Spaces:
Sleeping
Sleeping
Commit
·
46db43c
1
Parent(s):
412cffc
Migration to smaller subs
Browse files- app.py +12 -1271
- copy.py +1278 -0
- helpers/__init__.py +2 -0
- helpers/models.py +54 -0
- helpers/pages.py +26 -0
- helpers/setup.py +59 -0
- routes/auth.py +53 -0
- routes/chats.py +463 -0
- routes/files.py +215 -0
- routes/health.py +71 -0
- routes/projects.py +130 -0
- routes/reports.py +139 -0
app.py
CHANGED
|
@@ -1,1278 +1,19 @@
|
|
| 1 |
# https://binkhoale1812-edsummariser.hf.space/
|
| 2 |
-
import os, io, re, uuid, json, time, logging
|
| 3 |
-
from typing import List, Dict, Any, Optional
|
| 4 |
-
from datetime import datetime, timezone
|
| 5 |
-
from pydantic import BaseModel
|
| 6 |
-
import asyncio
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
from
|
| 10 |
-
load_dotenv()
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
from utils.api.rotator import APIKeyRotator
|
| 21 |
-
from utils.ingestion.parser import parse_pdf_bytes, parse_docx_bytes
|
| 22 |
-
from utils.ingestion.caption import BlipCaptioner
|
| 23 |
-
from utils.ingestion.chunker import build_cards_from_pages
|
| 24 |
-
from utils.rag.embeddings import EmbeddingClient
|
| 25 |
-
from utils.rag.rag import RAGStore, ensure_indexes
|
| 26 |
-
from utils.api.router import select_model, generate_answer_with_model
|
| 27 |
-
from utils.service.summarizer import cheap_summarize
|
| 28 |
-
from utils.service.common import trim_text
|
| 29 |
-
from utils.logger import get_logger
|
| 30 |
-
import re
|
| 31 |
-
|
| 32 |
-
# ────────────────────────────── Response Models ──────────────────────────────
|
| 33 |
-
class ProjectResponse(BaseModel):
|
| 34 |
-
project_id: str
|
| 35 |
-
user_id: str
|
| 36 |
-
name: str
|
| 37 |
-
description: str
|
| 38 |
-
created_at: str
|
| 39 |
-
updated_at: str
|
| 40 |
-
|
| 41 |
-
class ProjectsListResponse(BaseModel):
|
| 42 |
-
projects: List[ProjectResponse]
|
| 43 |
-
|
| 44 |
-
class ChatMessageResponse(BaseModel):
|
| 45 |
-
user_id: str
|
| 46 |
-
project_id: str
|
| 47 |
-
role: str
|
| 48 |
-
content: str
|
| 49 |
-
timestamp: float
|
| 50 |
-
created_at: str
|
| 51 |
-
sources: Optional[List[Dict[str, Any]]] = None
|
| 52 |
-
|
| 53 |
-
class ChatHistoryResponse(BaseModel):
|
| 54 |
-
messages: List[ChatMessageResponse]
|
| 55 |
-
|
| 56 |
-
class MessageResponse(BaseModel):
|
| 57 |
-
message: str
|
| 58 |
-
|
| 59 |
-
class UploadResponse(BaseModel):
|
| 60 |
-
job_id: str
|
| 61 |
-
status: str
|
| 62 |
-
total_files: Optional[int] = None
|
| 63 |
-
|
| 64 |
-
class FileSummaryResponse(BaseModel):
|
| 65 |
-
filename: str
|
| 66 |
-
summary: str
|
| 67 |
-
|
| 68 |
-
class ChatAnswerResponse(BaseModel):
|
| 69 |
-
answer: str
|
| 70 |
-
sources: List[Dict[str, Any]]
|
| 71 |
-
relevant_files: Optional[List[str]] = None
|
| 72 |
-
|
| 73 |
-
class HealthResponse(BaseModel):
|
| 74 |
-
ok: bool
|
| 75 |
-
|
| 76 |
-
class ReportResponse(BaseModel):
|
| 77 |
-
filename: str
|
| 78 |
-
report_markdown: str
|
| 79 |
-
sources: List[Dict[str, Any]]
|
| 80 |
-
|
| 81 |
-
# ────────────────────────────── App Setup ──────────────────────────────
|
| 82 |
-
logger = get_logger("APP", name="studybuddy")
|
| 83 |
-
|
| 84 |
-
app = FastAPI(title="StudyBuddy RAG", version="0.1.0")
|
| 85 |
-
app.add_middleware(
|
| 86 |
-
CORSMiddleware,
|
| 87 |
-
allow_origins=["*"],
|
| 88 |
-
allow_credentials=True,
|
| 89 |
-
allow_methods=["*"],
|
| 90 |
-
allow_headers=["*"],
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
# Serve static files (index.html, scripts.js, styles.css)
|
| 94 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 95 |
-
|
| 96 |
-
# In-memory job tracker (for progress queries)
|
| 97 |
-
app.state.jobs = {}
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
# ────────────────────────────── Global Clients ──────────────────────────────
|
| 101 |
-
# API rotators (round robin + auto failover on quota errors)
|
| 102 |
-
gemini_rotator = APIKeyRotator(prefix="GEMINI_API_", max_slots=5)
|
| 103 |
-
nvidia_rotator = APIKeyRotator(prefix="NVIDIA_API_", max_slots=5)
|
| 104 |
-
|
| 105 |
-
# Captioner + Embeddings (lazy init inside classes)
|
| 106 |
-
captioner = BlipCaptioner()
|
| 107 |
-
embedder = EmbeddingClient(model_name=os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2"))
|
| 108 |
-
|
| 109 |
-
# Mongo / RAG store
|
| 110 |
-
try:
|
| 111 |
-
rag = RAGStore(mongo_uri=os.getenv("MONGO_URI"), db_name=os.getenv("MONGO_DB", "studybuddy"))
|
| 112 |
-
# Test the connection
|
| 113 |
-
rag.client.admin.command('ping')
|
| 114 |
-
logger.info("[APP] MongoDB connection successful")
|
| 115 |
-
ensure_indexes(rag)
|
| 116 |
-
logger.info("[APP] MongoDB indexes ensured")
|
| 117 |
-
except Exception as e:
|
| 118 |
-
logger.error(f"[APP] Failed to initialize MongoDB/RAG store: {str(e)}")
|
| 119 |
-
logger.error(f"[APP] MONGO_URI: {os.getenv('MONGO_URI', 'Not set')}")
|
| 120 |
-
logger.error(f"[APP] MONGO_DB: {os.getenv('MONGO_DB', 'studybuddy')}")
|
| 121 |
-
# Create a dummy RAG store for now - this will cause errors but prevents the app from crashing
|
| 122 |
-
rag = None
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
# ────────────────────────────── Auth Helpers/Routes ───────────────────────────
|
| 126 |
-
import hashlib
|
| 127 |
-
import secrets
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
def _hash_password(password: str, salt: Optional[str] = None) -> Dict[str, str]:
|
| 131 |
-
salt = salt or secrets.token_hex(16)
|
| 132 |
-
dk = hashlib.pbkdf2_hmac("sha256", password.encode("utf-8"), bytes.fromhex(salt), 120000)
|
| 133 |
-
return {"salt": salt, "hash": dk.hex()}
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
def _verify_password(password: str, salt: str, expected_hex: str) -> bool:
|
| 137 |
-
dk = hashlib.pbkdf2_hmac("sha256", password.encode("utf-8"), bytes.fromhex(salt), 120000)
|
| 138 |
-
return secrets.compare_digest(dk.hex(), expected_hex)
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
@app.post("/auth/signup")
|
| 142 |
-
async def signup(email: str = Form(...), password: str = Form(...)):
|
| 143 |
-
email = email.strip().lower()
|
| 144 |
-
if not email or not password or "@" not in email:
|
| 145 |
-
raise HTTPException(400, detail="Invalid email or password")
|
| 146 |
-
users = rag.db["users"]
|
| 147 |
-
if users.find_one({"email": email}):
|
| 148 |
-
raise HTTPException(409, detail="Email already registered")
|
| 149 |
-
user_id = str(uuid.uuid4())
|
| 150 |
-
hp = _hash_password(password)
|
| 151 |
-
users.insert_one({
|
| 152 |
-
"email": email,
|
| 153 |
-
"user_id": user_id,
|
| 154 |
-
"pw_salt": hp["salt"],
|
| 155 |
-
"pw_hash": hp["hash"],
|
| 156 |
-
"created_at": int(time.time())
|
| 157 |
-
})
|
| 158 |
-
logger.info(f"[AUTH] Created user {email} -> {user_id}")
|
| 159 |
-
return {"email": email, "user_id": user_id}
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
@app.post("/auth/login")
|
| 163 |
-
async def login(email: str = Form(...), password: str = Form(...)):
|
| 164 |
-
email = email.strip().lower()
|
| 165 |
-
users = rag.db["users"]
|
| 166 |
-
doc = users.find_one({"email": email})
|
| 167 |
-
if not doc:
|
| 168 |
-
raise HTTPException(401, detail="Invalid credentials")
|
| 169 |
-
if not _verify_password(password, doc.get("pw_salt", ""), doc.get("pw_hash", "")):
|
| 170 |
-
raise HTTPException(401, detail="Invalid credentials")
|
| 171 |
-
logger.info(f"[AUTH] Login {email}")
|
| 172 |
-
return {"email": email, "user_id": doc.get("user_id")}
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
# ────────────────────────────── Project Management ───────────────────────────
|
| 176 |
-
@app.post("/projects/create", response_model=ProjectResponse)
|
| 177 |
-
async def create_project(user_id: str = Form(...), name: str = Form(...), description: str = Form("")):
|
| 178 |
-
"""Create a new project for a user"""
|
| 179 |
-
try:
|
| 180 |
-
if not rag:
|
| 181 |
-
raise HTTPException(500, detail="Database connection not available")
|
| 182 |
-
|
| 183 |
-
if not name.strip():
|
| 184 |
-
raise HTTPException(400, detail="Project name is required")
|
| 185 |
-
|
| 186 |
-
if not user_id.strip():
|
| 187 |
-
raise HTTPException(400, detail="User ID is required")
|
| 188 |
-
|
| 189 |
-
project_id = str(uuid.uuid4())
|
| 190 |
-
current_time = datetime.now(timezone.utc)
|
| 191 |
-
|
| 192 |
-
project = {
|
| 193 |
-
"project_id": project_id,
|
| 194 |
-
"user_id": user_id,
|
| 195 |
-
"name": name.strip(),
|
| 196 |
-
"description": description.strip(),
|
| 197 |
-
"created_at": current_time,
|
| 198 |
-
"updated_at": current_time
|
| 199 |
-
}
|
| 200 |
-
|
| 201 |
-
logger.info(f"[PROJECT] Creating project {name} for user {user_id}")
|
| 202 |
-
|
| 203 |
-
# Insert the project
|
| 204 |
-
try:
|
| 205 |
-
result = rag.db["projects"].insert_one(project)
|
| 206 |
-
logger.info(f"[PROJECT] Created project {name} with ID {project_id}, MongoDB result: {result.inserted_id}")
|
| 207 |
-
except PyMongoError as mongo_error:
|
| 208 |
-
logger.error(f"[PROJECT] MongoDB error creating project: {str(mongo_error)}")
|
| 209 |
-
raise HTTPException(500, detail=f"Database error: {str(mongo_error)}")
|
| 210 |
-
except Exception as db_error:
|
| 211 |
-
logger.error(f"[PROJECT] Database error creating project: {str(db_error)}")
|
| 212 |
-
raise HTTPException(500, detail=f"Database error: {str(db_error)}")
|
| 213 |
-
|
| 214 |
-
# Return a properly formatted response
|
| 215 |
-
response = ProjectResponse(
|
| 216 |
-
project_id=project_id,
|
| 217 |
-
user_id=user_id,
|
| 218 |
-
name=name.strip(),
|
| 219 |
-
description=description.strip(),
|
| 220 |
-
created_at=current_time.isoformat(),
|
| 221 |
-
updated_at=current_time.isoformat()
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
logger.info(f"[PROJECT] Successfully created project {name} for user {user_id}")
|
| 225 |
-
return response
|
| 226 |
-
|
| 227 |
-
except HTTPException:
|
| 228 |
-
# Re-raise HTTP exceptions
|
| 229 |
-
raise
|
| 230 |
-
except Exception as e:
|
| 231 |
-
logger.error(f"[PROJECT] Error creating project: {str(e)}")
|
| 232 |
-
logger.error(f"[PROJECT] Error type: {type(e)}")
|
| 233 |
-
logger.error(f"[PROJECT] Error details: {e}")
|
| 234 |
-
raise HTTPException(500, detail=f"Failed to create project: {str(e)}")
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
@app.get("/projects", response_model=ProjectsListResponse)
|
| 238 |
-
async def list_projects(user_id: str):
|
| 239 |
-
"""List all projects for a user"""
|
| 240 |
-
projects_cursor = rag.db["projects"].find(
|
| 241 |
-
{"user_id": user_id}
|
| 242 |
-
).sort("updated_at", -1)
|
| 243 |
-
|
| 244 |
-
projects = []
|
| 245 |
-
for project in projects_cursor:
|
| 246 |
-
projects.append(ProjectResponse(
|
| 247 |
-
project_id=project["project_id"],
|
| 248 |
-
user_id=project["user_id"],
|
| 249 |
-
name=project["name"],
|
| 250 |
-
description=project.get("description", ""),
|
| 251 |
-
created_at=project["created_at"].isoformat() if isinstance(project["created_at"], datetime) else str(project["created_at"]),
|
| 252 |
-
updated_at=project["updated_at"].isoformat() if isinstance(project["updated_at"], datetime) else str(project["updated_at"])
|
| 253 |
-
))
|
| 254 |
-
|
| 255 |
-
return ProjectsListResponse(projects=projects)
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
@app.get("/projects/{project_id}", response_model=ProjectResponse)
|
| 259 |
-
async def get_project(project_id: str, user_id: str):
|
| 260 |
-
"""Get a specific project (with user ownership check)"""
|
| 261 |
-
project = rag.db["projects"].find_one(
|
| 262 |
-
{"project_id": project_id, "user_id": user_id}
|
| 263 |
-
)
|
| 264 |
-
if not project:
|
| 265 |
-
raise HTTPException(404, detail="Project not found")
|
| 266 |
-
|
| 267 |
-
return ProjectResponse(
|
| 268 |
-
project_id=project["project_id"],
|
| 269 |
-
user_id=project["user_id"],
|
| 270 |
-
name=project["name"],
|
| 271 |
-
description=project.get("description", ""),
|
| 272 |
-
created_at=project["created_at"].isoformat() if isinstance(project["created_at"], datetime) else str(project["created_at"]),
|
| 273 |
-
updated_at=project["updated_at"].isoformat() if isinstance(project["updated_at"], datetime) else str(project["updated_at"])
|
| 274 |
-
)
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
@app.delete("/projects/{project_id}", response_model=MessageResponse)
|
| 278 |
-
async def delete_project(project_id: str, user_id: str):
|
| 279 |
-
"""Delete a project and all its associated data"""
|
| 280 |
-
# Check ownership
|
| 281 |
-
project = rag.db["projects"].find_one({"project_id": project_id, "user_id": user_id})
|
| 282 |
-
if not project:
|
| 283 |
-
raise HTTPException(404, detail="Project not found")
|
| 284 |
-
|
| 285 |
-
# Delete project and all associated data
|
| 286 |
-
rag.db["projects"].delete_one({"project_id": project_id})
|
| 287 |
-
rag.db["chunks"].delete_many({"project_id": project_id})
|
| 288 |
-
rag.db["files"].delete_many({"project_id": project_id})
|
| 289 |
-
rag.db["chat_sessions"].delete_many({"project_id": project_id})
|
| 290 |
-
|
| 291 |
-
logger.info(f"[PROJECT] Deleted project {project_id} for user {user_id}")
|
| 292 |
-
return MessageResponse(message="Project deleted successfully")
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
# ────────────────────────────── Chat Sessions ──────────────────────────────
|
| 296 |
-
@app.post("/chat/save", response_model=MessageResponse)
|
| 297 |
-
async def save_chat_message(
|
| 298 |
-
user_id: str = Form(...),
|
| 299 |
-
project_id: str = Form(...),
|
| 300 |
-
role: str = Form(...),
|
| 301 |
-
content: str = Form(...),
|
| 302 |
-
timestamp: Optional[float] = Form(None),
|
| 303 |
-
sources: Optional[str] = Form(None)
|
| 304 |
-
):
|
| 305 |
-
"""Save a chat message to the session"""
|
| 306 |
-
if role not in ["user", "assistant"]:
|
| 307 |
-
raise HTTPException(400, detail="Invalid role")
|
| 308 |
-
|
| 309 |
-
# Parse optional sources JSON
|
| 310 |
-
parsed_sources: Optional[List[Dict[str, Any]]] = None
|
| 311 |
-
if sources:
|
| 312 |
-
try:
|
| 313 |
-
parsed = json.loads(sources)
|
| 314 |
-
if isinstance(parsed, list):
|
| 315 |
-
parsed_sources = parsed
|
| 316 |
-
except Exception:
|
| 317 |
-
parsed_sources = None
|
| 318 |
-
|
| 319 |
-
message = {
|
| 320 |
-
"user_id": user_id,
|
| 321 |
-
"project_id": project_id,
|
| 322 |
-
"role": role,
|
| 323 |
-
"content": content,
|
| 324 |
-
"timestamp": timestamp or time.time(),
|
| 325 |
-
"created_at": datetime.now(timezone.utc),
|
| 326 |
-
**({"sources": parsed_sources} if parsed_sources is not None else {})
|
| 327 |
-
}
|
| 328 |
-
|
| 329 |
-
rag.db["chat_sessions"].insert_one(message)
|
| 330 |
-
return MessageResponse(message="Chat message saved")
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
@app.get("/chat/history", response_model=ChatHistoryResponse)
|
| 334 |
-
async def get_chat_history(user_id: str, project_id: str, limit: int = 100):
|
| 335 |
-
"""Get chat history for a project"""
|
| 336 |
-
messages_cursor = rag.db["chat_sessions"].find(
|
| 337 |
-
{"user_id": user_id, "project_id": project_id}
|
| 338 |
-
).sort("timestamp", 1).limit(limit)
|
| 339 |
-
|
| 340 |
-
messages = []
|
| 341 |
-
for message in messages_cursor:
|
| 342 |
-
messages.append(ChatMessageResponse(
|
| 343 |
-
user_id=message["user_id"],
|
| 344 |
-
project_id=message["project_id"],
|
| 345 |
-
role=message["role"],
|
| 346 |
-
content=message["content"],
|
| 347 |
-
timestamp=message["timestamp"],
|
| 348 |
-
created_at=message["created_at"].isoformat() if isinstance(message["created_at"], datetime) else str(message["created_at"]),
|
| 349 |
-
sources=message.get("sources")
|
| 350 |
-
))
|
| 351 |
-
|
| 352 |
-
return ChatHistoryResponse(messages=messages)
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
@app.delete("/chat/history", response_model=MessageResponse)
|
| 356 |
-
async def delete_chat_history(user_id: str, project_id: str):
|
| 357 |
-
try:
|
| 358 |
-
rag.db["chat_sessions"].delete_many({"user_id": user_id, "project_id": project_id})
|
| 359 |
-
logger.info(f"[CHAT] Cleared history for user {user_id} project {project_id}")
|
| 360 |
-
# Also clear in-memory LRU for this user to avoid stale context
|
| 361 |
-
try:
|
| 362 |
-
from memo.core import get_memory_system
|
| 363 |
-
memory = get_memory_system()
|
| 364 |
-
memory.clear(user_id)
|
| 365 |
-
logger.info(f"[CHAT] Cleared memory for user {user_id}")
|
| 366 |
-
except Exception as me:
|
| 367 |
-
logger.warning(f"[CHAT] Failed to clear memory for user {user_id}: {me}")
|
| 368 |
-
return MessageResponse(message="Chat history cleared")
|
| 369 |
-
except Exception as e:
|
| 370 |
-
raise HTTPException(500, detail=f"Failed to clear chat history: {str(e)}")
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
# ────────────────────────────── Helpers ──────────────────────────────
|
| 374 |
-
def _infer_mime(filename: str) -> str:
|
| 375 |
-
lower = filename.lower()
|
| 376 |
-
if lower.endswith(".pdf"):
|
| 377 |
-
return "application/pdf"
|
| 378 |
-
if lower.endswith(".docx"):
|
| 379 |
-
return "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
| 380 |
-
return "application/octet-stream"
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
def _extract_pages(filename: str, file_bytes: bytes) -> List[Dict[str, Any]]:
|
| 384 |
-
mime = _infer_mime(filename)
|
| 385 |
-
if mime == "application/pdf":
|
| 386 |
-
return parse_pdf_bytes(file_bytes)
|
| 387 |
-
elif mime == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
| 388 |
-
return parse_docx_bytes(file_bytes)
|
| 389 |
-
else:
|
| 390 |
-
raise HTTPException(status_code=400, detail=f"Unsupported file type: {filename}")
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
# ────────────────────────────── Routes ──────────────────────────────
|
| 394 |
-
@app.get("/", response_class=HTMLResponse)
|
| 395 |
-
def index():
|
| 396 |
-
index_path = os.path.join("static", "index.html")
|
| 397 |
-
if not os.path.exists(index_path):
|
| 398 |
-
return HTMLResponse("<h1>StudyBuddy</h1><p>Static files not found.</p>")
|
| 399 |
-
return FileResponse(index_path)
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
@app.post("/upload", response_model=UploadResponse)
|
| 403 |
-
async def upload_files(
|
| 404 |
-
request: Request,
|
| 405 |
-
background_tasks: BackgroundTasks,
|
| 406 |
-
user_id: str = Form(...),
|
| 407 |
-
project_id: str = Form(...),
|
| 408 |
-
files: List[UploadFile] = File(...),
|
| 409 |
-
replace_filenames: Optional[str] = Form(None), # JSON array of filenames to replace
|
| 410 |
-
rename_map: Optional[str] = Form(None), # JSON object {original: newname}
|
| 411 |
-
):
|
| 412 |
-
"""
|
| 413 |
-
Ingest many files: PDF/DOCX.
