import spaces import gradio as gr import fitz # PyMuPDF import tempfile import os from PIL import Image import pytesseract def clean_ocr_text(text): lines = text.splitlines() cleaned_lines = [] for line in lines: line = line.strip() if line and not line.isspace(): cleaned_lines.append(line) return "\n".join(cleaned_lines) def extract_text_markdown(doc): markdown_output = "" image_counter = 1 for page in doc: blocks = page.get_text("dict")["blocks"] elements = [] for b in blocks: y = b["bbox"][1] if b["type"] == 0: # Texto for line in b["lines"]: line_y = line["bbox"][1] line_text = " ".join([span["text"] for span in line["spans"]]).strip() max_font_size = max([span.get("size", 10) for span in line["spans"]]) if line_text: elements.append((line_y, line_text, max_font_size)) elif b["type"] == 1: # Imagen elements.append((y, f"![imagen_{image_counter}](#)", 10)) image_counter += 1 elements.sort(key=lambda x: x[0]) previous_y = None previous_font = None for y, text, font_size in elements: is_header = font_size >= 14 if previous_y is not None and abs(y - previous_y) > 10: markdown_output += "\n" if is_header: markdown_output += f"\n### {text.strip()}\n" else: markdown_output += text.strip() + "\n" previous_y = y previous_font = font_size markdown_output += "\n---\n\n" return markdown_output.strip() @spaces.GPU def convert(pdf_file): doc = fitz.open(pdf_file) markdown_output = "" image_counter = 1 for page_num in range(len(doc)): page = doc[page_num] text = page.get_text("text").strip() if len(text) > 30: # Página con texto normal markdown_output += extract_text_markdown([page]) + "\n" else: # Página sin texto: usar OCR pix = page.get_pixmap(dpi=300) img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) ocr_text = pytesseract.image_to_string(img, lang="spa") markdown_output += clean_ocr_text(ocr_text) + "\n" markdown_output += "\n---\n\n" return markdown_output.strip(), {} gr.Interface( fn=convert, inputs=[gr.File(label="Sube tu PDF", type="filepath")], outputs=[gr.Text(label="Markdown estructurado"), gr.JSON(label="Metadata")], ).launch()