# Save the model with LLM capabilities
capabilities = f"{selected_llm}\nSystem Prompt: {final_prompt}"
register_model_with_capabilities(selected_model_name, capabilities)
status = save_model_to_db(selected_model_name, final_prompt)
# Run initial diagnostics
diagnostic_result = run_initial_diagnostics(
selected_model_name,
capabilities
)
if diagnostic_result:
status = f"{status}\n{diagnostic_result[0].text if isinstance(diagnostic_result, list) else diagnostic_result}"
except Exception as e:
status = f"Error saving model: {e}"
# Update dropdown choices
updated_models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(updated_models)
global current_model_mapping
current_model_mapping = model_mapping
return [
status,
gr.update(visible=True),
gr.update(choices=formatted_items)
]
def chatbot_response(message, history, dropdown_value):
"""Generate chatbot response using selected model"""
if not message.strip() or not dropdown_value:
return history, ""
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
model_details = get_model_details(model_name)
system_prompt = model_details.get("system_prompt", "")
try:
# Initialize LLM based on model details
# Get model configuration from database
with SessionLocal() as session:
model_entry = session.query(ModelEntry).filter_by(name=model_name).first()
if not model_entry:
return history + [[message, "Error: Model not found"]], ""
llm_name = model_entry.capabilities.split("\n")[0] if model_entry.capabilities else "groq-llama-3.1-8b-instant"
# Initialize the LLM using langchain
llm = init_chat_model(
llm_name,
model_provider='groq' if llm_name.startswith('groq') else 'google'
)
# Format the conversation with system prompt
formatted_prompt = f"System: {system_prompt}\nUser: {message}"
# Get response from LLM
response = llm.invoke(formatted_prompt)
response_text = response.content
history.append([message, response_text])
return history, ""
except Exception as e:
error_message = f"Error generating response: {str(e)}"
history.append([message, error_message])
return history, ""
def calculate_drift(dropdown_value):
"""Calculate drift for selected model"""
if not dropdown_value:
return "Please select a model first"
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
# First try the drift calculation tool
try:
result = check_model_drift(model_name)
if result and isinstance(result, list):
return "\n".join(msg.text for msg in result)
except Exception as e:
print(f"Error calculating drift: {e}")
return f"Error calculating drift from server side: {e}"
# Fallback to the simpler drift calculation if needed
# result = calculate_drift_handler({"model_name": model_name})
return f"Drift Score: {result.get('drift_score', 0.0):.3f}\n{result.get('message', '')}"
def refresh_drift_history(dropdown_value):
"""Refresh drift history for selected model"""
if not dropdown_value:
return [], gr.update(value=None)
model_name = extract_model_name_from_dropdown(dropdown_value, current_model_mapping)
history = get_drift_history_from_db(model_name)
chart = create_drift_chart(history)
return history, chart
def initialize_interface():
"""Initialize interface with MCP connection and default data"""
# Connect to MCP server
mcp_connected = initialize_mcp_connection()
# Get initial model data
models = get_models_from_db()
formatted_items, model_mapping = format_dropdown_items(models)
global current_model_mapping
current_model_mapping = model_mapping
# Available LLM choices for new model creation
llm_choices = [
"gemini-1.0-pro",
"gemini-1.5-pro",
"groq-llama-3.1-8b-instant",
"groq-mixtral-8x7b",
"groq-gpt4"
]
return (
formatted_items, # model_dropdown choices
formatted_items[0] if formatted_items else None, # model_dropdown value
llm_choices, # new_llm choices
formatted_items[0].split(" (")[0] if formatted_items else "", # selected_model_display
formatted_items[0].split(" (")[0] if formatted_items else "" # drift_model_display
)
# Create Gradio interface
with gr.Blocks(title="AI Model Management & Interaction Platform") as demo:
gr.Markdown("# AI Model Management & Interaction Platform")
with gr.Row():
# Left Column - Model Selection
with gr.Column(scale=1):
gr.Markdown("### Model Selection")
model_dropdown = gr.Dropdown(
choices=[], #work here Here show the already created models (fetched from database using mcp functions defined above)