|
| 414 |
-
Steps:
|
| 415 |
-
1) Extract text & images
|
| 416 |
-
2) Caption images (BLIP base, CPU ok)
|
| 417 |
-
3) Merge captions into page text
|
| 418 |
-
4) Chunk into semantic cards (topic_name, summary, content + metadata)
|
| 419 |
-
5) Embed with all-MiniLM-L6-v2
|
| 420 |
-
6) Store in MongoDB with per-user and per-project metadata
|
| 421 |
-
7) Create a file-level summary
|
| 422 |
-
"""
|
| 423 |
-
job_id = str(uuid.uuid4())
|
| 424 |
-
|
| 425 |
-
# Basic upload policy limits
|
| 426 |
-
max_files = int(os.getenv("MAX_FILES_PER_UPLOAD", "15"))
|
| 427 |
-
max_mb = int(os.getenv("MAX_FILE_MB", "50"))
|
| 428 |
-
if len(files) > max_files:
|
| 429 |
-
raise HTTPException(400, detail=f"Too many files. Max {max_files} allowed per upload.")
|
| 430 |
-
|
| 431 |
-
# Parse replace/rename directives
|
| 432 |
-
replace_set = set()
|
| 433 |
-
try:
|
| 434 |
-
if replace_filenames:
|
| 435 |
-
replace_set = set(json.loads(replace_filenames))
|
| 436 |
-
except Exception:
|
| 437 |
-
pass
|
| 438 |
-
rename_dict: Dict[str, str] = {}
|
| 439 |
-
try:
|
| 440 |
-
if rename_map:
|
| 441 |
-
rename_dict = json.loads(rename_map)
|
| 442 |
-
except Exception:
|
| 443 |
-
pass
|
| 444 |
-
|
| 445 |
-
preloaded_files = []
|
| 446 |
-
for uf in files:
|
| 447 |
-
raw = await uf.read()
|
| 448 |
-
if len(raw) > max_mb * 1024 * 1024:
|
| 449 |
-
raise HTTPException(400, detail=f"{uf.filename} exceeds {max_mb} MB limit")
|
| 450 |
-
# Apply rename if present
|
| 451 |
-
eff_name = rename_dict.get(uf.filename, uf.filename)
|
| 452 |
-
preloaded_files.append((eff_name, raw))
|
| 453 |
-
|
| 454 |
-
# Initialize job status
|
| 455 |
-
app.state.jobs[job_id] = {
|
| 456 |
-
"created_at": time.time(),
|
| 457 |
-
"total": len(preloaded_files),
|
| 458 |
-
"completed": 0,
|
| 459 |
-
"status": "processing",
|
| 460 |
-
"last_error": None,
|
| 461 |
-
}
|
| 462 |
-
|
| 463 |
-
# Single background task: process files sequentially with isolation
|
| 464 |
-
async def _process_all():
|
| 465 |
-
for idx, (fname, raw) in enumerate(preloaded_files, start=1):
|
| 466 |
-
try:
|
| 467 |
-
# If instructed to replace this filename, remove previous data first
|
| 468 |
-
if fname in replace_set:
|
| 469 |
-
try:
|
| 470 |
-
rag.db["chunks"].delete_many({"user_id": user_id, "project_id": project_id, "filename": fname})
|
| 471 |
-
rag.db["files"].delete_many({"user_id": user_id, "project_id": project_id, "filename": fname})
|
| 472 |
-
logger.info(f"[{job_id}] Replaced prior data for {fname}")
|
| 473 |
-
except Exception as de:
|
| 474 |
-
logger.warning(f"[{job_id}] Replace delete failed for {fname}: {de}")
|
| 475 |
-
logger.info(f"[{job_id}] ({idx}/{len(preloaded_files)}) Parsing {fname} ({len(raw)} bytes)")
|
| 476 |
-
|
| 477 |
-
# Extract pages from file
|
| 478 |
-
pages = _extract_pages(fname, raw)
|
| 479 |
-
|
| 480 |
-
# Caption images per page (if any)
|
| 481 |
-
num_imgs = sum(len(p.get("images", [])) for p in pages)
|
| 482 |
-
captions = []
|
| 483 |
-
if num_imgs > 0:
|
| 484 |
-
for p in pages:
|
| 485 |
-
caps = []
|
| 486 |
-
for im in p.get("images", []):
|
| 487 |
-
try:
|
| 488 |
-
cap = captioner.caption_image(im)
|
| 489 |
-
caps.append(cap)
|
| 490 |
-
except Exception as e:
|
| 491 |
-
logger.warning(f"[{job_id}] Caption error in {fname}: {e}")
|
| 492 |
-
captions.append(caps)
|
| 493 |
-
else:
|
| 494 |
-
captions = [[] for _ in pages]
|
| 495 |
-
|
| 496 |
-
# Merge captions into text
|
| 497 |
-
for p, caps in zip(pages, captions):
|
| 498 |
-
if caps:
|
| 499 |
-
p["text"] = (p.get("text", "") + "\n\n" + "\n".join([f"[Image] {c}" for c in caps])).strip()
|
| 500 |
-
|
| 501 |
-
# Build cards
|
| 502 |
-
cards = await build_cards_from_pages(pages, filename=fname, user_id=user_id, project_id=project_id)
|
| 503 |
-
logger.info(f"[{job_id}] Built {len(cards)} cards for {fname}")
|
| 504 |
-
|
| 505 |
-
# Embed & store
|
| 506 |
-
embeddings = embedder.embed([c["content"] for c in cards])
|
| 507 |
-
for c, vec in zip(cards, embeddings):
|
| 508 |
-
c["embedding"] = vec
|
| 509 |
-
|
| 510 |
-
rag.store_cards(cards)
|
| 511 |
-
|
| 512 |
-
# File-level summary (cheap extractive)
|
| 513 |
-
full_text = "\n\n".join(p.get("text", "") for p in pages)
|
| 514 |
-
file_summary = await cheap_summarize(full_text, max_sentences=6)
|
| 515 |
-
rag.upsert_file_summary(user_id=user_id, project_id=project_id, filename=fname, summary=file_summary)
|
| 516 |
-
logger.info(f"[{job_id}] Completed {fname}")
|
| 517 |
-
# Update job progress
|
| 518 |
-
job = app.state.jobs.get(job_id)
|
| 519 |
-
if job:
|
| 520 |
-
job["completed"] = idx
|
| 521 |
-
job["status"] = "processing" if idx < job.get("total", 0) else "completed"
|
| 522 |
-
except Exception as e:
|
| 523 |
-
logger.error(f"[{job_id}] Failed processing {fname}: {e}")
|
| 524 |
-
job = app.state.jobs.get(job_id)
|
| 525 |
-
if job:
|
| 526 |
-
job["last_error"] = str(e)
|
| 527 |
-
job["completed"] = idx # count as completed attempt
|
| 528 |
-
finally:
|
| 529 |
-
# Yield control between files to keep loop responsive
|
| 530 |
-
await asyncio.sleep(0)
|
| 531 |
-
|
| 532 |
-
logger.info(f"[{job_id}] Ingestion complete for {len(preloaded_files)} files")
|
| 533 |
-
# Finalize job status
|
| 534 |
-
job = app.state.jobs.get(job_id)
|
| 535 |
-
if job:
|
| 536 |
-
job["status"] = "completed"
|
| 537 |
-
|
| 538 |
-
background_tasks.add_task(_process_all)
|
| 539 |
-
return UploadResponse(job_id=job_id, status="processing", total_files=len(preloaded_files))
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
@app.get("/upload/status")
|
| 543 |
-
async def upload_status(job_id: str):
|
| 544 |
-
job = app.state.jobs.get(job_id)
|
| 545 |
-
if not job:
|
| 546 |
-
raise HTTPException(404, detail="Job not found")
|
| 547 |
-
percent = 0
|
| 548 |
-
if job.get("total"):
|
| 549 |
-
percent = int(round((job.get("completed", 0) / job.get("total", 1)) * 100))
|
| 550 |
-
return {
|
| 551 |
-
"job_id": job_id,
|
| 552 |
-
"status": job.get("status"),
|
| 553 |
-
"completed": job.get("completed"),
|
| 554 |
-
"total": job.get("total"),
|
| 555 |
-
"percent": percent,
|
| 556 |
-
"last_error": job.get("last_error"),
|
| 557 |
-
"created_at": job.get("created_at"),
|
| 558 |
-
}
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
@app.get("/files")
|
| 562 |
-
async def list_project_files(user_id: str, project_id: str):
|
| 563 |
-
"""Return stored filenames and summaries for a project."""
|
| 564 |
-
files = rag.list_files(user_id=user_id, project_id=project_id)
|
| 565 |
-
# Ensure filenames list
|
| 566 |
-
filenames = [f.get("filename") for f in files if f.get("filename")]
|
| 567 |
-
return {"files": files, "filenames": filenames}
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
@app.delete("/files", response_model=MessageResponse)
|
| 571 |
-
async def delete_file(user_id: str, project_id: str, filename: str):
|
| 572 |
-
"""Delete a file summary and associated chunks for a project."""
|
| 573 |
-
try:
|
| 574 |
-
rag.db["files"].delete_many({"user_id": user_id, "project_id": project_id, "filename": filename})
|
| 575 |
-
rag.db["chunks"].delete_many({"user_id": user_id, "project_id": project_id, "filename": filename})
|
| 576 |
-
logger.info(f"[FILES] Deleted file {filename} for user {user_id} project {project_id}")
|
| 577 |
-
return MessageResponse(message="File deleted")
|
| 578 |
-
except Exception as e:
|
| 579 |
-
raise HTTPException(500, detail=f"Failed to delete file: {str(e)}")
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
@app.get("/cards")
|
| 583 |
-
def list_cards(user_id: str, project_id: str, filename: Optional[str] = None, limit: int = 50, skip: int = 0):
|
| 584 |
-
"""List cards for a project"""
|
| 585 |
-
cards = rag.list_cards(user_id=user_id, project_id=project_id, filename=filename, limit=limit, skip=skip)
|
| 586 |
-
# Ensure all cards are JSON serializable
|
| 587 |
-
serializable_cards = []
|
| 588 |
-
for card in cards:
|
| 589 |
-
serializable_card = {}
|
| 590 |
-
for key, value in card.items():
|
| 591 |
-
if key == '_id':
|
| 592 |
-
serializable_card[key] = str(value) # Convert ObjectId to string
|
| 593 |
-
elif isinstance(value, datetime):
|
| 594 |
-
serializable_card[key] = value.isoformat() # Convert datetime to ISO string
|
| 595 |
-
else:
|
| 596 |
-
serializable_card[key] = value
|
| 597 |
-
serializable_cards.append(serializable_card)
|
| 598 |
-
# Sort cards by topic_name
|
| 599 |
-
return {"cards": serializable_cards}
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
@app.get("/file-summary", response_model=FileSummaryResponse)
|
| 603 |
-
def get_file_summary(user_id: str, project_id: str, filename: str):
|
| 604 |
-
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=filename)
|
| 605 |
-
if not doc:
|
| 606 |
-
raise HTTPException(404, detail="No summary found for that file.")
|
| 607 |
-
return FileSummaryResponse(filename=filename, summary=doc.get("summary", ""))
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
@app.post("/report", response_model=ReportResponse)
|
| 611 |
-
async def generate_report(
|
| 612 |
-
user_id: str = Form(...),
|
| 613 |
-
project_id: str = Form(...),
|
| 614 |
-
filename: str = Form(...),
|
| 615 |
-
outline_words: int = Form(200),
|
| 616 |
-
report_words: int = Form(1200),
|
| 617 |
-
instructions: str = Form("")
|
| 618 |
-
):
|
| 619 |
-
"""
|
| 620 |
-
Generate a Markdown report for a single document using a lightweight CoT:
|
| 621 |
-
1) Gemini Flash: create a structured outline based on file summary + top chunks
|
| 622 |
-
2) Gemini Pro: expand into a full report with citations
|
| 623 |
-
"""
|
| 624 |
-
logger.info("[REPORT] User Q/report: %s", trim_text(instructions, 15).replace("\n", " "))
|
| 625 |
-
# Validate file exists
|
| 626 |
-
files_list = rag.list_files(user_id=user_id, project_id=project_id)
|
| 627 |
-
filenames_ci = {f.get("filename", "").lower(): f.get("filename") for f in files_list}
|
| 628 |
-
eff_name = filenames_ci.get(filename.lower(), filename)
|
| 629 |
-
doc_sum = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=eff_name)
|
| 630 |
-
if not doc_sum:
|
| 631 |
-
raise HTTPException(404, detail="No summary found for that file.")
|
| 632 |
-
|
| 633 |
-
# Retrieve top-k chunks for this file using enhanced search
|
| 634 |
-
query_text = f"Comprehensive report for {eff_name}"
|
| 635 |
-
if instructions.strip():
|
| 636 |
-
query_text = f"{instructions} {eff_name}"
|
| 637 |
-
|
| 638 |
-
q_vec = embedder.embed([query_text])[0]
|
| 639 |
-
hits = rag.vector_search(user_id=user_id, project_id=project_id, query_vector=q_vec, k=8, filenames=[eff_name], search_type="flat")
|
| 640 |
-
if not hits:
|
| 641 |
-
# Fall back to summary-only report
|
| 642 |
-
hits = []
|
| 643 |
-
|
| 644 |
-
# Build context
|
| 645 |
-
contexts = []
|
| 646 |
-
sources_meta = []
|
| 647 |
-
for h in hits:
|
| 648 |
-
doc = h["doc"]
|
| 649 |
-
chunk_id = str(doc.get("_id", ""))
|
| 650 |
-
contexts.append(f"[CHUNK_ID: {chunk_id}] [{doc.get('topic_name','Topic')}] {trim_text(doc.get('content',''), 2000)}")
|
| 651 |
-
sources_meta.append({
|
| 652 |
-
"filename": doc.get("filename"),
|
| 653 |
-
"topic_name": doc.get("topic_name"),
|
| 654 |
-
"page_span": doc.get("page_span"),
|
| 655 |
-
"score": float(h.get("score", 0.0)),
|
| 656 |
-
"chunk_id": chunk_id
|
| 657 |
-
})
|
| 658 |
-
context_text = "\n\n---\n\n".join(contexts) if contexts else ""
|
| 659 |
-
file_summary = doc_sum.get("summary", "")
|
| 660 |
-
|
| 661 |
-
# Chain-of-thought style two-step with Gemini
|
| 662 |
-
from utils.api.router import GEMINI_MED, GEMINI_PRO
|
| 663 |
-
|
| 664 |
-
# Step 1: Content filtering and relevance assessment based on user instructions
|
| 665 |
-
if instructions.strip():
|
| 666 |
-
filter_sys = (
|
| 667 |
-
"You are an expert content analyst. Given the user's specific instructions and the document content, "
|
| 668 |
-
"identify which sections/chunks are MOST relevant to their request. "
|
| 669 |
-
"Each chunk is prefixed with [CHUNK_ID: <id>] - use these exact IDs in your response. "
|
| 670 |
-
"Return a JSON object with this structure: {\"relevant_chunks\": [\"<chunk_id_1>\", \"<chunk_id_2>\"], \"focus_areas\": [\"key topic 1\", \"key topic 2\"]}"
|
| 671 |
-
)
|
| 672 |
-
filter_user = f"USER_INSTRUCTIONS: {instructions}\n\nDOCUMENT_SUMMARY: {file_summary}\n\nAVAILABLE_CHUNKS:\n{context_text}\n\nIdentify only the chunks that directly address the user's specific request."
