Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional, Tuple | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from diffusers.utils import is_torch_version, logging | |
| try: | |
| from transformer_3d import Transformer3DModel | |
| from resnet import Downsample3D, ResnetBlock3D, Upsample3D | |
| except: | |
| from .transformer_3d import Transformer3DModel | |
| from .resnet import Downsample3D, ResnetBlock3D, Upsample3D | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def get_down_block( | |
| down_block_type, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| temb_channels, | |
| add_downsample, | |
| resnet_eps, | |
| resnet_act_fn, | |
| transformer_layers_per_block=1, | |
| num_attention_heads=None, | |
| resnet_groups=None, | |
| cross_attention_dim=None, | |
| downsample_padding=None, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| resnet_time_scale_shift="default", | |
| resnet_skip_time_act=False, | |
| resnet_out_scale_factor=1.0, | |
| cross_attention_norm=None, | |
| attention_head_dim=None, | |
| downsample_type=None, | |
| rotary_emb=None, | |
| ): | |
| # If attn head dim is not defined, we default it to the number of heads | |
| if attention_head_dim is None: | |
| logger.warn( | |
| f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
| ) | |
| attention_head_dim = num_attention_heads | |
| down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type | |
| if down_block_type == "DownBlock3D": | |
| return DownBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| elif down_block_type == "CrossAttnDownBlock3D": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") | |
| return CrossAttnDownBlock3D( | |
| num_layers=num_layers, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| rotary_emb=rotary_emb, | |
| ) | |
| raise ValueError(f"{down_block_type} does not exist.") | |
| def get_up_block( | |
| up_block_type, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| prev_output_channel, | |
| temb_channels, | |
| add_upsample, | |
| resnet_eps, | |
| resnet_act_fn, | |
| transformer_layers_per_block=1, | |
| num_attention_heads=None, | |
| resnet_groups=None, | |
| cross_attention_dim=None, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| resnet_time_scale_shift="default", | |
| resnet_skip_time_act=False, | |
| resnet_out_scale_factor=1.0, | |
| cross_attention_norm=None, | |
| attention_head_dim=None, | |
| upsample_type=None, | |
| rotary_emb=None, | |
| ): | |
| # If attn head dim is not defined, we default it to the number of heads | |
| if attention_head_dim is None: | |
| logger.warn( | |
| f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." | |
| ) | |
| attention_head_dim = num_attention_heads | |
| up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type | |
| if up_block_type == "UpBlock3D": | |
| return UpBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| elif up_block_type == "CrossAttnUpBlock3D": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") | |
| return CrossAttnUpBlock3D( | |
| num_layers=num_layers, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| rotary_emb=rotary_emb, | |
| ) | |
| raise ValueError(f"{up_block_type} does not exist.") | |
| class UNetMidBlock3DCrossAttn(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| num_attention_heads=1, | |
| output_scale_factor=1.0, | |
| cross_attention_dim=1280, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| upcast_attention=False, | |
| rotary_emb=None, | |
| ): | |
| super().__init__() | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| # there is always at least one resnet | |
| resnets = [ | |
| ResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ] | |
| attentions = [] | |
| for _ in range(num_layers): | |
| attentions.append( | |
| Transformer3DModel( | |
| num_attention_heads, | |
| in_channels // num_attention_heads, | |
| in_channels=in_channels, | |
| num_layers=transformer_layers_per_block, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| rotary_emb=rotary_emb, | |
| ) | |
| ) | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_image_num=None, | |
| ) -> torch.FloatTensor: | |
| hidden_states = self.resnets[0](hidden_states, temb) | |
| for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| use_image_num=use_image_num, | |
| )[0] | |
| hidden_states = resnet(hidden_states, temb) | |
| return hidden_states | |
| class CrossAttnDownBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| num_attention_heads=1, | |
| cross_attention_dim=1280, | |
| output_scale_factor=1.0, | |
| downsample_padding=1, | |
| add_downsample=True, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| rotary_emb=None, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| attentions.append( | |
| Transformer3DModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| rotary_emb=rotary_emb, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample3D( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| additional_residuals=None, | |
| use_image_num=None, | |
| ): | |
| output_states = () | |
| blocks = list(zip(self.resnets, self.attentions)) | |
