Spaces:
Sleeping
Sleeping
Idk this works. The llm added it's own stuff.
Browse files
ourllm.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
def genratequestionnaire(model, capabilities):
|
| 3 |
+
return None
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def gradeanswers(old_answers, new_answers):
|
| 7 |
+
return None
|
server.py
CHANGED
|
@@ -1,92 +1,172 @@
|
|
| 1 |
-
# server.py
|
| 2 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from mcp.server import Server
|
| 4 |
from mcp.server.stdio import stdio_server
|
| 5 |
-
import mcp.types as types
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
}
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
return
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
types.PromptMessage(
|
| 34 |
-
role="user",
|
| 35 |
-
content=types.TextContent(
|
| 36 |
-
type="text",
|
| 37 |
-
text="Answer the following: What's the capital of France?"
|
| 38 |
-
)
|
| 39 |
-
),
|
| 40 |
-
types.PromptMessage(
|
| 41 |
-
role="user",
|
| 42 |
-
content=types.TextContent(
|
| 43 |
-
type="text",
|
| 44 |
-
text="Explain why the sky is blue."
|
| 45 |
-
)
|
| 46 |
-
),
|
| 47 |
-
]
|
| 48 |
-
)
|
| 49 |
|
| 50 |
-
from mcp.server import Server
|
| 51 |
-
import mcp.types as types
|
| 52 |
|
| 53 |
-
# Assuming 'app' is your MCP Server instance
|
| 54 |
|
| 55 |
-
async def sample(app: Server, messages: list[types.SamplingMessage]):
|
| 56 |
-
result = await app.request_context.session.create_message(
|
| 57 |
-
messages=messages,
|
| 58 |
-
max_tokens=300,
|
| 59 |
-
temperature=0.7
|
| 60 |
-
)
|
| 61 |
-
return result
|
| 62 |
|
| 63 |
@app.list_tools()
|
| 64 |
async def list_tools() -> list[types.Tool]:
|
| 65 |
return [
|
| 66 |
types.Tool(
|
| 67 |
-
name="
|
| 68 |
-
description="
|
| 69 |
-
inputSchema={"
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
]
|
| 72 |
|
| 73 |
-
@app.call_tool()
|
| 74 |
-
async def call_tool(name: str, arguments: dict[str, str] | None = None) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
|
| 75 |
-
"""
|
| 76 |
-
Initializes diagnostics by running the questionnaire on the connected LLM.
|
| 77 |
-
"""
|
| 78 |
-
# You could fetch dynamic questions here if needed
|
| 79 |
-
questions = [
|
| 80 |
-
types.SamplingMessage(role="user", content=types.TextContent(type="text", text="What is the capital of France?")),
|
| 81 |
-
types.SamplingMessage(role="user", content=types.TextContent(type="text", text="Why is the sky blue?")),
|
| 82 |
-
]
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
|
|
|
| 88 |
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
async def main():
|
| 91 |
async with stdio_server() as streams:
|
| 92 |
await app.run(streams[0], streams[1], app.create_initialization_options())
|
|
|
|
|
|
|
| 1 |
import asyncio
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
from typing import Any
|
| 5 |
+
|
| 6 |
+
import mcp.types as types
|
| 7 |
+
from mcp import CreateMessageResult
|
| 8 |
from mcp.server import Server
|
| 9 |
from mcp.server.stdio import stdio_server
|
|
|
|
| 10 |
|
| 11 |
+
from ourllm import genratequestionnaire, gradeanswers
|
| 12 |
+
|
| 13 |
+
DATA_DIR = "data"
|
| 14 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
| 15 |
+
|
| 16 |
+
app = Server("mcp-drift-server")
|
| 17 |
+
|
| 18 |
+
registered_models = {}
|
| 19 |
+
|
| 20 |
+
def get_all_models():
|
| 21 |
+
"""Retrieve all registered models."""
|
| 22 |
+
return list(registered_models.keys())
|
| 23 |
+
|
| 24 |
+
def search_models(query: str):
|
| 25 |
+
"""Search registered models by name."""
|
| 26 |
+
return [model for model in registered_models if query.lower() in model.lower()]
|
| 27 |
+
|
| 28 |
+
def get_model_details(model_name: str):
|
| 29 |
+
"""Get details of a specific model."""
|
| 30 |
+
return registered_models.get(model_name, None)
|
| 31 |
+
|
| 32 |
+
def save_model(model_name: str, model_details: dict):
|
| 33 |
+
"""Save a new model or update an existing one."""