|
| 673 |
-
|
| 674 |
-
try:
|
| 675 |
-
selection_filter = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
|
| 676 |
-
filter_response = await generate_answer_with_model(selection_filter, filter_sys, filter_user, gemini_rotator, nvidia_rotator)
|
| 677 |
-
logger.info(f"[REPORT] Raw filter response: {filter_response}")
|
| 678 |
-
# Try to parse the filter response to get relevant chunks
|
| 679 |
-
import json
|
| 680 |
-
try:
|
| 681 |
-
filter_data = json.loads(filter_response)
|
| 682 |
-
relevant_chunk_ids = filter_data.get("relevant_chunks", [])
|
| 683 |
-
focus_areas = filter_data.get("focus_areas", [])
|
| 684 |
-
logger.info(f"[REPORT] Content filtering identified {len(relevant_chunk_ids)} relevant chunks: {relevant_chunk_ids} and focus areas: {focus_areas}")
|
| 685 |
-
# Filter context to only relevant chunks
|
| 686 |
-
if relevant_chunk_ids and hits:
|
| 687 |
-
filtered_hits = [h for h in hits if str(h["doc"].get("_id", "")) in relevant_chunk_ids]
|
| 688 |
-
if filtered_hits:
|
| 689 |
-
hits = filtered_hits
|
| 690 |
-
logger.info(f"[REPORT] Filtered context from {len(hits)} chunks to {len(filtered_hits)} relevant chunks")
|
| 691 |
-
else:
|
| 692 |
-
logger.warning(f"[REPORT] No matching chunks found for IDs: {relevant_chunk_ids}")
|
| 693 |
-
else:
|
| 694 |
-
logger.warning(f"[REPORT] No relevant chunk IDs returned or no hits available")
|
| 695 |
-
except json.JSONDecodeError as e:
|
| 696 |
-
logger.warning(f"[REPORT] Could not parse filter response, using all chunks. JSON error: {e}. Response: {filter_response}")
|
| 697 |
-
except Exception as e:
|
| 698 |
-
logger.warning(f"[REPORT] Content filtering failed: {e}")
|
| 699 |
-
|
| 700 |
-
# Step 2: Create focused outline based on user instructions
|
| 701 |
-
sys_outline = (
|
| 702 |
-
"You are an expert technical writer. Create a focused, hierarchical outline for a report based on the user's specific instructions and the MATERIALS. "
|
| 703 |
-
"The outline should directly address what the user asked for. Output as Markdown bullet list only. Keep it within about {} words."
|
| 704 |
-
).format(max(100, outline_words))
|
| 705 |
-
|
| 706 |
-
instruction_context = f"USER_REQUEST: {instructions}\n\n" if instructions.strip() else ""
|
| 707 |
-
user_outline = f"{instruction_context}MATERIALS:\n\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}"
|
| 708 |
-
|
| 709 |
-
try:
|
| 710 |
-
# Step 1: Outline with Flash/Med
|
| 711 |
-
selection_outline = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
|
| 712 |
-
outline_md = await generate_answer_with_model(selection_outline, sys_outline, user_outline, gemini_rotator, nvidia_rotator)
|
| 713 |
-
except Exception as e:
|
| 714 |
-
logger.warning(f"Report outline failed: {e}")
|
| 715 |
-
outline_md = "# Report Outline\n\n- Introduction\n- Key Topics\n- Conclusion"
|
| 716 |
-
|
| 717 |
-
# Step 3: Generate focused report based on user instructions and filtered content
|
| 718 |
-
instruction_focus = f"FOCUS ON: {instructions}\n\n" if instructions.strip() else ""
|
| 719 |
-
sys_report = (
|
| 720 |
-
"You are an expert report writer. Write a focused, comprehensive Markdown report that directly addresses the user's specific request. "
|
| 721 |
-
"Using the OUTLINE and MATERIALS:\n"
|
| 722 |
-
"- Structure the report to answer exactly what the user asked for\n"
|
| 723 |
-
"- Use clear section headings\n"
|
| 724 |
-
"- Keep content factual and grounded in the provided materials\n"
|
| 725 |
-
f"- Include brief citations like (source: {eff_name}, topic) - use the actual filename provided\n"
|
| 726 |
-
"- If the user asked for a specific section/topic, focus heavily on that\n"
|
| 727 |
-
f"- Target length ~{max(600, report_words)} words\n"
|
| 728 |
-
"- Ensure the report directly fulfills the user's request"
|
| 729 |
-
)
|
| 730 |
-
user_report = f"{instruction_focus}OUTLINE:\n{outline_md}\n\nMATERIALS:\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}"
|
| 731 |
-
|
| 732 |
-
try:
|
| 733 |
-
selection_report = {"provider": "gemini", "model": os.getenv("GEMINI_PRO", "gemini-2.5-pro")}
|
| 734 |
-
report_md = await generate_answer_with_model(selection_report, sys_report, user_report, gemini_rotator, nvidia_rotator)
|
| 735 |
-
except Exception as e:
|
| 736 |
-
logger.error(f"Report generation failed: {e}")
|
| 737 |
-
report_md = outline_md + "\n\n" + file_summary
|
| 738 |
-
|
| 739 |
-
return ReportResponse(filename=eff_name, report_markdown=report_md, sources=sources_meta)
|
| 740 |
-
|
| 741 |
-
|
| 742 |
-
@app.post("/report/pdf")
|
| 743 |
-
async def generate_report_pdf(
|
| 744 |
-
user_id: str = Form(...),
|
| 745 |
-
project_id: str = Form(...),
|
| 746 |
-
report_content: str = Form(...)
|
| 747 |
-
):
|
| 748 |
-
"""
|
| 749 |
-
Generate a PDF from report content using the PDF utility module
|
| 750 |
-
"""
|
| 751 |
-
from utils.service.pdf import generate_report_pdf as generate_pdf
|
| 752 |
-
from fastapi.responses import Response
|
| 753 |
-
|
| 754 |
-
try:
|
| 755 |
-
pdf_content = await generate_pdf(report_content, user_id, project_id)
|
| 756 |
-
|
| 757 |
-
# Return PDF as response
|
| 758 |
-
return Response(
|
| 759 |
-
content=pdf_content,
|
| 760 |
-
media_type="application/pdf",
|
| 761 |
-
headers={"Content-Disposition": f"attachment; filename=report-{datetime.now().strftime('%Y-%m-%d')}.pdf"}
|
| 762 |
-
)
|
| 763 |
-
|
| 764 |
-
except HTTPException:
|
| 765 |
-
# Re-raise HTTP exceptions as-is
|
| 766 |
-
raise
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
# ────────────────────────────── Enhanced RAG Helper Functions ──────────────────────────────
|
| 770 |
-
|
| 771 |
-
async def _generate_query_variations(question: str, nvidia_rotator) -> List[str]:
|
| 772 |
-
"""
|
| 773 |
-
Generate multiple query variations using Chain of Thought reasoning
|
| 774 |
-
"""
|
| 775 |
-
if not nvidia_rotator:
|
| 776 |
-
return [question] # Fallback to original question
|
| 777 |
-
|
| 778 |
-
try:
|
| 779 |
-
# Use NVIDIA to generate query variations
|
| 780 |
-
sys_prompt = """You are an expert at query expansion and reformulation. Given a user question, generate 3-5 different ways to ask the same question that would help retrieve relevant information from a document database.
|
| 781 |
-
|
| 782 |
-
Focus on:
|
| 783 |
-
1. Different terminology and synonyms
|
| 784 |
-
2. More specific technical terms
|
| 785 |
-
3. Broader conceptual queries
|
| 786 |
-
4. Question reformulations
|
| 787 |
-
|
| 788 |
-
Return only the variations, one per line, no numbering or extra text."""
|
| 789 |
-
|
| 790 |
-
user_prompt = f"Original question: {question}\n\nGenerate query variations:"
|
| 791 |
-
|
| 792 |
-
from utils.api.router import generate_answer_with_model
|
| 793 |
-
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 794 |
-
response = await generate_answer_with_model(selection, sys_prompt, user_prompt, None, nvidia_rotator)
|
| 795 |
-
|
| 796 |
-
# Parse variations
|
| 797 |
-
variations = [line.strip() for line in response.split('\n') if line.strip()]
|
| 798 |
-
variations = [v for v in variations if len(v) > 10] # Filter out too short variations
|
| 799 |
-
|
| 800 |
-
# Always include original question
|
| 801 |
-
if question not in variations:
|
| 802 |
-
variations.insert(0, question)
|
| 803 |
-
|
| 804 |
-
return variations[:5] # Limit to 5 variations
|
| 805 |
-
|
| 806 |
-
except Exception as e:
|
| 807 |
-
logger.warning(f"Query variation generation failed: {e}")
|
| 808 |
-
return [question]
|
| 809 |
-
|
| 810 |
-
|
| 811 |
-
def _deduplicate_and_rank_hits(all_hits: List[Dict], original_question: str) -> List[Dict]:
|
| 812 |
-
"""
|
| 813 |
-
Deduplicate hits by chunk ID and rank by relevance to original question
|
| 814 |
-
"""
|
| 815 |
-
if not all_hits:
|
| 816 |
-
return []
|
| 817 |
-
|
| 818 |
-
# Deduplicate by chunk ID
|
| 819 |
-
seen_ids = set()
|
| 820 |
-
unique_hits = []
|
| 821 |
-
|
| 822 |
-
for hit in all_hits:
|
| 823 |
-
chunk_id = str(hit.get("doc", {}).get("_id", ""))
|
| 824 |
-
if chunk_id not in seen_ids:
|
| 825 |
-
seen_ids.add(chunk_id)
|
| 826 |
-
unique_hits.append(hit)
|
| 827 |
-
|
| 828 |
-
# Simple ranking: boost scores for hits that contain question keywords
|
| 829 |
-
question_words = set(original_question.lower().split())
|
| 830 |
-
|
| 831 |
-
for hit in unique_hits:
|
| 832 |
-
content = hit.get("doc", {}).get("content", "").lower()
|
| 833 |
-
topic = hit.get("doc", {}).get("topic_name", "").lower()
|
| 834 |
-
|
| 835 |
-
# Count keyword matches
|
| 836 |
-
content_matches = sum(1 for word in question_words if word in content)
|
| 837 |
-
topic_matches = sum(1 for word in question_words if word in topic)
|
| 838 |
-
|
| 839 |
-
# Boost score based on keyword matches
|
| 840 |
-
keyword_boost = 1.0 + (content_matches * 0.1) + (topic_matches * 0.2)
|
| 841 |
-
hit["score"] = hit.get("score", 0.0) * keyword_boost
|
| 842 |
-
|
| 843 |
-
# Sort by boosted score
|
| 844 |
-
unique_hits.sort(key=lambda x: x.get("score", 0.0), reverse=True)
|
| 845 |
-
|
| 846 |
-
return unique_hits
|
| 847 |
-
|
| 848 |
-
|
| 849 |
-
@app.post("/chat", response_model=ChatAnswerResponse)
|
| 850 |
-
async def chat(
|
| 851 |
-
user_id: str = Form(...),
|
| 852 |
-
project_id: str = Form(...),
|
| 853 |
-
question: str = Form(...),
|
| 854 |
-
k: int = Form(6)
|
| 855 |
-
):
|
| 856 |
-
# Add timeout protection to prevent hanging
|
| 857 |
-
import asyncio
|
| 858 |
-
try:
|
| 859 |
-
return await asyncio.wait_for(_chat_impl(user_id, project_id, question, k), timeout=120.0)
|
| 860 |
-
except asyncio.TimeoutError:
|
| 861 |
-
logger.error("[CHAT] Chat request timed out after 120 seconds")
|
| 862 |
-
return ChatAnswerResponse(
|
| 863 |
-
answer="Sorry, the request took too long to process. Please try again with a simpler question.",
|
| 864 |
-
sources=[],
|
| 865 |
-
relevant_files=[]
|
| 866 |
-
)
|
| 867 |
-
|
| 868 |
-
async def _chat_impl(
|
| 869 |
-
user_id: str,
|
| 870 |
-
project_id: str,
|
| 871 |
-
question: str,
|
| 872 |
-
k: int
|
| 873 |
-
):
|
| 874 |
-
"""
|
| 875 |
-
RAG chat that answers ONLY from uploaded materials.
|
| 876 |
-
- Preload all filenames + summaries; use NVIDIA to classify file relevance to question (true/false)
|
| 877 |
-
- Restrict vector search to relevant files (fall back to all if none)
|
| 878 |
-
- Bring in recent chat memory: last 3 via NVIDIA relevance; remaining 17 via semantic search
|
| 879 |
-
- After answering, summarize (q,a) via NVIDIA and store into LRU (last 20)
|
| 880 |
-
"""
|
| 881 |
-
import sys
|
| 882 |
-
from memo.core import get_memory_system
|
| 883 |
-
from utils.api.router import NVIDIA_SMALL # reuse default name
|
| 884 |
-
memory = get_memory_system()
|
| 885 |
-
logger.info("[CHAT] User Q/chat: %s", trim_text(question, 15).replace("\n", " "))
|
| 886 |
-
|
| 887 |
-
# 0) Detect any filenames mentioned in the question (e.g., JADE.pdf)
|
| 888 |
-
# Supports .pdf, .docx, and .doc for detection purposes
|
| 889 |
-
# Only capture contiguous tokens ending with extension (no spaces) to avoid swallowing prompt text
|
| 890 |
-
mentioned = set([m.group(0).strip() for m in re.finditer(r"\b[^\s/\\]+?\.(?:pdf|docx|doc)\b", question, re.IGNORECASE)])
|
| 891 |
-
if mentioned:
|
| 892 |
-
logger.info(f"[CHAT] Detected mentioned filenames in question: {list(mentioned)}")
|
| 893 |
-
|
| 894 |
-
# 0a) If the question explicitly asks for a summary/about of a single mentioned file, return its summary directly
|
| 895 |
-
if mentioned and (re.search(r"\b(summary|summarize|about|overview)\b", question, re.IGNORECASE)):
|
| 896 |
-
# Prefer direct summary when exactly one file is referenced
|
| 897 |
-
if len(mentioned) == 1:
|
| 898 |
-
fn = next(iter(mentioned))
|
| 899 |
-
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=fn)
|
| 900 |
-
if doc:
|
| 901 |
-
return ChatAnswerResponse(
|
| 902 |
-
answer=doc.get("summary", ""),
|
| 903 |
-
sources=[{"filename": fn, "file_summary": True}]
|
| 904 |
-
)
|
| 905 |
-
# If not found with the same casing, try case-insensitive match against stored filenames
|
| 906 |
-
files_ci = rag.list_files(user_id=user_id, project_id=project_id)
|
| 907 |
-
match = next((f["filename"] for f in files_ci if f.get("filename", "").lower() == fn.lower()), None)
|
| 908 |
-
if match:
|
| 909 |
-
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=match)
|
| 910 |
-
if doc:
|
| 911 |
-
return ChatAnswerResponse(
|
| 912 |
-
answer=doc.get("summary", ""),
|
| 913 |
-
sources=[{"filename": match, "file_summary": True}]
|
| 914 |
-
)
|
| 915 |
-
# If multiple files are referenced with summary intent, proceed to relevance flow below
|
| 916 |
-
|
| 917 |
-
# 1) Preload file list + summaries
|
| 918 |
-
files_list = rag.list_files(user_id=user_id, project_id=project_id) # [{filename, summary}]
|
| 919 |
-
|
| 920 |
-
# 1a) Normalize mentioned filenames against the user's library (case-insensitive)
|
| 921 |
-
filenames_ci_map = {f.get("filename", "").lower(): f.get("filename") for f in files_list if f.get("filename")}
|
| 922 |
-
mentioned_normalized = []
|
| 923 |
-
for mfn in mentioned:
|
| 924 |
-
key = mfn.lower()
|
| 925 |
-
if key in filenames_ci_map:
|
| 926 |
-
mentioned_normalized.append(filenames_ci_map[key])
|
| 927 |
-
if mentioned and not mentioned_normalized and files_list:
|
| 928 |
-
# Try looser match: contained filenames ignoring spaces
|
| 929 |
-
norm = {f.get("filename", "").lower().replace(" ", ""): f.get("filename") for f in files_list if f.get("filename")}
|
| 930 |
-
for mfn in mentioned:
|
| 931 |
-
key2 = mfn.lower().replace(" ", "")
|
| 932 |
-
if key2 in norm:
|
| 933 |
-
mentioned_normalized.append(norm[key2])
|
| 934 |
-
if mentioned_normalized:
|
| 935 |
-
logger.info(f"[CHAT] Normalized mentions to stored filenames: {mentioned_normalized}")
|
| 936 |
-
|
| 937 |
-
# 1b) Ask NVIDIA to mark relevance per file
|
| 938 |
-
try:
|
| 939 |
-
from memo.history import get_history_manager
|
| 940 |
-
history_manager = get_history_manager(memory)
|
| 941 |
-
relevant_map = await history_manager.files_relevance(question, files_list, nvidia_rotator)
|
| 942 |
-
relevant_files = [fn for fn, ok in relevant_map.items() if ok]
|
| 943 |
-
logger.info(f"[CHAT] NVIDIA relevant files: {relevant_files}")
|
| 944 |
-
except Exception as e:
|
| 945 |
-
logger.warning(f"[CHAT] NVIDIA relevance failed, defaulting to all files: {e}")
|
| 946 |
-
relevant_files = [f.get("filename") for f in files_list if f.get("filename")]
|
| 947 |
-
|
| 948 |
-
# 1c) Ensure any explicitly mentioned files in the question are included
|
| 949 |
-
# This safeguards against model misclassification
|
| 950 |
-
if mentioned_normalized:
|
| 951 |
-
extra = [fn for fn in mentioned_normalized if fn not in relevant_files]
|
| 952 |
-
relevant_files.extend(extra)
|
| 953 |
-
if extra:
|
| 954 |
-
logger.info(f"[CHAT] Forced-include mentioned files into relevance: {extra}")
|
| 955 |
-
|
| 956 |
-
# 2) Memory context: recent 3 via NVIDIA, remaining 17 via semantic
|
| 957 |
-
# Use enhanced context retrieval if available, otherwise fallback to original method
|
| 958 |
-
try:
|
| 959 |
-
from memo.history import get_history_manager
|
| 960 |
-
history_manager = get_history_manager(memory)
|
| 961 |
-
recent_related, semantic_related = await history_manager.related_recent_and_semantic_context(
|
| 962 |
-
user_id, question, embedder
|
| 963 |
-
)
|
| 964 |
-
except Exception as e:
|
| 965 |
-
logger.warning(f"[CHAT] Enhanced context retrieval failed, using fallback: {e}")
|
| 966 |
-
# Fallback to original method
|
| 967 |
-
recent3 = memory.recent(user_id, 3)
|
| 968 |
-
if recent3:
|
| 969 |
-
sys = "Pick only items that directly relate to the new question. Output the selected items verbatim, no commentary. If none, output nothing."