| for i, (resnet, attn) in enumerate(blocks): | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| def create_custom_forward_attn(module, return_dict=None, use_image_num=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict, use_image_num=use_image_num) | |
| else: | |
| return module(*inputs, use_image_num=use_image_num) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward_attn(attn, return_dict=False, use_image_num=use_image_num), | |
| hidden_states, | |
| encoder_hidden_states, | |
| None, # timestep | |
| None, # class_labels | |
| cross_attention_kwargs, | |
| attention_mask, | |
| encoder_attention_mask, | |
| **ckpt_kwargs, | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| use_image_num=use_image_num, | |
| )[0] | |
| # apply additional residuals to the output of the last pair of resnet and attention blocks | |
| if i == len(blocks) - 1 and additional_residuals is not None: | |
| hidden_states = hidden_states + additional_residuals | |
| output_states = output_states + (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states = output_states + (hidden_states,) | |
| return hidden_states, output_states | |
| class DownBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor=1.0, | |
| add_downsample=True, | |
| downsample_padding=1, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample3D( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states, temb=None): | |
| output_states = () | |
| for resnet in self.resnets: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
| ) | |
| else: | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), hidden_states, temb | |
| ) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| output_states = output_states + (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states = output_states + (hidden_states,) | |
| return hidden_states, output_states | |
| class CrossAttnUpBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| transformer_layers_per_block: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| num_attention_heads=1, | |
| cross_attention_dim=1280, | |
| output_scale_factor=1.0, | |
| add_upsample=True, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| rotary_emb=None, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| self.has_cross_attention = True | |
| self.num_attention_heads = num_attention_heads | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| attentions.append( | |
| Transformer3DModel( | |
| num_attention_heads, | |
| out_channels // num_attention_heads, | |
| in_channels=out_channels, | |
| num_layers=transformer_layers_per_block, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| rotary_emb=rotary_emb, | |
| ) | |
| ) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: # True | |
| self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward( | |
| self, | |
| hidden_states: torch.FloatTensor, | |
| res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], | |
| temb: Optional[torch.FloatTensor] = None, | |
| encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| upsample_size: Optional[int] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
| use_image_num=None, | |
| ): | |
| for resnet, attn in zip(self.resnets, self.attentions): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| # print('hidden_states', hidden_states.shape) | |
| # print('res_hidden_states', res_hidden_states.shape) | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| def create_custom_forward_attn(module, return_dict=None, use_image_num=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict, use_image_num=use_image_num) | |
| else: | |
| return module(*inputs, use_image_num=use_image_num) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), | |
| hidden_states, | |
| temb, | |
| **ckpt_kwargs, | |
| ) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward_attn(attn, return_dict=False, use_image_num=use_image_num), | |
| hidden_states, | |
| encoder_hidden_states, | |
| None, # timestep | |
| None, # class_labels | |
| cross_attention_kwargs, | |
| attention_mask, | |
| encoder_attention_mask, | |
| **ckpt_kwargs, | |
| )[0] | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| attention_mask=attention_mask, | |
| encoder_attention_mask=encoder_attention_mask, | |
| return_dict=False, | |
| use_image_num=use_image_num, | |
| )[0] | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| class UpBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| prev_output_channel: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor=1.0, | |
| add_upsample=True, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock3D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| self.gradient_checkpointing = False | |
| def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): | |
| for resnet in self.resnets: | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| if is_torch_version(">=", "1.11.0"): | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), hidden_states, temb, use_reentrant=False | |
| ) | |
| else: | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(resnet), hidden_states, temb | |
| ) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states |