Spaces:
Sleeping
Sleeping
| from PIL import Image | |
| import pytesseract | |
| import spaces | |
| import gradio as gr | |
| import fitz # PyMuPDF | |
| import ocrmypdf | |
| import tempfile | |
| import os | |
| def extract_text_markdown(doc): | |
| markdown_output = "" | |
| image_counter = 1 | |
| for page in doc: | |
| blocks = page.get_text("dict")["blocks"] | |
| elements = [] | |
| for b in blocks: | |
| y = b["bbox"][1] | |
| if b["type"] == 0: # Texto | |
| for line in b["lines"]: | |
| line_y = line["bbox"][1] | |
| line_text = " ".join([span["text"] for span in line["spans"]]).strip() | |
| if line_text: | |
| elements.append((line_y, line_text)) | |
| elif b["type"] == 1: # Imagen | |
| elements.append((y, f"[imagen_{image_counter}]()")) | |
| image_counter += 1 | |
| elements.sort(key=lambda x: x[0]) | |
| previous_y = None | |
| for y, content in elements: | |
| if previous_y is not None and abs(y - previous_y) > 10: | |
| markdown_output += "\n" | |
| markdown_output += content + "\n" | |
| previous_y = y | |
| markdown_output += "\n---\n\n" | |
| return markdown_output.strip() | |
| def needs_ocr(doc): | |
| text_length = sum(len(page.get_text().strip()) for page in doc) | |
| image_count = sum(len(page.get_images(full=True)) for page in doc) | |
| return text_length < 500 or image_count > 0 | |
| def convert(pdf_file): | |
| doc = fitz.open(pdf_file) | |
| markdown_output = "" | |
| image_counter = 1 | |
| for page_num in range(len(doc)): | |
| page = doc[page_num] | |
| text = page.get_text("text").strip() | |
| if len(text) > 30: | |
| # Página con texto normal | |
| markdown_output += extract_text_markdown([page]) + "\n" | |
| else: | |
| # Página sin texto: usar OCR por imagen | |
| pix = page.get_pixmap(dpi=300) | |
| img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
| ocr_text = pytesseract.image_to_string(img, lang="spa") | |
| markdown_output += ocr_text.strip() + "\n" | |
| markdown_output += "\n---\n\n" | |
| return markdown_output.strip(), {} | |
| gr.Interface( | |
| fn=convert, | |
| inputs=[gr.File(label="Sube tu PDF", type="filepath")], | |
| outputs=[gr.Text(label="Markdown estructurado"), gr.JSON(label="Metadata")], | |
| ).launch() | |