|
| 970 |
-
numbered = [{"id": i+1, "text": s} for i, s in enumerate(recent3)]
|
| 971 |
-
user = f"Question: {question}\nCandidates:\n{json.dumps(numbered, ensure_ascii=False)}\nSelect any related items and output ONLY their 'text' values concatenated."
|
| 972 |
-
try:
|
| 973 |
-
from utils.api.rotator import robust_post_json
|
| 974 |
-
key = nvidia_rotator.get_key()
|
| 975 |
-
url = "https://integrate.api.nvidia.com/v1/chat/completions"
|
| 976 |
-
payload = {
|
| 977 |
-
"model": os.getenv("NVIDIA_SMALL", "meta/llama-3.1-8b-instruct"),
|
| 978 |
-
"temperature": 0.0,
|
| 979 |
-
"messages": [
|
| 980 |
-
{"role": "system", "content": sys},
|
| 981 |
-
{"role": "user", "content": user},
|
| 982 |
-
]
|
| 983 |
-
}
|
| 984 |
-
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key or ''}"}
|
| 985 |
-
data = await robust_post_json(url, headers, payload, nvidia_rotator)
|
| 986 |
-
recent_related = data["choices"][0]["message"]["content"].strip()
|
| 987 |
-
except Exception as e:
|
| 988 |
-
logger.warning(f"Recent-related NVIDIA error: {e}")
|
| 989 |
-
recent_related = ""
|
| 990 |
-
else:
|
| 991 |
-
recent_related = ""
|
| 992 |
-
|
| 993 |
-
# Get semantic context from remaining memories
|
| 994 |
-
rest17 = memory.rest(user_id, 3)
|
| 995 |
-
if rest17:
|
| 996 |
-
import numpy as np
|
| 997 |
-
def _cosine(a: np.ndarray, b: np.ndarray) -> float:
|
| 998 |
-
denom = (np.linalg.norm(a) * np.linalg.norm(b)) or 1.0
|
| 999 |
-
return float(np.dot(a, b) / denom)
|
| 1000 |
-
|
| 1001 |
-
qv = np.array(embedder.embed([question])[0], dtype="float32")
|
| 1002 |
-
mats = embedder.embed([s.strip() for s in rest17])
|
| 1003 |
-
sims = [(_cosine(qv, np.array(v, dtype="float32")), s) for v, s in zip(mats, rest17)]
|
| 1004 |
-
sims.sort(key=lambda x: x[0], reverse=True)
|
| 1005 |
-
top = [s for (sc, s) in sims[:3] if sc > 0.15]
|
| 1006 |
-
semantic_related = "\n\n".join(top) if top else ""
|
| 1007 |
-
|
| 1008 |
-
# 3) Enhanced query reasoning and RAG vector search
|
| 1009 |
-
logger.info(f"[CHAT] Starting enhanced vector search with relevant_files={relevant_files}")
|
| 1010 |
-
|
| 1011 |
-
# Chain of Thought query breakdown for better retrieval
|
| 1012 |
-
enhanced_queries = await _generate_query_variations(question, nvidia_rotator)
|
| 1013 |
-
logger.info(f"[CHAT] Generated {len(enhanced_queries)} query variations")
|
| 1014 |
-
|
| 1015 |
-
# Try multiple search strategies
|
| 1016 |
-
all_hits = []
|
| 1017 |
-
search_strategies = ["flat", "hybrid", "local"] # Try most accurate first
|
| 1018 |
-
|
| 1019 |
-
for strategy in search_strategies:
|
| 1020 |
-
for query_variant in enhanced_queries:
|
| 1021 |
-
q_vec = embedder.embed([query_variant])[0]
|
| 1022 |
-
hits = rag.vector_search(
|
| 1023 |
-
user_id=user_id,
|
| 1024 |
-
project_id=project_id,
|
| 1025 |
-
query_vector=q_vec,
|
| 1026 |
-
k=k,
|
| 1027 |
-
filenames=relevant_files if relevant_files else None,
|
| 1028 |
-
search_type=strategy
|
| 1029 |
-
)
|
| 1030 |
-
if hits:
|
| 1031 |
-
all_hits.extend(hits)
|
| 1032 |
-
logger.info(f"[CHAT] {strategy} search with '{query_variant[:50]}...' returned {len(hits)} hits")
|
| 1033 |
-
break # If we found hits with this strategy, move to next query
|
| 1034 |
-
if all_hits:
|
| 1035 |
-
break # If we found hits, don't try other strategies
|
| 1036 |
-
|
| 1037 |
-
# Deduplicate and rank results
|
| 1038 |
-
hits = _deduplicate_and_rank_hits(all_hits, question)
|
| 1039 |
-
logger.info(f"[CHAT] Final vector search returned {len(hits) if hits else 0} hits")
|
| 1040 |
-
if not hits:
|
| 1041 |
-
logger.info(f"[CHAT] No hits with relevance filter. relevant_files={relevant_files}")
|
| 1042 |
-
# Fallback 1: Try with original question and flat search
|
| 1043 |
-
q_vec_original = embedder.embed([question])[0]
|
| 1044 |
-
hits = rag.vector_search(
|
| 1045 |
-
user_id=user_id,
|
| 1046 |
-
project_id=project_id,
|
| 1047 |
-
query_vector=q_vec_original,
|
| 1048 |
-
k=k,
|
| 1049 |
-
filenames=relevant_files if relevant_files else None,
|
| 1050 |
-
search_type="flat"
|
| 1051 |
-
)
|
| 1052 |
-
logger.info(f"[CHAT] Fallback flat search → hits={len(hits) if hits else 0}")
|
| 1053 |
-
|
| 1054 |
-
# Fallback 2: if we have explicit mentions, try restricting only to them
|
| 1055 |
-
if not hits and mentioned_normalized:
|
| 1056 |
-
hits = rag.vector_search(
|
| 1057 |
-
user_id=user_id,
|
| 1058 |
-
project_id=project_id,
|
| 1059 |
-
query_vector=q_vec_original,
|
| 1060 |
-
k=k,
|
| 1061 |
-
filenames=mentioned_normalized,
|
| 1062 |
-
search_type="flat"
|
| 1063 |
-
)
|
| 1064 |
-
logger.info(f"[CHAT] Fallback with mentioned files only → hits={len(hits) if hits else 0}")
|
| 1065 |
-
|
| 1066 |
-
# Fallback 3: if still empty, try without any filename restriction
|
| 1067 |
-
if not hits:
|
| 1068 |
-
hits = rag.vector_search(
|
| 1069 |
-
user_id=user_id,
|
| 1070 |
-
project_id=project_id,
|
| 1071 |
-
query_vector=q_vec_original,
|
| 1072 |
-
k=k,
|
| 1073 |
-
filenames=None,
|
| 1074 |
-
search_type="flat"
|
| 1075 |
-
)
|
| 1076 |
-
logger.info(f"[CHAT] Fallback with all files → hits={len(hits) if hits else 0}")
|
| 1077 |
-
# If still no hits, and we have mentioned files, try returning their summaries if present
|
| 1078 |
-
if not hits and mentioned_normalized:
|
| 1079 |
-
fsum_map = {f["filename"]: f.get("summary", "") for f in files_list}
|
| 1080 |
-
summaries = [fsum_map.get(fn, "") for fn in mentioned_normalized]
|
| 1081 |
-
summaries = [s for s in summaries if s]
|
| 1082 |
-
if summaries:
|
| 1083 |
-
answer = ("\n\n---\n\n").join(summaries)
|
| 1084 |
-
return ChatAnswerResponse(
|
| 1085 |
-
answer=answer,
|
| 1086 |
-
sources=[{"filename": fn, "file_summary": True} for fn in mentioned_normalized],
|
| 1087 |
-
relevant_files=mentioned_normalized
|
| 1088 |
-
)
|
| 1089 |
-
if not hits:
|
| 1090 |
-
# Last resort: use summaries from relevant files if we didn't have explicit mentions normalized
|
| 1091 |
-
candidates = mentioned_normalized or relevant_files or []
|
| 1092 |
-
if candidates:
|
| 1093 |
-
fsum_map = {f["filename"]: f.get("summary", "") for f in files_list}
|
| 1094 |
-
summaries = [fsum_map.get(fn, "") for fn in candidates]
|
| 1095 |
-
summaries = [s for s in summaries if s]
|
| 1096 |
-
if summaries:
|
| 1097 |
-
answer = ("\n\n---\n\n").join(summaries)
|
| 1098 |
-
logger.info(f"[CHAT] Falling back to file-level summaries for: {candidates}")
|
| 1099 |
-
return ChatAnswerResponse(
|
| 1100 |
-
answer=answer,
|
| 1101 |
-
sources=[{"filename": fn, "file_summary": True} for fn in candidates],
|
| 1102 |
-
relevant_files=candidates
|
| 1103 |
-
)
|
| 1104 |
-
return ChatAnswerResponse(
|
| 1105 |
-
answer="I don't know based on your uploaded materials. Try uploading more sources or rephrasing the question.",
|
| 1106 |
-
sources=[],
|
| 1107 |
-
relevant_files=relevant_files or mentioned_normalized
|
| 1108 |
-
)
|
| 1109 |
-
# If we get here, we have hits, so continue with normal flow
|
| 1110 |
-
# Compose context
|
| 1111 |
-
contexts = []
|
| 1112 |
-
sources_meta = []
|
| 1113 |
-
for h in hits:
|
| 1114 |
-
doc = h["doc"]
|
| 1115 |
-
score = h["score"]
|
| 1116 |
-
contexts.append(f"[{doc.get('topic_name','Topic')}] {trim_text(doc.get('content',''), 2000)}")
|
| 1117 |
-
sources_meta.append({
|
| 1118 |
-
"filename": doc.get("filename"),
|
| 1119 |
-
"topic_name": doc.get("topic_name"),
|
| 1120 |
-
"page_span": doc.get("page_span"),
|
| 1121 |
-
"score": float(score),
|
| 1122 |
-
"chunk_id": str(doc.get("_id", "")) # Convert ObjectId to string
|
| 1123 |
-
})
|
| 1124 |
-
context_text = "\n\n---\n\n".join(contexts)
|
| 1125 |
-
|
| 1126 |
-
# Add file-level summaries for relevant files
|
| 1127 |
-
file_summary_block = ""
|
| 1128 |
-
if relevant_files:
|
| 1129 |
-
fsum_map = {f["filename"]: f.get("summary","") for f in files_list}
|
| 1130 |
-
lines = [f"[{fn}] {fsum_map.get(fn, '')}" for fn in relevant_files]
|
| 1131 |
-
file_summary_block = "\n".join(lines)
|
| 1132 |
-
|
| 1133 |
-
# Guardrail instruction to avoid hallucination
|
| 1134 |
-
system_prompt = (
|
| 1135 |
-
"You are a careful study assistant. Answer strictly using the given CONTEXT.\n"
|
| 1136 |
-
"If the answer isn't in the context, say 'I don't know based on the provided materials.'\n"
|
| 1137 |
-
"Write concise, clear explanations with citations like (source: actual_filename, topic).\n"
|
| 1138 |
-
"Use the exact filename as provided in the context, not placeholders.\n"
|
| 1139 |
-
)
|
| 1140 |
-
|
| 1141 |
-
# Add recent chat context and historical similarity context
|
| 1142 |
-
history_block = ""
|
| 1143 |
-
if recent_related or semantic_related:
|
| 1144 |
-
history_block = "RECENT_CHAT_CONTEXT:\n" + (recent_related or "") + ("\n\nHISTORICAL_SIMILARITY_CONTEXT:\n" + semantic_related if semantic_related else "")
|
| 1145 |
-
composed_context = ""
|
| 1146 |
-
if history_block:
|
| 1147 |
-
composed_context += history_block + "\n\n"
|
| 1148 |
-
if file_summary_block:
|
| 1149 |
-
composed_context += "FILE_SUMMARIES:\n" + file_summary_block + "\n\n"
|
| 1150 |
-
composed_context += "DOC_CONTEXT:\n" + context_text
|
| 1151 |
-
|
| 1152 |
-
# Compose user prompt
|
| 1153 |
-
user_prompt = f"QUESTION:\n{question}\n\nCONTEXT:\n{composed_context}"
|
| 1154 |
-
# Choose model (cost-aware)
|
| 1155 |
-
selection = select_model(question=question, context=composed_context)
|
| 1156 |
-
logger.info(f"Model selection: {selection}")
|
| 1157 |
-
# Generate answer with model
|
| 1158 |
-
logger.info(f"[CHAT] Generating answer with {selection['provider']} {selection['model']}")
|
| 1159 |
-
try:
|
| 1160 |
-
answer = await generate_answer_with_model(
|
| 1161 |
-
selection=selection,
|
| 1162 |
-
system_prompt=system_prompt,
|
| 1163 |
-
user_prompt=user_prompt,
|
| 1164 |
-
gemini_rotator=gemini_rotator,
|
| 1165 |
-
nvidia_rotator=nvidia_rotator
|
| 1166 |
-
)
|
| 1167 |
-
logger.info(f"[CHAT] Answer generated successfully, length: {len(answer)}")
|
| 1168 |
-
except Exception as e:
|
| 1169 |
-
logger.error(f"LLM error: {e}")
|
| 1170 |
-
answer = "I had trouble contacting the language model provider just now. Please try again."