label="Select Model",
interactive=True
)
search_box = gr.Textbox(
placeholder="Search by model name or description...",
label="Search Models"
)
create_new_button = gr.Button("Create New Model", variant="secondary")
# Create New Model Section (Initially Hidden)
with gr.Group(visible=False) as create_new_section:
gr.Markdown("#### Create New Model")
new_model_name = gr.Textbox(
label="Model name",
placeholder="Model name"
)
new_llm = gr.Dropdown(
choices=[
"gemini-1.0-pro",
"gemini-1.5-pro",
"groq-llama-3.1-8b-instant",
"groq-mixtral-8x7b",
"groq-gpt4"
], #work here to show options to select llms(available to use) like gemini-1.5-pro, etc google models, groq models (atleast 5 in total)
label="Select LLM Name",
interactive=True
)
new_system_prompt = gr.Textbox(
label="System Prompt",
placeholder="Enter system prompt",
lines=3
)
with gr.Row():
enhance_button = gr.Button("Enhance Prompt", variant="primary")
cancel_button = gr.Button("Cancel", variant="secondary")
enhanced_prompt_display = gr.Textbox(
label="Enhanced Prompt",
interactive=False,
lines=4,
visible=False
)
prompt_choice = gr.Radio(
choices=["Keep Enhanced", "Keep Original"],
label="Choose Prompt to Use",
visible=False
)
save_model_button = gr.Button("Save Model", variant="primary", visible=False)
save_status = gr.Textbox(label="Status", interactive=False, visible=False)
# Right Column - Model Operations
with gr.Column(scale=2):
gr.Markdown("### Model Operations")
with gr.Tabs():
# Chatbot Tab
with gr.TabItem("Chatbot"):
selected_model_display = gr.Textbox(
label="Currently Selected Model",
interactive=False
)
chatbot_interface = gr.Chatbot(height=400)
with gr.Row():
msg_input = gr.Textbox(
placeholder="Enter your message...",
label="Message",
scale=4
)
send_button = gr.Button("Send", variant="primary", scale=1)
clear_chat = gr.Button("Clear Chat", variant="secondary")
# Drift Analysis Tab
with gr.TabItem("Drift Analysis"):
drift_model_display = gr.Textbox(
label="Model for Drift Analysis",
interactive=False
)
with gr.Row():
calculate_drift_button = gr.Button("Calculate New Drift", variant="primary")
refresh_history_button = gr.Button("Refresh History", variant="secondary")
drift_result = gr.Textbox(label="Latest Drift Calculation", interactive=False)
gr.Markdown("#### Drift History")
drift_history_display = gr.JSON(label="Drift History Data")
gr.Markdown("#### Drift Chart")
drift_chart = gr.Plot(label="Drift Over Time")
# Event Handlers
# Search functionality - Dynamic update
search_box.change(
update_model_dropdown,
inputs=[search_box],
outputs=[model_dropdown]
)
# Model selection updates
model_dropdown.change(
on_model_select,
inputs=[model_dropdown],
outputs=[selected_model_display, drift_model_display]
)
# Create new model functionality
def show_create_new():
available_models = get_available_model_names()
return gr.update(visible=True), gr.update(choices=available_models)
create_new_button.click(
show_create_new,
outputs=[create_new_section, new_model_name]
)
cancel_button.click(cancel_create_new, outputs=[
create_new_section, new_model_name, new_system_prompt,
enhanced_prompt_display, prompt_choice, save_model_button, save_status
])
# Enhance prompt
enhance_button.click(
enhance_prompt,
inputs=[new_system_prompt],
outputs=[enhanced_prompt_display, prompt_choice, save_model_button]
)
# Save model
save_model_button.click(
save_new_model,
inputs=[new_model_name, new_system_prompt, enhanced_prompt_display, prompt_choice],
outputs=[save_status, save_status, model_dropdown]
)
# Chatbot functionality
send_button.click(
chatbot_response,
inputs=[msg_input, chatbot_interface, model_dropdown],
outputs=[chatbot_interface, msg_input]
)
msg_input.submit(
chatbot_response,
inputs=[msg_input, chatbot_interface, model_dropdown],
outputs=[chatbot_interface, msg_input]
)
clear_chat.click(lambda: [], outputs=[chatbot_interface])
# Drift analysis functionality
calculate_drift_button.click(
calculate_drift,
inputs=[model_dropdown],
outputs=[drift_result]
)
refresh_history_button.click(
refresh_drift_history,
inputs=[model_dropdown],
outputs=[drift_history_display, drift_chart]
)
# Initialize interface on load
demo.load(
initialize_interface,
outputs=[model_dropdown, model_dropdown, new_model_name, selected_model_display, drift_model_display]
)
if __name__ == "__main__":
demo.launch()