|
| 34 |
+
registered_models[model_name] = model_details
|
| 35 |
+
with open(os.path.join(DATA_DIR, "models.json"), "w") as f:
|
| 36 |
+
json.dump(registered_models, f, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
|
|
|
| 38 |
|
|
|
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
@app.list_tools()
|
| 42 |
async def list_tools() -> list[types.Tool]:
|
| 43 |
return [
|
| 44 |
types.Tool(
|
| 45 |
+
name="run_initial_diagnostics",
|
| 46 |
+
description="Generate and store baseline diagnostics for a connected LLM.",
|
| 47 |
+
inputSchema={"type":"object",
|
| 48 |
+
"properties": {
|
| 49 |
+
"model": {
|
| 50 |
+
"type": "string",
|
| 51 |
+
"description": "The name of the model to run diagnostics on"
|
| 52 |
+
},
|
| 53 |
+
"model_capabilities": {
|
| 54 |
+
"type": "string",
|
| 55 |
+
"description": "Full description of the model's capabilities, including any special features"
|
| 56 |
+
}
|
| 57 |
+
},
|
| 58 |
+
|
| 59 |
+
"required": ["model", "model_capabilities"]},
|
| 60 |
+
),
|
| 61 |
+
types.Tool(
|
| 62 |
+
name="check_drift",
|
| 63 |
+
description="Re-run diagnostics and compare to baseline for drift scoring.",
|
| 64 |
+
inputSchema={"type":"object",
|
| 65 |
+
"properties": {
|
| 66 |
+
"model": {
|
| 67 |
+
"type": "string",
|
| 68 |
+
"description": "The name of the model to run diagnostics on"
|
| 69 |
+
},
|
| 70 |
+
},
|
| 71 |
+
|
| 72 |
+
"required": ["model"]},
|
| 73 |
+
),
|
| 74 |
]
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# === Sampling Wrapper ===
|
| 78 |
+
async def sample(messages: list[types.SamplingMessage], max_tokens=300) -> CreateMessageResult:
|
| 79 |
+
return await app.request_context.session.create_message(
|
| 80 |
+
messages=messages,
|
| 81 |
+
max_tokens=max_tokens,
|
| 82 |
+
temperature=0.7
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
|
| 86 |
+
# === Baseline File Paths ===
|
| 87 |
+
def get_baseline_path(model_name):
|
| 88 |
+
return os.path.join(DATA_DIR, f"{model_name}_baseline.json")
|
| 89 |
|
| 90 |
+
|
| 91 |
+
def get_response_path(model_name):
|
| 92 |
+
return os.path.join(DATA_DIR, f"{model_name}_latest.json")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# === Core Logic ===
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
async def run_initial_diagnostics(arguments: dict[str, Any]) -> list[types.TextContent]:
|
| 99 |
+
if arguments and "model" in arguments:
|
| 100 |
+
model = arguments["model"]
|
| 101 |
+
else:
|
| 102 |
+
raise(ValueError("Model details is required"))
|
| 103 |
+
|
| 104 |
+
# 1. Ask the server's internal LLM to generate a questionnaire
|
| 105 |
+
|
| 106 |
+
questions = await genratequestionnaire(model, arguments["model_capabilities"]) # Server-side trusted LLM
|
| 107 |
+
|
| 108 |
+
# 2. Send questionnaire to target LLM (i.e., the client)
|
| 109 |
+
answers = await sample(questions) # Client model's answers
|
| 110 |
+
|
| 111 |
+
# 3. Save Q/A pair
|
| 112 |
+
with open(get_baseline_path(model), "w") as f:
|
| 113 |
+
json.dump({
|
| 114 |
+
"questions": [m.content.text for m in questions],
|
| 115 |
+
"answers": [m.content.text for m in answers]
|
| 116 |
+
}, f, indent=2)
|
| 117 |
+
|
| 118 |
+
return [types.TextContent(type="text", text="Baseline stored for model: " + model)]
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
async def check_drift(arguments: dict[str, str]) -> list[types.TextContent]:
|
| 123 |
+
if arguments and "model" in arguments:
|
| 124 |
+
model = arguments["model"]
|
| 125 |
+
else:
|
| 126 |
+
raise (ValueError("Model details is required"))
|
| 127 |
+
|
| 128 |
+
baseline_path = get_baseline_path(model)
|
| 129 |
+
if not os.path.exists(baseline_path):
|
| 130 |
+
return [types.TextContent(type="text", text="No baseline exists for model: " + model)]
|
| 131 |
+
|
| 132 |
+
with open(baseline_path) as f:
|
| 133 |
+
data = json.load(f)
|
| 134 |
+
questions = [types.SamplingMessage(role="user", content=types.TextContent(type="text", text=q)) for q in
|
| 135 |
+
data["questions"]]
|
| 136 |
+
old_answers = data["answers"]
|
| 137 |
+
|
| 138 |
+
# 1. Ask the model again
|
| 139 |
+
new_answers_msgs = await sample(questions)
|
| 140 |
+
new_answers = [m.content.text for m in new_answers_msgs]
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
grading_response = await gradeanswers(old_answers, new_answers)
|
| 144 |
+
drift_score = grading_response[0].content.text.strip()
|
| 145 |
+
|
| 146 |
+
# 3. Save the response
|
| 147 |
+
with open(get_response_path(model), "w") as f:
|
| 148 |
+
json.dump({
|
| 149 |
+
"new_answers": new_answers,
|
| 150 |
+
"drift_score": drift_score
|
| 151 |
+
}, f, indent=2)
|
| 152 |
+
|
| 153 |
+
# 4. Optionally alert if high drift
|
| 154 |
+
alert = "π¨ Significant drift detected!" if float(drift_score) > 50 else "β
Drift within acceptable limits."
|
| 155 |
+
|
| 156 |
+
return [
|
| 157 |
+
types.TextContent(type="text", text=f"Drift score for {model}: {drift_score}"),
|
| 158 |
+
types.TextContent(type="text", text=alert)
|
| 159 |
+
]
|
| 160 |
+
@app.call_tool()
|
| 161 |
+
async def call_tool(name: str, arguments: dict[str, Any] | None = None):
|
| 162 |
+
if name == "run_initial_diagnostics":
|
| 163 |
+
return await run_initial_diagnostics(arguments)
|
| 164 |
+
elif name == "check_drift":
|
| 165 |
+
return await check_drift(arguments)
|
| 166 |
+
else:
|
| 167 |
+
raise ValueError(f"Unknown tool: {name}")
|
| 168 |
+
|
| 169 |
+
# === Entrypoint ===
|
| 170 |
async def main():
|
| 171 |
async with stdio_server() as streams:
|
| 172 |
await app.run(streams[0], streams[1], app.create_initialization_options())
|