|
| 1171 |
-
# After answering: summarize QA and store in memory (LRU, last 20)
|
| 1172 |
-
try:
|
| 1173 |
-
from memo.history import get_history_manager
|
| 1174 |
-
history_manager = get_history_manager(memory)
|
| 1175 |
-
qa_sum = await history_manager.summarize_qa_with_nvidia(question, answer, nvidia_rotator)
|
| 1176 |
-
memory.add(user_id, qa_sum)
|
| 1177 |
-
|
| 1178 |
-
# Also store enhanced conversation memory if available
|
| 1179 |
-
if memory.is_enhanced_available():
|
| 1180 |
-
await memory.add_conversation_memory(
|
| 1181 |
-
user_id=user_id,
|
| 1182 |
-
question=question,
|
| 1183 |
-
answer=answer,
|
| 1184 |
-
project_id=project_id,
|
| 1185 |
-
context={
|
| 1186 |
-
"relevant_files": relevant_files,
|
| 1187 |
-
"sources_count": len(sources_meta),
|
| 1188 |
-
"timestamp": time.time()
|
| 1189 |
-
}
|
| 1190 |
-
)
|
| 1191 |
-
except Exception as e:
|
| 1192 |
-
logger.warning(f"QA summarize/store failed: {e}")
|
| 1193 |
-
# Trim for logging
|
| 1194 |
-
logger.info("LLM answer (trimmed): %s", trim_text(answer, 200).replace("\n", " "))
|
| 1195 |
-
return ChatAnswerResponse(answer=answer, sources=sources_meta, relevant_files=relevant_files)
|
| 1196 |
-
|
| 1197 |
-
|
| 1198 |
-
@app.get("/healthz", response_model=HealthResponse)
|
| 1199 |
-
def health():
|
| 1200 |
-
return HealthResponse(ok=True)
|
| 1201 |
-
|
| 1202 |
-
|
| 1203 |
-
@app.get("/test-db")
|
| 1204 |
-
async def test_database():
|
| 1205 |
-
"""Test database connection and basic operations"""
|
| 1206 |
-
try:
|
| 1207 |
-
if not rag:
|
| 1208 |
-
return {
|
| 1209 |
-
"status": "error",
|
| 1210 |
-
"message": "RAG store not initialized",
|
| 1211 |
-
"error_type": "RAGStoreNotInitialized"
|
| 1212 |
-
}
|
| 1213 |
-
|
| 1214 |
-
# Test basic connection
|
| 1215 |
-
rag.client.admin.command('ping')
|
| 1216 |
-
|
| 1217 |
-
# Test basic insert/query
|
| 1218 |
-
test_collection = rag.db["test_collection"]
|
| 1219 |
-
test_doc = {"test": True, "timestamp": datetime.now(timezone.utc)}
|
| 1220 |
-
result = test_collection.insert_one(test_doc)
|
| 1221 |
-
|
| 1222 |
-
# Test query
|
| 1223 |
-
found = test_collection.find_one({"_id": result.inserted_id})
|
| 1224 |
-
|
| 1225 |
-
# Clean up
|
| 1226 |
-
test_collection.delete_one({"_id": result.inserted_id})
|
| 1227 |
-
|
| 1228 |
-
return {
|
| 1229 |
-
"status": "success",
|
| 1230 |
-
"message": "Database connection and operations working correctly",
|
| 1231 |
-
"test_id": str(result.inserted_id),
|
| 1232 |
-
"found_doc": str(found["_id"]) if found else None
|
| 1233 |
-
}
|
| 1234 |
-
|
| 1235 |
-
except Exception as e:
|
| 1236 |
-
logger.error(f"[TEST-DB] Database test failed: {str(e)}")
|
| 1237 |
-
return {
|
| 1238 |
-
"status": "error",
|
| 1239 |
-
"message": f"Database test failed: {str(e)}",
|
| 1240 |
-
"error_type": str(type(e))
|
| 1241 |
-
}
|
| 1242 |
-
|
| 1243 |
-
|
| 1244 |
-
@app.get("/rag-status")
|
| 1245 |
-
async def rag_status():
|
| 1246 |
-
"""Check the status of the RAG store"""
|
| 1247 |
-
if not rag:
|
| 1248 |
-
return {
|
| 1249 |
-
"status": "error",
|
| 1250 |
-
"message": "RAG store not initialized",
|
| 1251 |
-
"rag_available": False
|
| 1252 |
-
}
|
| 1253 |
-
|
| 1254 |
-
try:
|
| 1255 |
-
# Test connection
|
| 1256 |
-
rag.client.admin.command('ping')
|
| 1257 |
-
return {
|
| 1258 |
-
"status": "success",
|
| 1259 |
-
"message": "RAG store is available and connected",
|
| 1260 |
-
"rag_available": True,
|
| 1261 |
-
"database": rag.db.name,
|
| 1262 |
-
"collections": {
|
| 1263 |
-
"chunks": rag.chunks.name,
|
| 1264 |
-
"files": rag.files.name
|
| 1265 |
-
}
|
| 1266 |
-
}
|
| 1267 |
-
except Exception as e:
|
| 1268 |
-
return {
|
| 1269 |
-
"status": "error",
|
| 1270 |
-
"message": f"RAG store connection failed: {str(e)}",
|
| 1271 |
-
"rag_available": False,
|
| 1272 |
-
"error": str(e)
|
| 1273 |
-
}
|
| 1274 |
|
| 1275 |
# Local dev
|
| 1276 |
# if __name__ == "__main__":
|
| 1277 |
# import uvicorn
|
| 1278 |
-
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
| 1 |
# https://binkhoale1812-edsummariser.hf.space/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
# Minimal orchestrator that exposes the FastAPI app and registers routes
|
| 4 |
+
from helpers import app # FastAPI instance
|
|
|
|
| 5 |
|
| 6 |
+
# Import route modules for side-effect registration
|
| 7 |
+
import routes.auth as _routes_auth
|
| 8 |
+
import routes.projects as _routes_projects
|
| 9 |
+
import routes.files as _routes_files
|
| 10 |
+
import routes.reports as _routes_report
|
| 11 |
+
import routes.chats as _routes_chat
|
| 12 |
+
import routes.health as _routes_health
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Local dev
|
| 15 |
# if __name__ == "__main__":
|
| 16 |
# import uvicorn
|
| 17 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 18 |
+
|
| 19 |
+
|
copy.py
ADDED
|
@@ -0,0 +1,1278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://binkhoale1812-edsummariser.hf.space/
|
| 2 |
+
import os, io, re, uuid, json, time, logging
|
| 3 |
+
from typing import List, Dict, Any, Optional
|
| 4 |
+
from datetime import datetime, timezone
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
import asyncio
|
| 7 |
+
|
| 8 |
+
# Load environment variables from .env file
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
load_dotenv()
|
| 11 |
+
|
| 12 |
+
from fastapi import FastAPI, UploadFile, File, Form, Request, HTTPException, BackgroundTasks
|
| 13 |
+
from fastapi.responses import FileResponse, JSONResponse, HTMLResponse
|
| 14 |
+
from fastapi.staticfiles import StaticFiles
|
| 15 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
+
|
| 17 |
+
# MongoDB imports
|
| 18 |
+
from pymongo.errors import PyMongoError, ConnectionFailure, ServerSelectionTimeoutError
|
| 19 |
+
|
| 20 |
+
from utils.api.rotator import APIKeyRotator
|
| 21 |
+
from utils.ingestion.parser import parse_pdf_bytes, parse_docx_bytes
|
| 22 |
+
from utils.ingestion.caption import BlipCaptioner
|
| 23 |
+
from utils.ingestion.chunker import build_cards_from_pages
|
| 24 |
+
from utils.rag.embeddings import EmbeddingClient
|
| 25 |
+
from utils.rag.rag import RAGStore, ensure_indexes
|
| 26 |
+
from utils.api.router import select_model, generate_answer_with_model
|
| 27 |
+
from utils.service.summarizer import cheap_summarize
|
| 28 |
+
from utils.service.common import trim_text
|
| 29 |
+
from utils.logger import get_logger
|
| 30 |
+
import re
|
| 31 |
+
|
| 32 |
+
# ────────────────────────────── Response Models ──────────────────────────────
|
| 33 |
+
class ProjectResponse(BaseModel):
|
| 34 |
+
project_id: str
|
| 35 |
+
user_id: str
|
| 36 |
+
name: str
|
| 37 |
+
description: str
|
| 38 |
+
created_at: str
|
| 39 |
+
updated_at: str
|
| 40 |
+
|
| 41 |
+
class ProjectsListResponse(BaseModel):
|
| 42 |
+
projects: List[ProjectResponse]
|
| 43 |
+
|
| 44 |
+
class ChatMessageResponse(BaseModel):
|
| 45 |
+
user_id: str
|
| 46 |
+
project_id: str
|
| 47 |
+
role: str
|
| 48 |
+
content: str
|
| 49 |
+
timestamp: float
|
| 50 |
+
created_at: str
|
| 51 |
+
sources: Optional[List[Dict[str, Any]]] = None
|
| 52 |
+
|
| 53 |
+
class ChatHistoryResponse(BaseModel):
|
| 54 |
+
messages: List[ChatMessageResponse]
|
| 55 |
+
|
| 56 |
+
class MessageResponse(BaseModel):
|
| 57 |
+
message: str
|
| 58 |
+
|
| 59 |
+
class UploadResponse(BaseModel):
|
| 60 |
+
job_id: str
|
| 61 |
+
status: str
|
| 62 |
+
total_files: Optional[int] = None
|
| 63 |
+
|
| 64 |
+
class FileSummaryResponse(BaseModel):
|
| 65 |
+
filename: str
|
| 66 |
+
summary: str
|
| 67 |
+
|
| 68 |
+
class ChatAnswerResponse(BaseModel):
|
| 69 |
+
answer: str
|
| 70 |
+
sources: List[Dict[str, Any]]
|
| 71 |
+
relevant_files: Optional[List[str]] = None
|
| 72 |
+
|
| 73 |
+
class HealthResponse(BaseModel):
|
| 74 |
+
ok: bool
|
| 75 |
+
|
| 76 |
+
class ReportResponse(BaseModel):
|
| 77 |
+
filename: str
|
| 78 |
+
report_markdown: str
|
| 79 |
+
sources: List[Dict[str, Any]]
|
| 80 |
+
|
| 81 |
+
# ────────────────────────────── App Setup ──────────────────────────────
|
| 82 |
+
logger = get_logger("APP", name="studybuddy")
|
| 83 |
+
|
| 84 |
+
app = FastAPI(title="StudyBuddy RAG", version="0.1.0")
|
| 85 |
+
app.add_middleware(
|
| 86 |
+
CORSMiddleware,
|
| 87 |
+
allow_origins=["*"],
|
| 88 |
+
allow_credentials=True,
|
| 89 |
+
allow_methods=["*"],
|
| 90 |
+
allow_headers=["*"],
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Serve static files (index.html, scripts.js, styles.css)
|
| 94 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 95 |
+
|
| 96 |
+
# In-memory job tracker (for progress queries)
|
| 97 |
+
app.state.jobs = {}
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# ────────────────────────────── Global Clients ──────────────────────────────
|
| 101 |
+
# API rotators (round robin + auto failover on quota errors)
|
| 102 |
+
gemini_rotator = APIKeyRotator(prefix="GEMINI_API_", max_slots=5)
|
| 103 |
+
nvidia_rotator = APIKeyRotator(prefix="NVIDIA_API_", max_slots=5)
|
| 104 |
+
|
| 105 |
+
# Captioner + Embeddings (lazy init inside classes)
|
| 106 |
+
captioner = BlipCaptioner()
|
| 107 |
+
embedder = EmbeddingClient(model_name=os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2"))
|
| 108 |
+
|
| 109 |
+
# Mongo / RAG store
|
| 110 |
+
try:
|
| 111 |
+
rag = RAGStore(mongo_uri=os.getenv("MONGO_URI"), db_name=os.getenv("MONGO_DB", "studybuddy"))
|
| 112 |
+
# Test the connection
|
| 113 |
+
rag.client.admin.command('ping')
|
| 114 |
+
logger.info("[APP] MongoDB connection successful")
|
| 115 |
+
ensure_indexes(rag)
|
| 116 |
+
logger.info("[APP] MongoDB indexes ensured")
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logger.error(f"[APP] Failed to initialize MongoDB/RAG store: {str(e)}")
|
| 119 |
+
logger.error(f"[APP] MONGO_URI: {os.getenv('MONGO_URI', 'Not set')}")
|
| 120 |
+
logger.error(f"[APP] MONGO_DB: {os.getenv('MONGO_DB', 'studybuddy')}")
|
| 121 |
+
# Create a dummy RAG store for now - this will cause errors but prevents the app from crashing
|
| 122 |
+
rag = None
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# ────────────────────────────── Auth Helpers/Routes ───────────────────────────
|
| 126 |
+
import hashlib
|
| 127 |
+
import secrets
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def _hash_password(password: str, salt: Optional[str] = None) -> Dict[str, str]:
|
| 131 |
+
salt = salt or secrets.token_hex(16)
|
| 132 |
+
dk = hashlib.pbkdf2_hmac("sha256", password.encode("utf-8"), bytes.fromhex(salt), 120000)
|
| 133 |
+
return {"salt": salt, "hash": dk.hex()}
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def _verify_password(password: str, salt: str, expected_hex: str) -> bool:
|
| 137 |
+
dk = hashlib.pbkdf2_hmac("sha256", password.encode("utf-8"), bytes.fromhex(salt), 120000)
|
| 138 |
+
return secrets.compare_digest(dk.hex(), expected_hex)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
@app.post("/auth/signup")
|
| 142 |
+
async def signup(email: str = Form(...), password: str = Form(...)):
|
| 143 |
+
email = email.strip().lower()
|
| 144 |
+
if not email or not password or "@" not in email:
|
| 145 |
+
raise HTTPException(400, detail="Invalid email or password")
|
| 146 |
+
users = rag.db["users"]
|
| 147 |
+
if users.find_one({"email": email}):
|
| 148 |
+
raise HTTPException(409, detail="Email already registered")
|
| 149 |
+
user_id = str(uuid.uuid4())
|
| 150 |
+
hp = _hash_password(password)
|
| 151 |
+
users.insert_one({
|
| 152 |
+
"email": email,
|
| 153 |
+
"user_id": user_id,
|
| 154 |
+
"pw_salt": hp["salt"],
|
| 155 |
+
"pw_hash": hp["hash"],
|
| 156 |
+
"created_at": int(time.time())
|
| 157 |
+
})
|
| 158 |
+
logger.info(f"[AUTH] Created user {email} -> {user_id}")
|
| 159 |
+
return {"email": email, "user_id": user_id}
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
@app.post("/auth/login")
|
| 163 |
+
async def login(email: str = Form(...), password: str = Form(...)):
|
| 164 |
+
email = email.strip().lower()
|
| 165 |
+
users = rag.db["users"]
|
| 166 |
+
doc = users.find_one({"email": email})
|
| 167 |
+
if not doc:
|
| 168 |
+
raise HTTPException(401, detail="Invalid credentials")
|
| 169 |
+
if not _verify_password(password, doc.get("pw_salt", ""), doc.get("pw_hash", "")):
|
| 170 |
+
raise HTTPException(401, detail="Invalid credentials")
|
| 171 |
+
logger.info(f"[AUTH] Login {email}")
|
| 172 |
+
return {"email": email, "user_id": doc.get("user_id")}
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# ────────────────────────────── Project Management ───────────────────────────
|
| 176 |
+
@app.post("/projects/create", response_model=ProjectResponse)
|
| 177 |
+
async def create_project(user_id: str = Form(...), name: str = Form(...), description: str = Form("")):
|
| 178 |
+
"""Create a new project for a user"""
|
| 179 |
+
try:
|
| 180 |
+
if not rag:
|
| 181 |
+
raise HTTPException(500, detail="Database connection not available")
|
| 182 |
+
|
| 183 |
+
if not name.strip():
|
| 184 |
+
raise HTTPException(400, detail="Project name is required")
|
| 185 |
+
|
| 186 |
+
if not user_id.strip():
|
| 187 |
+
raise HTTPException(400, detail="User ID is required")
|
| 188 |
+
|
| 189 |
+
project_id = str(uuid.uuid4())
|
| 190 |
+
current_time = datetime.now(timezone.utc)
|
| 191 |
+
|
| 192 |
+
project = {
|
| 193 |
+
"project_id": project_id,
|
| 194 |
+
"user_id": user_id,
|
| 195 |
+
"name": name.strip(),
|
| 196 |
+
"description": description.strip(),
|
| 197 |
+
"created_at": current_time,
|
| 198 |
+
"updated_at": current_time
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
logger.info(f"[PROJECT] Creating project {name} for user {user_id}")
|
| 202 |
+
|
| 203 |
+
# Insert the project
|
| 204 |
+
try:
|
| 205 |
+
result = rag.db["projects"].insert_one(project)
|
| 206 |
+
logger.info(f"[PROJECT] Created project {name} with ID {project_id}, MongoDB result: {result.inserted_id}")
|
| 207 |
+
except PyMongoError as mongo_error:
|
| 208 |
+
logger.error(f"[PROJECT] MongoDB error creating project: {str(mongo_error)}")
|
| 209 |
+
raise HTTPException(500, detail=f"Database error: {str(mongo_error)}")
|
| 210 |
+
except Exception as db_error:
|
| 211 |
+
logger.error(f"[PROJECT] Database error creating project: {str(db_error)}")
|
| 212 |
+
raise HTTPException(500, detail=f"Database error: {str(db_error)}")
|
| 213 |
+
|
| 214 |
+
# Return a properly formatted response
|
| 215 |
+
response = ProjectResponse(
|
| 216 |
+
project_id=project_id,
|
| 217 |
+
user_id=user_id,
|
| 218 |
+
name=name.strip(),
|
| 219 |
+
description=description.strip(),
|
| 220 |
+
created_at=current_time.isoformat(),
|
| 221 |
+
updated_at=current_time.isoformat()
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
logger.info(f"[PROJECT] Successfully created project {name} for user {user_id}")
|
| 225 |
+
return response
|
| 226 |
+
|
| 227 |
+
except HTTPException:
|
| 228 |
+
# Re-raise HTTP exceptions
|
| 229 |
+
raise
|
| 230 |
+
except Exception as e:
|
| 231 |
+
logger.error(f"[PROJECT] Error creating project: {str(e)}")
|
| 232 |
+
logger.error(f"[PROJECT] Error type: {type(e)}")
|
| 233 |
+
logger.error(f"[PROJECT] Error details: {e}")
|
| 234 |
+
raise HTTPException(500, detail=f"Failed to create project: {str(e)}")
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@app.get("/projects", response_model=ProjectsListResponse)
|
| 238 |
+
async def list_projects(user_id: str):
|
| 239 |
+
"""List all projects for a user"""
|
| 240 |
+
projects_cursor = rag.db["projects"].find(
|
| 241 |
+
{"user_id": user_id}
|
| 242 |
+
).sort("updated_at", -1)
|
| 243 |
+
|
| 244 |
+
projects = []
|
| 245 |
+
for project in projects_cursor:
|
| 246 |
+
projects.append(ProjectResponse(
|
| 247 |
+
project_id=project["project_id"],
|
| 248 |
+
user_id=project["user_id"],
|
| 249 |
+
name=project["name"],
|
| 250 |
+
description=project.get("description", ""),
|
| 251 |
+
created_at=project["created_at"].isoformat() if isinstance(project["created_at"], datetime) else str(project["created_at"]),
|
| 252 |
+
updated_at=project["updated_at"].isoformat() if isinstance(project["updated_at"], datetime) else str(project["updated_at"])
|
| 253 |
+
))
|
| 254 |
+
|
| 255 |
+
return ProjectsListResponse(projects=projects)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
@app.get("/projects/{project_id}", response_model=ProjectResponse)
|
| 259 |
+
async def get_project(project_id: str, user_id: str):
|
| 260 |
+
"""Get a specific project (with user ownership check)"""
|
| 261 |
+
project = rag.db["projects"].find_one(
|
| 262 |
+
{"project_id": project_id, "user_id": user_id}
|
| 263 |
+
)
|
| 264 |
+
if not project:
|
| 265 |
+
raise HTTPException(404, detail="Project not found")
|
| 266 |
+
|
| 267 |
+
return ProjectResponse(
|
| 268 |
+
project_id=project["project_id"],
|
| 269 |
+
user_id=project["user_id"],
|
| 270 |
+
name=project["name"],
|
| 271 |
+
description=project.get("description", ""),
|
| 272 |
+
created_at=project["created_at"].isoformat() if isinstance(project["created_at"], datetime) else str(project["created_at"]),
|
| 273 |
+
updated_at=project["updated_at"].isoformat() if isinstance(project["updated_at"], datetime) else str(project["updated_at"])
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
@app.delete("/projects/{project_id}", response_model=MessageResponse)
|
| 278 |
+
async def delete_project(project_id: str, user_id: str):
|
| 279 |
+
"""Delete a project and all its associated data"""
|
| 280 |
+
# Check ownership
|
| 281 |
+
project = rag.db["projects"].find_one({"project_id": project_id, "user_id": user_id})
|
| 282 |
+
if not project:
|
| 283 |
+
raise HTTPException(404, detail="Project not found")
|
| 284 |
+
|
| 285 |
+
# Delete project and all associated data
|
| 286 |
+
rag.db["projects"].delete_one({"project_id": project_id})
|
| 287 |
+
rag.db["chunks"].delete_many({"project_id": project_id})
|
| 288 |
+
rag.db["files"].delete_many({"project_id": project_id})
|
| 289 |
+
rag.db["chat_sessions"].delete_many({"project_id": project_id})
|
| 290 |
+
|
| 291 |
+
logger.info(f"[PROJECT] Deleted project {project_id} for user {user_id}")
|
| 292 |
+
return MessageResponse(message="Project deleted successfully")
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
# ────────────────────────────── Chat Sessions ──────────────────────────────
|
| 296 |
+
@app.post("/chat/save", response_model=MessageResponse)
|
| 297 |
+
async def save_chat_message(
|
| 298 |
+
user_id: str = Form(...),
|
| 299 |
+
project_id: str = Form(...),
|
| 300 |
+
role: str = Form(...),
|
| 301 |
+
content: str = Form(...),
|
| 302 |
+
timestamp: Optional[float] = Form(None),
|
| 303 |
+
sources: Optional[str] = Form(None)
|
| 304 |
+
):
|
| 305 |
+
"""Save a chat message to the session"""
|
| 306 |
+
if role not in ["user", "assistant"]:
|
| 307 |
+
raise HTTPException(400, detail="Invalid role")
|
| 308 |
+
|
| 309 |
+
# Parse optional sources JSON
|
| 310 |
+
parsed_sources: Optional[List[Dict[str, Any]]] = None
|
| 311 |
+
if sources:
|
| 312 |
+
try:
|
| 313 |
+
parsed = json.loads(sources)
|
| 314 |
+
if isinstance(parsed, list):
|
| 315 |
+
parsed_sources = parsed
|
| 316 |
+
except Exception:
|
| 317 |
+
parsed_sources = None
|
| 318 |
+
|
| 319 |
+
message = {
|
| 320 |
+
"user_id": user_id,
|
| 321 |
+
"project_id": project_id,
|
| 322 |
+
"role": role,
|
| 323 |
+
"content": content,
|
| 324 |
+
"timestamp": timestamp or time.time(),
|
| 325 |
+
"created_at": datetime.now(timezone.utc),
|
| 326 |
+
**({"sources": parsed_sources} if parsed_sources is not None else {})
|
| 327 |
+
}
|
| 328 |
+
|
| 329 |
+
rag.db["chat_sessions"].insert_one(message)
|
| 330 |
+
return MessageResponse(message="Chat message saved")
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
@app.get("/chat/history", response_model=ChatHistoryResponse)
|
| 334 |
+
async def get_chat_history(user_id: str, project_id: str, limit: int = 100):
|
| 335 |
+
"""Get chat history for a project"""
|
| 336 |
+
messages_cursor = rag.db["chat_sessions"].find(
|
| 337 |
+
{"user_id": user_id, "project_id": project_id}
|
| 338 |
+
).sort("timestamp", 1).limit(limit)
|
| 339 |
+
|
| 340 |
+
messages = []
|
| 341 |
+
for message in messages_cursor:
|
| 342 |
+
messages.append(ChatMessageResponse(
|
| 343 |
+
user_id=message["user_id"],
|
| 344 |
+
project_id=message["project_id"],
|
| 345 |
+
role=message["role"],
|
| 346 |
+
content=message["content"],
|
| 347 |
+
timestamp=message["timestamp"],
|
| 348 |
+
created_at=message["created_at"].isoformat() if isinstance(message["created_at"], datetime) else str(message["created_at"]),
|
| 349 |
+
sources=message.get("sources")
|
| 350 |
+
))
|
| 351 |
+
|
| 352 |
+
return ChatHistoryResponse(messages=messages)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
@app.delete("/chat/history", response_model=MessageResponse)
|
| 356 |
+
async def delete_chat_history(user_id: str, project_id: str):
|
| 357 |
+
try:
|
| 358 |
+
rag.db["chat_sessions"].delete_many({"user_id": user_id, "project_id": project_id})
|
| 359 |
+
logger.info(f"[CHAT] Cleared history for user {user_id} project {project_id}")
|
| 360 |
+
# Also clear in-memory LRU for this user to avoid stale context
|
| 361 |
+
try:
|
| 362 |
+
from memo.core import get_memory_system
|
| 363 |
+
memory = get_memory_system()
|
| 364 |
+
memory.clear(user_id)
|
| 365 |
+
logger.info(f"[CHAT] Cleared memory for user {user_id}")
|
| 366 |
+
except Exception as me:
|
| 367 |
+
logger.warning(f"[CHAT] Failed to clear memory for user {user_id}: {me}")
|
| 368 |
+
return MessageResponse(message="Chat history cleared")
|
| 369 |
+
except Exception as e:
|
| 370 |
+
raise HTTPException(500, detail=f"Failed to clear chat history: {str(e)}")
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
# ────────────────────────────── Helpers ──────────────────────────────
|
| 374 |
+
def _infer_mime(filename: str) -> str:
|
| 375 |
+
lower = filename.lower()
|
| 376 |
+
if lower.endswith(".pdf"):
|
| 377 |
+
return "application/pdf"
|
| 378 |
+
if lower.endswith(".docx"):
|
| 379 |
+
return "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
| 380 |
+
return "application/octet-stream"
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
def _extract_pages(filename: str, file_bytes: bytes) -> List[Dict[str, Any]]:
|
| 384 |
+
mime = _infer_mime(filename)
|
| 385 |
+
if mime == "application/pdf":
|
| 386 |
+
return parse_pdf_bytes(file_bytes)
|
| 387 |
+
elif mime == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
| 388 |
+
return parse_docx_bytes(file_bytes)
|
| 389 |
+
else:
|
| 390 |
+
raise HTTPException(status_code=400, detail=f"Unsupported file type: {filename}")
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
# ────────────────────────────── Routes ──────────────────────────────
|
| 394 |
+
@app.get("/", response_class=HTMLResponse)
|
| 395 |
+
def index():
|
| 396 |
+
index_path = os.path.join("static", "index.html")
|
| 397 |
+
if not os.path.exists(index_path):
|
| 398 |
+
return HTMLResponse("<h1>StudyBuddy</h1><p>Static files not found.</p>")
|
| 399 |
+
return FileResponse(index_path)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
@app.post("/upload", response_model=UploadResponse)
|
| 403 |
+
async def upload_files(
|
| 404 |
+
request: Request,
|
| 405 |
+
background_tasks: BackgroundTasks,
|
| 406 |
+
user_id: str = Form(...),
|
| 407 |
+
project_id: str = Form(...),
|
| 408 |
+
files: List[UploadFile] = File(...),
|
| 409 |
+
replace_filenames: Optional[str] = Form(None), # JSON array of filenames to replace
|
| 410 |
+
rename_map: Optional[str] = Form(None), # JSON object {original: newname}
|
| 411 |
+
):
|
| 412 |
+
"""
|
| 413 |
+
Ingest many files: PDF/DOCX.
|
| 414 |
+
Steps:
|
| 415 |
+
1) Extract text & images
|
| 416 |
+
2) Caption images (BLIP base, CPU ok)
|
| 417 |
+
3) Merge captions into page text
|
| 418 |
+
4) Chunk into semantic cards (topic_name, summary, content + metadata)
|
| 419 |
+
5) Embed with all-MiniLM-L6-v2
|
| 420 |
+
6) Store in MongoDB with per-user and per-project metadata
|
| 421 |
+
7) Create a file-level summary
|
| 422 |
+
"""
|
| 423 |
+
job_id = str(uuid.uuid4())
|
| 424 |
+
|
| 425 |
+
# Basic upload policy limits
|
| 426 |
+
max_files = int(os.getenv("MAX_FILES_PER_UPLOAD", "15"))
|
| 427 |
+
max_mb = int(os.getenv("MAX_FILE_MB", "50"))
|
| 428 |
+
if len(files) > max_files:
|
| 429 |
+
raise HTTPException(400, detail=f"Too many files. Max {max_files} allowed per upload.")
|
| 430 |
+
|
| 431 |
+
# Parse replace/rename directives
|
| 432 |
+
replace_set = set()
|
| 433 |
+
try:
|
| 434 |
+
if replace_filenames:
|
| 435 |
+
replace_set = set(json.loads(replace_filenames))
|
| 436 |
+
except Exception:
|
| 437 |
+
pass
|
| 438 |
+
rename_dict: Dict[str, str] = {}
|
| 439 |
+
try:
|
| 440 |
+
if rename_map:
|
| 441 |
+
rename_dict = json.loads(rename_map)
|
| 442 |
+
except Exception:
|
| 443 |
+
pass
|
| 444 |
+
|
| 445 |
+
preloaded_files = []
|
| 446 |
+
for uf in files:
|
| 447 |
+
raw = await uf.read()
|
| 448 |
+
if len(raw) > max_mb * 1024 * 1024:
|
| 449 |
+
raise HTTPException(400, detail=f"{uf.filename} exceeds {max_mb} MB limit")
|
| 450 |
+
# Apply rename if present
|
| 451 |
+
eff_name = rename_dict.get(uf.filename, uf.filename)
|
| 452 |
+
preloaded_files.append((eff_name, raw))
|
| 453 |
+
|
| 454 |
+
# Initialize job status
|
| 455 |
+
app.state.jobs[job_id] = {
|
| 456 |
+
"created_at": time.time(),
|
| 457 |
+
"total": len(preloaded_files),
|
| 458 |
+
"completed": 0,
|
| 459 |
+
"status": "processing",
|
| 460 |
+
"last_error": None,
|
| 461 |
+
}
|
| 462 |
+
|
| 463 |
+
# Single background task: process files sequentially with isolation
|
| 464 |
+
async def _process_all():
|
| 465 |
+
for idx, (fname, raw) in enumerate(preloaded_files, start=1):
|
| 466 |
+
try:
|
| 467 |
+
# If instructed to replace this filename, remove previous data first
|
| 468 |
+
if fname in replace_set:
|
| 469 |
+
try:
|
| 470 |
+
rag.db["chunks"].delete_many({"user_id": user_id, "project_id": project_id, "filename": fname})
|
| 471 |
+
rag.db["files"].delete_many({"user_id": user_id, "project_id": project_id, "filename": fname})
|
| 472 |
+
logger.info(f"[{job_id}] Replaced prior data for {fname}")
|
| 473 |
+
except Exception as de:
|
| 474 |
+
logger.warning(f"[{job_id}] Replace delete failed for {fname}: {de}")
|
| 475 |
+
logger.info(f"[{job_id}] ({idx}/{len(preloaded_files)}) Parsing {fname} ({len(raw)} bytes)")
|
| 476 |
+
|
| 477 |
+
# Extract pages from file
|
| 478 |
+
pages = _extract_pages(fname, raw)
|
| 479 |
+
|
| 480 |
+
# Caption images per page (if any)
|
| 481 |
+
num_imgs = sum(len(p.get("images", [])) for p in pages)
|
| 482 |
+
captions = []
|
| 483 |
+
if num_imgs > 0:
|
| 484 |
+
for p in pages:
|
| 485 |
+
caps = []
|
| 486 |
+
for im in p.get("images", []):
|
| 487 |
+
try:
|
| 488 |
+
cap = captioner.caption_image(im)
|
| 489 |
+
caps.append(cap)
|
| 490 |
+
except Exception as e:
|
| 491 |
+
logger.warning(f"[{job_id}] Caption error in {fname}: {e}")
|
| 492 |
+
captions.append(caps)
|
| 493 |
+
else:
|
| 494 |
+
captions = [[] for _ in pages]
|
| 495 |
+
|
| 496 |
+
# Merge captions into text
|
| 497 |
+
for p, caps in zip(pages, captions):
|
| 498 |
+
if caps:
|
| 499 |
+
p["text"] = (p.get("text", "") + "\n\n" + "\n".join([f"[Image] {c}" for c in caps])).strip()
|
| 500 |
+
|
| 501 |
+
# Build cards
|
| 502 |
+
cards = await build_cards_from_pages(pages, filename=fname, user_id=user_id, project_id=project_id)
|
| 503 |
+
logger.info(f"[{job_id}] Built {len(cards)} cards for {fname}")
|
| 504 |
+
|
| 505 |
+
# Embed & store
|
| 506 |
+
embeddings = embedder.embed([c["content"] for c in cards])
|
| 507 |
+
for c, vec in zip(cards, embeddings):
|
| 508 |
+
c["embedding"] = vec
|
| 509 |
+
|
| 510 |
+
rag.store_cards(cards)
|
| 511 |
+
|
| 512 |
+
# File-level summary (cheap extractive)
|
| 513 |
+
full_text = "\n\n".join(p.get("text", "") for p in pages)
|
| 514 |
+
file_summary = await cheap_summarize(full_text, max_sentences=6)
|
| 515 |
+
rag.upsert_file_summary(user_id=user_id, project_id=project_id, filename=fname, summary=file_summary)
|
| 516 |
+
logger.info(f"[{job_id}] Completed {fname}")
|
| 517 |
+
# Update job progress
|
| 518 |
+
job = app.state.jobs.get(job_id)
|
| 519 |
+
if job:
|
| 520 |
+
job["completed"] = idx
|
| 521 |
+
job["status"] = "processing" if idx < job.get("total", 0) else "completed"
|
| 522 |
+
except Exception as e:
|
| 523 |
+
logger.error(f"[{job_id}] Failed processing {fname}: {e}")
|
| 524 |
+
job = app.state.jobs.get(job_id)
|
| 525 |
+
if job:
|
| 526 |
+
job["last_error"] = str(e)
|
| 527 |
+
job["completed"] = idx # count as completed attempt
|
| 528 |
+
finally:
|
| 529 |
+
# Yield control between files to keep loop responsive
|
| 530 |
+
await asyncio.sleep(0)
|
| 531 |
+
|
| 532 |
+
logger.info(f"[{job_id}] Ingestion complete for {len(preloaded_files)} files")
|
| 533 |
+
# Finalize job status
|
| 534 |
+
job = app.state.jobs.get(job_id)
|
| 535 |
+
if job:
|
| 536 |
+
job["status"] = "completed"
|
| 537 |
+
|
| 538 |
+
background_tasks.add_task(_process_all)
|
| 539 |
+
return UploadResponse(job_id=job_id, status="processing", total_files=len(preloaded_files))
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
@app.get("/upload/status")
|
| 543 |
+
async def upload_status(job_id: str):
|
| 544 |
+
job = app.state.jobs.get(job_id)
|
| 545 |
+
if not job:
|
| 546 |
+
raise HTTPException(404, detail="Job not found")
|
| 547 |
+
percent = 0
|
| 548 |
+
if job.get("total"):
|
| 549 |
+
percent = int(round((job.get("completed", 0) / job.get("total", 1)) * 100))
|
| 550 |
+
return {
|
| 551 |
+
"job_id": job_id,
|
| 552 |
+
"status": job.get("status"),
|
| 553 |
+
"completed": job.get("completed"),
|
| 554 |
+
"total": job.get("total"),
|
| 555 |
+
"percent": percent,
|
| 556 |
+
"last_error": job.get("last_error"),
|
| 557 |
+
"created_at": job.get("created_at"),
|
| 558 |
+
}
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
@app.get("/files")
|
| 562 |
+
async def list_project_files(user_id: str, project_id: str):
|
| 563 |
+
"""Return stored filenames and summaries for a project."""
|
| 564 |
+
files = rag.list_files(user_id=user_id, project_id=project_id)
|
| 565 |
+
# Ensure filenames list
|
| 566 |
+
filenames = [f.get("filename") for f in files if f.get("filename")]
|
| 567 |
+
return {"files": files, "filenames": filenames}
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
@app.delete("/files", response_model=MessageResponse)
|
| 571 |
+
async def delete_file(user_id: str, project_id: str, filename: str):
|
| 572 |
+
"""Delete a file summary and associated chunks for a project."""
|
| 573 |
+
try:
|
| 574 |
+
rag.db["files"].delete_many({"user_id": user_id, "project_id": project_id, "filename": filename})
|
| 575 |
+
rag.db["chunks"].delete_many({"user_id": user_id, "project_id": project_id, "filename": filename})
|
| 576 |
+
logger.info(f"[FILES] Deleted file {filename} for user {user_id} project {project_id}")
|
| 577 |
+
return MessageResponse(message="File deleted")
|
| 578 |
+
except Exception as e:
|
| 579 |
+
raise HTTPException(500, detail=f"Failed to delete file: {str(e)}")
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
@app.get("/cards")
|
| 583 |
+
def list_cards(user_id: str, project_id: str, filename: Optional[str] = None, limit: int = 50, skip: int = 0):
|
| 584 |
+
"""List cards for a project"""
|
| 585 |
+
cards = rag.list_cards(user_id=user_id, project_id=project_id, filename=filename, limit=limit, skip=skip)
|
| 586 |
+
# Ensure all cards are JSON serializable
|
| 587 |
+
serializable_cards = []
|
| 588 |
+
for card in cards:
|
| 589 |
+
serializable_card = {}
|
| 590 |
+
for key, value in card.items():
|
| 591 |
+
if key == '_id':
|
| 592 |
+
serializable_card[key] = str(value) # Convert ObjectId to string
|
| 593 |
+
elif isinstance(value, datetime):
|
| 594 |
+
serializable_card[key] = value.isoformat() # Convert datetime to ISO string
|
| 595 |
+
else:
|
| 596 |
+
serializable_card[key] = value
|
| 597 |
+
serializable_cards.append(serializable_card)
|
| 598 |
+
# Sort cards by topic_name
|
| 599 |
+
return {"cards": serializable_cards}
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
@app.get("/file-summary", response_model=FileSummaryResponse)
|
| 603 |
+
def get_file_summary(user_id: str, project_id: str, filename: str):
|
| 604 |
+
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=filename)
|
| 605 |
+
if not doc:
|
| 606 |
+
raise HTTPException(404, detail="No summary found for that file.")
|
| 607 |
+
return FileSummaryResponse(filename=filename, summary=doc.get("summary", ""))
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
@app.post("/report", response_model=ReportResponse)
|
| 611 |
+
async def generate_report(
|
| 612 |
+
user_id: str = Form(...),
|
| 613 |
+
project_id: str = Form(...),
|
| 614 |
+
filename: str = Form(...),
|
| 615 |
+
outline_words: int = Form(200),
|
| 616 |
+
report_words: int = Form(1200),
|
| 617 |
+
instructions: str = Form("")
|
| 618 |
+
):
|
| 619 |
+
"""
|
| 620 |
+
Generate a Markdown report for a single document using a lightweight CoT:
|
| 621 |
+
1) Gemini Flash: create a structured outline based on file summary + top chunks
|
| 622 |
+
2) Gemini Pro: expand into a full report with citations
|
| 623 |
+
"""
|
| 624 |
+
logger.info("[REPORT] User Q/report: %s", trim_text(instructions, 15).replace("\n", " "))
|
| 625 |
+
# Validate file exists
|
| 626 |
+
files_list = rag.list_files(user_id=user_id, project_id=project_id)
|
| 627 |
+
filenames_ci = {f.get("filename", "").lower(): f.get("filename") for f in files_list}
|
| 628 |
+
eff_name = filenames_ci.get(filename.lower(), filename)
|
| 629 |
+
doc_sum = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=eff_name)
|
| 630 |
+
if not doc_sum:
|
| 631 |
+
raise HTTPException(404, detail="No summary found for that file.")
|
| 632 |
+
|
| 633 |
+
# Retrieve top-k chunks for this file using enhanced search
|
| 634 |
+
query_text = f"Comprehensive report for {eff_name}"
|
| 635 |
+
if instructions.strip():
|
| 636 |
+
query_text = f"{instructions} {eff_name}"
|
| 637 |
+
|
| 638 |
+
q_vec = embedder.embed([query_text])[0]
|
| 639 |
+
hits = rag.vector_search(user_id=user_id, project_id=project_id, query_vector=q_vec, k=8, filenames=[eff_name], search_type="flat")
|
| 640 |
+
if not hits:
|
| 641 |
+
# Fall back to summary-only report
|
| 642 |
+
hits = []
|
| 643 |
+
|
| 644 |
+
# Build context
|
| 645 |
+
contexts = []
|
| 646 |
+
sources_meta = []
|
| 647 |
+
for h in hits:
|
| 648 |
+
doc = h["doc"]
|
| 649 |
+
chunk_id = str(doc.get("_id", ""))
|
| 650 |
+
contexts.append(f"[CHUNK_ID: {chunk_id}] [{doc.get('topic_name','Topic')}] {trim_text(doc.get('content',''), 2000)}")
|
| 651 |
+
sources_meta.append({
|
| 652 |
+
"filename": doc.get("filename"),
|
| 653 |
+
"topic_name": doc.get("topic_name"),
|
| 654 |
+
"page_span": doc.get("page_span"),
|
| 655 |
+
"score": float(h.get("score", 0.0)),
|
| 656 |
+
"chunk_id": chunk_id
|
| 657 |
+
})
|
| 658 |
+
context_text = "\n\n---\n\n".join(contexts) if contexts else ""
|
| 659 |
+
file_summary = doc_sum.get("summary", "")
|
| 660 |
+
|
| 661 |
+
# Chain-of-thought style two-step with Gemini
|
| 662 |
+
from utils.api.router import GEMINI_MED, GEMINI_PRO
|
| 663 |
+
|
| 664 |
+
# Step 1: Content filtering and relevance assessment based on user instructions
|
| 665 |
+
if instructions.strip():
|
| 666 |
+
filter_sys = (
|
| 667 |
+
"You are an expert content analyst. Given the user's specific instructions and the document content, "
|
| 668 |
+
"identify which sections/chunks are MOST relevant to their request. "
|
| 669 |
+
"Each chunk is prefixed with [CHUNK_ID: <id>] - use these exact IDs in your response. "
|
| 670 |
+
"Return a JSON object with this structure: {\"relevant_chunks\": [\"<chunk_id_1>\", \"<chunk_id_2>\"], \"focus_areas\": [\"key topic 1\", \"key topic 2\"]}"
|
| 671 |
+
)
|
| 672 |
+
filter_user = f"USER_INSTRUCTIONS: {instructions}\n\nDOCUMENT_SUMMARY: {file_summary}\n\nAVAILABLE_CHUNKS:\n{context_text}\n\nIdentify only the chunks that directly address the user's specific request."
|
| 673 |
+
|
| 674 |
+
try:
|
| 675 |
+
selection_filter = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
|
| 676 |
+
filter_response = await generate_answer_with_model(selection_filter, filter_sys, filter_user, gemini_rotator, nvidia_rotator)
|
| 677 |
+
logger.info(f"[REPORT] Raw filter response: {filter_response}")
|
| 678 |
+
# Try to parse the filter response to get relevant chunks
|
| 679 |
+
import json
|
| 680 |
+
try:
|
| 681 |
+
filter_data = json.loads(filter_response)
|
| 682 |
+
relevant_chunk_ids = filter_data.get("relevant_chunks", [])
|
| 683 |
+
focus_areas = filter_data.get("focus_areas", [])
|
| 684 |
+
logger.info(f"[REPORT] Content filtering identified {len(relevant_chunk_ids)} relevant chunks: {relevant_chunk_ids} and focus areas: {focus_areas}")
|
| 685 |
+
# Filter context to only relevant chunks
|
| 686 |
+
if relevant_chunk_ids and hits:
|
| 687 |
+
filtered_hits = [h for h in hits if str(h["doc"].get("_id", "")) in relevant_chunk_ids]
|
| 688 |
+
if filtered_hits:
|
| 689 |
+
hits = filtered_hits
|
| 690 |
+
logger.info(f"[REPORT] Filtered context from {len(hits)} chunks to {len(filtered_hits)} relevant chunks")
|
| 691 |
+
else:
|
| 692 |
+
logger.warning(f"[REPORT] No matching chunks found for IDs: {relevant_chunk_ids}")
|
| 693 |
+
else:
|
| 694 |
+
logger.warning(f"[REPORT] No relevant chunk IDs returned or no hits available")
|
| 695 |
+
except json.JSONDecodeError as e:
|
| 696 |
+
logger.warning(f"[REPORT] Could not parse filter response, using all chunks. JSON error: {e}. Response: {filter_response}")
|
| 697 |
+
except Exception as e:
|
| 698 |
+
logger.warning(f"[REPORT] Content filtering failed: {e}")
|
| 699 |
+
|
| 700 |
+
# Step 2: Create focused outline based on user instructions
|
| 701 |
+
sys_outline = (
|
| 702 |
+
"You are an expert technical writer. Create a focused, hierarchical outline for a report based on the user's specific instructions and the MATERIALS. "
|
| 703 |
+
"The outline should directly address what the user asked for. Output as Markdown bullet list only. Keep it within about {} words."
|
| 704 |
+
).format(max(100, outline_words))
|
| 705 |
+
|
| 706 |
+
instruction_context = f"USER_REQUEST: {instructions}\n\n" if instructions.strip() else ""
|
| 707 |
+
user_outline = f"{instruction_context}MATERIALS:\n\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}"
|
| 708 |
+
|
| 709 |
+
try:
|
| 710 |
+
# Step 1: Outline with Flash/Med
|
| 711 |
+
selection_outline = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
|
| 712 |
+
outline_md = await generate_answer_with_model(selection_outline, sys_outline, user_outline, gemini_rotator, nvidia_rotator)
|
| 713 |
+
except Exception as e:
|
| 714 |
+
logger.warning(f"Report outline failed: {e}")
|
| 715 |
+
outline_md = "# Report Outline\n\n- Introduction\n- Key Topics\n- Conclusion"
|
| 716 |
+
|
| 717 |
+
# Step 3: Generate focused report based on user instructions and filtered content
|
| 718 |
+
instruction_focus = f"FOCUS ON: {instructions}\n\n" if instructions.strip() else ""
|
| 719 |
+
sys_report = (
|
| 720 |
+
"You are an expert report writer. Write a focused, comprehensive Markdown report that directly addresses the user's specific request. "
|
| 721 |
+
"Using the OUTLINE and MATERIALS:\n"
|
| 722 |
+
"- Structure the report to answer exactly what the user asked for\n"
|
| 723 |
+
"- Use clear section headings\n"
|
| 724 |
+
"- Keep content factual and grounded in the provided materials\n"
|
| 725 |
+
f"- Include brief citations like (source: {eff_name}, topic) - use the actual filename provided\n"
|
| 726 |
+
"- If the user asked for a specific section/topic, focus heavily on that\n"
|
| 727 |
+
f"- Target length ~{max(600, report_words)} words\n"
|
| 728 |
+
"- Ensure the report directly fulfills the user's request"
|
| 729 |
+
)
|
| 730 |
+
user_report = f"{instruction_focus}OUTLINE:\n{outline_md}\n\nMATERIALS:\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}"
|
| 731 |
+
|
| 732 |
+
try:
|
| 733 |
+
selection_report = {"provider": "gemini", "model": os.getenv("GEMINI_PRO", "gemini-2.5-pro")}
|
| 734 |
+
report_md = await generate_answer_with_model(selection_report, sys_report, user_report, gemini_rotator, nvidia_rotator)
|
| 735 |
+
except Exception as e:
|
| 736 |
+
logger.error(f"Report generation failed: {e}")
|
| 737 |
+
report_md = outline_md + "\n\n" + file_summary
|
| 738 |
+
|
| 739 |
+
return ReportResponse(filename=eff_name, report_markdown=report_md, sources=sources_meta)
|
| 740 |
+
|
| 741 |
+
|
| 742 |
+
@app.post("/report/pdf")
|
| 743 |
+
async def generate_report_pdf(
|
| 744 |
+
user_id: str = Form(...),
|
| 745 |
+
project_id: str = Form(...),
|
| 746 |
+
report_content: str = Form(...)
|
| 747 |
+
):
|
| 748 |
+
"""
|
| 749 |
+
Generate a PDF from report content using the PDF utility module
|
| 750 |
+
"""
|
| 751 |
+
from utils.service.pdf import generate_report_pdf as generate_pdf
|
| 752 |
+
from fastapi.responses import Response
|
| 753 |
+
|
| 754 |
+
try:
|
| 755 |
+
pdf_content = await generate_pdf(report_content, user_id, project_id)
|
| 756 |
+
|
| 757 |
+
# Return PDF as response
|
| 758 |
+
return Response(
|
| 759 |
+
content=pdf_content,
|
| 760 |
+
media_type="application/pdf",
|
| 761 |
+
headers={"Content-Disposition": f"attachment; filename=report-{datetime.now().strftime('%Y-%m-%d')}.pdf"}
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
except HTTPException:
|
| 765 |
+
# Re-raise HTTP exceptions as-is
|
| 766 |
+
raise
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
# ────────────────────────────── Enhanced RAG Helper Functions ──────────────────────────────
|
| 770 |
+
|
| 771 |
+
async def _generate_query_variations(question: str, nvidia_rotator) -> List[str]:
|
| 772 |
+
"""
|
| 773 |
+
Generate multiple query variations using Chain of Thought reasoning
|
| 774 |
+
"""
|
| 775 |
+
if not nvidia_rotator:
|
| 776 |
+
return [question] # Fallback to original question
|
| 777 |
+
|
| 778 |
+
try:
|
| 779 |
+
# Use NVIDIA to generate query variations
|
| 780 |
+
sys_prompt = """You are an expert at query expansion and reformulation. Given a user question, generate 3-5 different ways to ask the same question that would help retrieve relevant information from a document database.
|
| 781 |
+
|
| 782 |
+
Focus on:
|
| 783 |
+
1. Different terminology and synonyms
|
| 784 |
+
2. More specific technical terms
|
| 785 |
+
3. Broader conceptual queries
|
| 786 |
+
4. Question reformulations
|
| 787 |
+
|
| 788 |
+
Return only the variations, one per line, no numbering or extra text."""
|
| 789 |
+
|
| 790 |
+
user_prompt = f"Original question: {question}\n\nGenerate query variations:"
|
| 791 |
+
|
| 792 |
+
from utils.api.router import generate_answer_with_model
|
| 793 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 794 |
+
response = await generate_answer_with_model(selection, sys_prompt, user_prompt, None, nvidia_rotator)
|
| 795 |
+
|
| 796 |
+
# Parse variations
|
| 797 |
+
variations = [line.strip() for line in response.split('\n') if line.strip()]
|
| 798 |
+
variations = [v for v in variations if len(v) > 10] # Filter out too short variations
|
| 799 |
+
|
| 800 |
+
# Always include original question
|
| 801 |
+
if question not in variations:
|
| 802 |
+
variations.insert(0, question)
|
| 803 |
+
|
| 804 |
+
return variations[:5] # Limit to 5 variations
|
| 805 |
+
|
| 806 |
+
except Exception as e:
|
| 807 |
+
logger.warning(f"Query variation generation failed: {e}")
|
| 808 |
+
return [question]
|
| 809 |
+
|
| 810 |
+
|
| 811 |
+
def _deduplicate_and_rank_hits(all_hits: List[Dict], original_question: str) -> List[Dict]:
|
| 812 |
+
"""
|
| 813 |
+
Deduplicate hits by chunk ID and rank by relevance to original question
|
| 814 |
+
"""
|
| 815 |
+
if not all_hits:
|
| 816 |
+
return []
|
| 817 |
+
|
| 818 |
+
# Deduplicate by chunk ID
|
| 819 |
+
seen_ids = set()
|
| 820 |
+
unique_hits = []
|
| 821 |
+
|
| 822 |
+
for hit in all_hits:
|
| 823 |
+
chunk_id = str(hit.get("doc", {}).get("_id", ""))
|
| 824 |
+
if chunk_id not in seen_ids:
|
| 825 |
+
seen_ids.add(chunk_id)
|
| 826 |
+
unique_hits.append(hit)
|
| 827 |
+
|
| 828 |
+
# Simple ranking: boost scores for hits that contain question keywords
|
| 829 |
+
question_words = set(original_question.lower().split())
|
| 830 |
+
|
| 831 |
+
for hit in unique_hits:
|
| 832 |
+
content = hit.get("doc", {}).get("content", "").lower()
|
| 833 |
+
topic = hit.get("doc", {}).get("topic_name", "").lower()
|
| 834 |
+
|
| 835 |
+
# Count keyword matches
|
| 836 |
+
content_matches = sum(1 for word in question_words if word in content)
|
| 837 |
+
topic_matches = sum(1 for word in question_words if word in topic)
|
| 838 |
+
|
| 839 |
+
# Boost score based on keyword matches
|
| 840 |
+
keyword_boost = 1.0 + (content_matches * 0.1) + (topic_matches * 0.2)
|
| 841 |
+
hit["score"] = hit.get("score", 0.0) * keyword_boost
|
| 842 |
+
|
| 843 |
+
# Sort by boosted score
|
| 844 |
+
unique_hits.sort(key=lambda x: x.get("score", 0.0), reverse=True)
|
| 845 |
+
|
| 846 |
+
return unique_hits
|
| 847 |
+
|
| 848 |
+
|
| 849 |
+
@app.post("/chat", response_model=ChatAnswerResponse)
|
| 850 |
+
async def chat(
|
| 851 |
+
user_id: str = Form(...),
|
| 852 |
+
project_id: str = Form(...),
|
| 853 |
+
question: str = Form(...),
|
| 854 |
+
k: int = Form(6)
|
| 855 |
+
):
|
| 856 |
+
# Add timeout protection to prevent hanging
|
| 857 |
+
import asyncio
|
| 858 |
+
try:
|
| 859 |
+
return await asyncio.wait_for(_chat_impl(user_id, project_id, question, k), timeout=120.0)
|
| 860 |
+
except asyncio.TimeoutError:
|
| 861 |
+
logger.error("[CHAT] Chat request timed out after 120 seconds")
|
| 862 |
+
return ChatAnswerResponse(
|
| 863 |
+
answer="Sorry, the request took too long to process. Please try again with a simpler question.",
|
| 864 |
+
sources=[],
|
| 865 |
+
relevant_files=[]
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
async def _chat_impl(
|
| 869 |
+
user_id: str,
|
| 870 |
+
project_id: str,
|
| 871 |
+
question: str,
|
| 872 |
+
k: int
|
| 873 |
+
):
|
| 874 |
+
"""
|
| 875 |
+
RAG chat that answers ONLY from uploaded materials.
|
| 876 |
+
- Preload all filenames + summaries; use NVIDIA to classify file relevance to question (true/false)
|
| 877 |
+
- Restrict vector search to relevant files (fall back to all if none)
|
| 878 |
+
- Bring in recent chat memory: last 3 via NVIDIA relevance; remaining 17 via semantic search
|
| 879 |
+
- After answering, summarize (q,a) via NVIDIA and store into LRU (last 20)
|
| 880 |
+
"""
|
| 881 |
+
import sys
|
| 882 |
+
from memo.core import get_memory_system
|
| 883 |
+
from utils.api.router import NVIDIA_SMALL # reuse default name
|
| 884 |
+
memory = get_memory_system()
|
| 885 |
+
logger.info("[CHAT] User Q/chat: %s", trim_text(question, 15).replace("\n", " "))
|
| 886 |
+
|
| 887 |
+
# 0) Detect any filenames mentioned in the question (e.g., JADE.pdf)
|
| 888 |
+
# Supports .pdf, .docx, and .doc for detection purposes
|
| 889 |
+
# Only capture contiguous tokens ending with extension (no spaces) to avoid swallowing prompt text
|
| 890 |
+
mentioned = set([m.group(0).strip() for m in re.finditer(r"\b[^\s/\\]+?\.(?:pdf|docx|doc)\b", question, re.IGNORECASE)])
|
| 891 |
+
if mentioned:
|
| 892 |
+
logger.info(f"[CHAT] Detected mentioned filenames in question: {list(mentioned)}")
|
| 893 |
+
|
| 894 |
+
# 0a) If the question explicitly asks for a summary/about of a single mentioned file, return its summary directly
|
| 895 |
+
if mentioned and (re.search(r"\b(summary|summarize|about|overview)\b", question, re.IGNORECASE)):
|
| 896 |
+
# Prefer direct summary when exactly one file is referenced
|
| 897 |
+
if len(mentioned) == 1:
|
| 898 |
+
fn = next(iter(mentioned))
|
| 899 |
+
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=fn)
|
| 900 |
+
if doc:
|
| 901 |
+
return ChatAnswerResponse(
|
| 902 |
+
answer=doc.get("summary", ""),
|
| 903 |
+
sources=[{"filename": fn, "file_summary": True}]
|
| 904 |
+
)
|
| 905 |
+
# If not found with the same casing, try case-insensitive match against stored filenames
|
| 906 |
+
files_ci = rag.list_files(user_id=user_id, project_id=project_id)
|
| 907 |
+
match = next((f["filename"] for f in files_ci if f.get("filename", "").lower() == fn.lower()), None)
|
| 908 |
+
if match:
|
| 909 |
+
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=match)
|
| 910 |
+
if doc:
|
| 911 |
+
return ChatAnswerResponse(
|
| 912 |
+
answer=doc.get("summary", ""),
|
| 913 |
+
sources=[{"filename": match, "file_summary": True}]
|
| 914 |
+
)
|
| 915 |
+
# If multiple files are referenced with summary intent, proceed to relevance flow below
|
| 916 |
+
|
| 917 |
+
# 1) Preload file list + summaries
|
| 918 |
+
files_list = rag.list_files(user_id=user_id, project_id=project_id) # [{filename, summary}]
|
| 919 |
+
|
| 920 |
+
# 1a) Normalize mentioned filenames against the user's library (case-insensitive)
|
| 921 |
+
filenames_ci_map = {f.get("filename", "").lower(): f.get("filename") for f in files_list if f.get("filename")}
|
| 922 |
+
mentioned_normalized = []
|
| 923 |
+
for mfn in mentioned:
|
| 924 |
+
key = mfn.lower()
|
| 925 |
+
if key in filenames_ci_map:
|
| 926 |
+
mentioned_normalized.append(filenames_ci_map[key])
|
| 927 |
+
if mentioned and not mentioned_normalized and files_list:
|
| 928 |
+
# Try looser match: contained filenames ignoring spaces
|
| 929 |
+
norm = {f.get("filename", "").lower().replace(" ", ""): f.get("filename") for f in files_list if f.get("filename")}
|
| 930 |
+
for mfn in mentioned:
|
| 931 |
+
key2 = mfn.lower().replace(" ", "")
|
| 932 |
+
if key2 in norm:
|
| 933 |
+
mentioned_normalized.append(norm[key2])
|
| 934 |
+
if mentioned_normalized:
|
| 935 |
+
logger.info(f"[CHAT] Normalized mentions to stored filenames: {mentioned_normalized}")
|
| 936 |
+
|
| 937 |
+
# 1b) Ask NVIDIA to mark relevance per file
|
| 938 |
+
try:
|
| 939 |
+
from memo.history import get_history_manager
|
| 940 |
+
history_manager = get_history_manager(memory)
|
| 941 |
+
relevant_map = await history_manager.files_relevance(question, files_list, nvidia_rotator)
|
| 942 |
+
relevant_files = [fn for fn, ok in relevant_map.items() if ok]
|
| 943 |
+
logger.info(f"[CHAT] NVIDIA relevant files: {relevant_files}")
|
| 944 |
+
except Exception as e:
|
| 945 |
+
logger.warning(f"[CHAT] NVIDIA relevance failed, defaulting to all files: {e}")
|
| 946 |
+
relevant_files = [f.get("filename") for f in files_list if f.get("filename")]
|
| 947 |
+
|
| 948 |
+
# 1c) Ensure any explicitly mentioned files in the question are included
|
| 949 |
+
# This safeguards against model misclassification
|
| 950 |
+
if mentioned_normalized:
|
| 951 |
+
extra = [fn for fn in mentioned_normalized if fn not in relevant_files]
|
| 952 |
+
relevant_files.extend(extra)
|
| 953 |
+
if extra:
|
| 954 |
+
logger.info(f"[CHAT] Forced-include mentioned files into relevance: {extra}")
|
| 955 |
+
|
| 956 |
+
# 2) Memory context: recent 3 via NVIDIA, remaining 17 via semantic
|
| 957 |
+
# Use enhanced context retrieval if available, otherwise fallback to original method
|
| 958 |
+
try:
|
| 959 |
+
from memo.history import get_history_manager
|
| 960 |
+
history_manager = get_history_manager(memory)
|
| 961 |
+
recent_related, semantic_related = await history_manager.related_recent_and_semantic_context(
|
| 962 |
+
user_id, question, embedder
|
| 963 |
+
)
|
| 964 |
+
except Exception as e:
|
| 965 |
+
logger.warning(f"[CHAT] Enhanced context retrieval failed, using fallback: {e}")
|
| 966 |
+
# Fallback to original method
|
| 967 |
+
recent3 = memory.recent(user_id, 3)
|
| 968 |
+
if recent3:
|
| 969 |
+
sys = "Pick only items that directly relate to the new question. Output the selected items verbatim, no commentary. If none, output nothing."
|
| 970 |
+
numbered = [{"id": i+1, "text": s} for i, s in enumerate(recent3)]
|
| 971 |
+
user = f"Question: {question}\nCandidates:\n{json.dumps(numbered, ensure_ascii=False)}\nSelect any related items and output ONLY their 'text' values concatenated."
|
| 972 |
+
try:
|
| 973 |
+
from utils.api.rotator import robust_post_json
|
| 974 |
+
key = nvidia_rotator.get_key()
|
| 975 |
+
url = "https://integrate.api.nvidia.com/v1/chat/completions"
|
| 976 |
+
payload = {
|
| 977 |
+
"model": os.getenv("NVIDIA_SMALL", "meta/llama-3.1-8b-instruct"),
|
| 978 |
+
"temperature": 0.0,
|
| 979 |
+
"messages": [
|
| 980 |
+
{"role": "system", "content": sys},
|
| 981 |
+
{"role": "user", "content": user},
|
| 982 |
+
]
|
| 983 |
+
}
|
| 984 |
+
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key or ''}"}
|
| 985 |
+
data = await robust_post_json(url, headers, payload, nvidia_rotator)
|
| 986 |
+
recent_related = data["choices"][0]["message"]["content"].strip()
|
| 987 |
+
except Exception as e:
|
| 988 |
+
logger.warning(f"Recent-related NVIDIA error: {e}")
|
| 989 |
+
recent_related = ""
|
| 990 |
+
else:
|
| 991 |
+
recent_related = ""
|
| 992 |
+
|
| 993 |
+
# Get semantic context from remaining memories
|
| 994 |
+
rest17 = memory.rest(user_id, 3)
|
| 995 |
+
if rest17:
|
| 996 |
+
import numpy as np
|
| 997 |
+
def _cosine(a: np.ndarray, b: np.ndarray) -> float:
|
| 998 |
+
denom = (np.linalg.norm(a) * np.linalg.norm(b)) or 1.0
|
| 999 |
+
return float(np.dot(a, b) / denom)
|
| 1000 |
+
|
| 1001 |
+
qv = np.array(embedder.embed([question])[0], dtype="float32")
|
| 1002 |
+
mats = embedder.embed([s.strip() for s in rest17])
|
| 1003 |
+
sims = [(_cosine(qv, np.array(v, dtype="float32")), s) for v, s in zip(mats, rest17)]
|
| 1004 |
+
sims.sort(key=lambda x: x[0], reverse=True)
|
| 1005 |
+
top = [s for (sc, s) in sims[:3] if sc > 0.15]
|
| 1006 |
+
semantic_related = "\n\n".join(top) if top else ""
|
| 1007 |
+
|
| 1008 |
+
# 3) Enhanced query reasoning and RAG vector search
|
| 1009 |
+
logger.info(f"[CHAT] Starting enhanced vector search with relevant_files={relevant_files}")
|
| 1010 |
+
|
| 1011 |
+
# Chain of Thought query breakdown for better retrieval
|
| 1012 |
+
enhanced_queries = await _generate_query_variations(question, nvidia_rotator)
|
| 1013 |
+
logger.info(f"[CHAT] Generated {len(enhanced_queries)} query variations")
|
| 1014 |
+
|
| 1015 |
+
# Try multiple search strategies
|
| 1016 |
+
all_hits = []
|
| 1017 |
+
search_strategies = ["flat", "hybrid", "local"] # Try most accurate first
|
| 1018 |
+
|
| 1019 |
+
for strategy in search_strategies:
|
| 1020 |
+
for query_variant in enhanced_queries:
|
| 1021 |
+
q_vec = embedder.embed([query_variant])[0]
|
| 1022 |
+
hits = rag.vector_search(
|
| 1023 |
+
user_id=user_id,
|
| 1024 |
+
project_id=project_id,
|
| 1025 |
+
query_vector=q_vec,
|
| 1026 |
+
k=k,
|
| 1027 |
+
filenames=relevant_files if relevant_files else None,
|
| 1028 |
+
search_type=strategy
|
| 1029 |
+
)
|
| 1030 |
+
if hits:
|
| 1031 |
+
all_hits.extend(hits)
|
| 1032 |
+
logger.info(f"[CHAT] {strategy} search with '{query_variant[:50]}...' returned {len(hits)} hits")
|
| 1033 |
+
break # If we found hits with this strategy, move to next query
|
| 1034 |
+
if all_hits:
|
| 1035 |
+
break # If we found hits, don't try other strategies
|
| 1036 |
+
|
| 1037 |
+
# Deduplicate and rank results
|
| 1038 |
+
hits = _deduplicate_and_rank_hits(all_hits, question)
|
| 1039 |
+
logger.info(f"[CHAT] Final vector search returned {len(hits) if hits else 0} hits")
|
| 1040 |
+
if not hits:
|
| 1041 |
+
logger.info(f"[CHAT] No hits with relevance filter. relevant_files={relevant_files}")
|
| 1042 |
+
# Fallback 1: Try with original question and flat search
|
| 1043 |
+
q_vec_original = embedder.embed([question])[0]
|
| 1044 |
+
hits = rag.vector_search(
|
| 1045 |
+
user_id=user_id,
|
| 1046 |
+
project_id=project_id,
|
| 1047 |
+
query_vector=q_vec_original,
|
| 1048 |
+
k=k,
|
| 1049 |
+
filenames=relevant_files if relevant_files else None,
|
| 1050 |
+
search_type="flat"
|
| 1051 |
+
)
|
| 1052 |
+
logger.info(f"[CHAT] Fallback flat search → hits={len(hits) if hits else 0}")
|
| 1053 |
+
|
| 1054 |
+
# Fallback 2: if we have explicit mentions, try restricting only to them
|
| 1055 |
+
if not hits and mentioned_normalized:
|
| 1056 |
+
hits = rag.vector_search(
|
| 1057 |
+
user_id=user_id,
|
| 1058 |
+
project_id=project_id,
|
| 1059 |
+
query_vector=q_vec_original,
|
| 1060 |
+
k=k,
|
| 1061 |
+
filenames=mentioned_normalized,
|
| 1062 |
+
search_type="flat"
|
| 1063 |
+
)
|
| 1064 |
+
logger.info(f"[CHAT] Fallback with mentioned files only → hits={len(hits) if hits else 0}")
|
| 1065 |
+
|
| 1066 |
+
# Fallback 3: if still empty, try without any filename restriction
|
| 1067 |
+
if not hits:
|
| 1068 |
+
hits = rag.vector_search(
|
| 1069 |
+
user_id=user_id,
|
| 1070 |
+
project_id=project_id,
|
| 1071 |
+
query_vector=q_vec_original,
|
| 1072 |
+
k=k,
|
| 1073 |
+
filenames=None,
|
| 1074 |
+
search_type="flat"
|
| 1075 |
+
)
|
| 1076 |
+
logger.info(f"[CHAT] Fallback with all files → hits={len(hits) if hits else 0}")
|
| 1077 |
+
# If still no hits, and we have mentioned files, try returning their summaries if present
|
| 1078 |
+
if not hits and mentioned_normalized:
|
| 1079 |
+
fsum_map = {f["filename"]: f.get("summary", "") for f in files_list}
|
| 1080 |
+
summaries = [fsum_map.get(fn, "") for fn in mentioned_normalized]
|
| 1081 |
+
summaries = [s for s in summaries if s]
|
| 1082 |
+
if summaries:
|
| 1083 |
+
answer = ("\n\n---\n\n").join(summaries)
|
| 1084 |
+
return ChatAnswerResponse(
|
| 1085 |
+
answer=answer,
|
| 1086 |
+
sources=[{"filename": fn, "file_summary": True} for fn in mentioned_normalized],
|
| 1087 |
+
relevant_files=mentioned_normalized
|
| 1088 |
+
)
|
| 1089 |
+
if not hits:
|
| 1090 |
+
# Last resort: use summaries from relevant files if we didn't have explicit mentions normalized
|
| 1091 |
+
candidates = mentioned_normalized or relevant_files or []
|
| 1092 |
+
if candidates:
|
| 1093 |
+
fsum_map = {f["filename"]: f.get("summary", "") for f in files_list}
|
| 1094 |
+
summaries = [fsum_map.get(fn, "") for fn in candidates]
|
| 1095 |
+
summaries = [s for s in summaries if s]
|
| 1096 |
+
if summaries:
|
| 1097 |
+
answer = ("\n\n---\n\n").join(summaries)
|
| 1098 |
+
logger.info(f"[CHAT] Falling back to file-level summaries for: {candidates}")
|
| 1099 |
+
return ChatAnswerResponse(
|
| 1100 |
+
answer=answer,
|
| 1101 |
+
sources=[{"filename": fn, "file_summary": True} for fn in candidates],
|
| 1102 |
+
relevant_files=candidates
|
| 1103 |
+
)
|
| 1104 |
+
return ChatAnswerResponse(
|
| 1105 |
+
answer="I don't know based on your uploaded materials. Try uploading more sources or rephrasing the question.",
|
| 1106 |
+
sources=[],
|
| 1107 |
+
relevant_files=relevant_files or mentioned_normalized
|
| 1108 |
+
)
|
| 1109 |
+
# If we get here, we have hits, so continue with normal flow
|
| 1110 |
+
# Compose context
|
| 1111 |
+
contexts = []
|
| 1112 |
+
sources_meta = []
|
| 1113 |
+
for h in hits:
|
| 1114 |
+
doc = h["doc"]
|
| 1115 |
+
score = h["score"]
|
| 1116 |
+
contexts.append(f"[{doc.get('topic_name','Topic')}] {trim_text(doc.get('content',''), 2000)}")
|
| 1117 |
+
sources_meta.append({
|
| 1118 |
+
"filename": doc.get("filename"),
|
| 1119 |
+
"topic_name": doc.get("topic_name"),
|
| 1120 |
+
"page_span": doc.get("page_span"),
|
| 1121 |
+
"score": float(score),
|
| 1122 |
+
"chunk_id": str(doc.get("_id", "")) # Convert ObjectId to string
|
| 1123 |
+
})
|
| 1124 |
+
context_text = "\n\n---\n\n".join(contexts)
|
| 1125 |
+
|
| 1126 |
+
# Add file-level summaries for relevant files
|
| 1127 |
+
file_summary_block = ""
|
| 1128 |
+
if relevant_files:
|
| 1129 |
+
fsum_map = {f["filename"]: f.get("summary","") for f in files_list}
|
| 1130 |
+
lines = [f"[{fn}] {fsum_map.get(fn, '')}" for fn in relevant_files]
|
| 1131 |
+
file_summary_block = "\n".join(lines)
|
| 1132 |
+
|
| 1133 |
+
# Guardrail instruction to avoid hallucination
|
| 1134 |
+
system_prompt = (
|
| 1135 |
+
"You are a careful study assistant. Answer strictly using the given CONTEXT.\n"
|
| 1136 |
+
"If the answer isn't in the context, say 'I don't know based on the provided materials.'\n"
|
| 1137 |
+
"Write concise, clear explanations with citations like (source: actual_filename, topic).\n"
|
| 1138 |
+
"Use the exact filename as provided in the context, not placeholders.\n"
|
| 1139 |
+
)
|
| 1140 |
+
|
| 1141 |
+
# Add recent chat context and historical similarity context
|
| 1142 |
+
history_block = ""
|
| 1143 |
+
if recent_related or semantic_related:
|
| 1144 |
+
history_block = "RECENT_CHAT_CONTEXT:\n" + (recent_related or "") + ("\n\nHISTORICAL_SIMILARITY_CONTEXT:\n" + semantic_related if semantic_related else "")
|
| 1145 |
+
composed_context = ""
|
| 1146 |
+
if history_block:
|
| 1147 |
+
composed_context += history_block + "\n\n"
|
| 1148 |
+
if file_summary_block:
|
| 1149 |
+
composed_context += "FILE_SUMMARIES:\n" + file_summary_block + "\n\n"
|
| 1150 |
+
composed_context += "DOC_CONTEXT:\n" + context_text
|
| 1151 |
+
|
| 1152 |
+
# Compose user prompt
|
| 1153 |
+
user_prompt = f"QUESTION:\n{question}\n\nCONTEXT:\n{composed_context}"
|
| 1154 |
+
# Choose model (cost-aware)
|
| 1155 |
+
selection = select_model(question=question, context=composed_context)
|
| 1156 |
+
logger.info(f"Model selection: {selection}")
|
| 1157 |
+
# Generate answer with model
|
| 1158 |
+
logger.info(f"[CHAT] Generating answer with {selection['provider']} {selection['model']}")
|
| 1159 |
+
try:
|
| 1160 |
+
answer = await generate_answer_with_model(
|
| 1161 |
+
selection=selection,
|
| 1162 |
+
system_prompt=system_prompt,
|
| 1163 |
+
user_prompt=user_prompt,
|
| 1164 |
+
gemini_rotator=gemini_rotator,
|
| 1165 |
+
nvidia_rotator=nvidia_rotator
|
| 1166 |
+
)
|
| 1167 |
+
logger.info(f"[CHAT] Answer generated successfully, length: {len(answer)}")
|
| 1168 |
+
except Exception as e:
|
| 1169 |
+
logger.error(f"LLM error: {e}")
|
| 1170 |
+
answer = "I had trouble contacting the language model provider just now. Please try again."
|
| 1171 |
+
# After answering: summarize QA and store in memory (LRU, last 20)
|
| 1172 |
+
try:
|
| 1173 |
+
from memo.history import get_history_manager
|
| 1174 |
+
history_manager = get_history_manager(memory)
|
| 1175 |
+
qa_sum = await history_manager.summarize_qa_with_nvidia(question, answer, nvidia_rotator)
|
| 1176 |
+
memory.add(user_id, qa_sum)
|
| 1177 |
+
|
| 1178 |
+
# Also store enhanced conversation memory if available
|
| 1179 |
+
if memory.is_enhanced_available():
|
| 1180 |
+
await memory.add_conversation_memory(
|
| 1181 |
+
user_id=user_id,
|
| 1182 |
+
question=question,
|
| 1183 |
+
answer=answer,
|
| 1184 |
+
project_id=project_id,
|
| 1185 |
+
context={
|
| 1186 |
+
"relevant_files": relevant_files,
|
| 1187 |
+
"sources_count": len(sources_meta),
|
| 1188 |
+
"timestamp": time.time()
|
| 1189 |
+
}
|
| 1190 |
+
)
|
| 1191 |
+
except Exception as e:
|
| 1192 |
+
logger.warning(f"QA summarize/store failed: {e}")
|
| 1193 |
+
# Trim for logging
|
| 1194 |
+
logger.info("LLM answer (trimmed): %s", trim_text(answer, 200).replace("\n", " "))
|
| 1195 |
+
return ChatAnswerResponse(answer=answer, sources=sources_meta, relevant_files=relevant_files)
|
| 1196 |
+
|
| 1197 |
+
|
| 1198 |
+
@app.get("/healthz", response_model=HealthResponse)
|
| 1199 |
+
def health():
|
| 1200 |
+
return HealthResponse(ok=True)
|
| 1201 |
+
|
| 1202 |
+
|
| 1203 |
+
@app.get("/test-db")
|
| 1204 |
+
async def test_database():
|
| 1205 |
+
"""Test database connection and basic operations"""
|
| 1206 |
+
try:
|
| 1207 |
+
if not rag:
|
| 1208 |
+
return {
|
| 1209 |
+
"status": "error",
|
| 1210 |
+
"message": "RAG store not initialized",
|
| 1211 |
+
"error_type": "RAGStoreNotInitialized"
|
| 1212 |
+
}
|
| 1213 |
+
|
| 1214 |
+
# Test basic connection
|
| 1215 |
+
rag.client.admin.command('ping')
|
| 1216 |
+
|
| 1217 |
+
# Test basic insert/query
|
| 1218 |
+
test_collection = rag.db["test_collection"]
|
| 1219 |
+
test_doc = {"test": True, "timestamp": datetime.now(timezone.utc)}
|
| 1220 |
+
result = test_collection.insert_one(test_doc)
|
| 1221 |
+
|
| 1222 |
+
# Test query
|
| 1223 |
+
found = test_collection.find_one({"_id": result.inserted_id})
|
| 1224 |
+
|
| 1225 |
+
# Clean up
|
| 1226 |
+
test_collection.delete_one({"_id": result.inserted_id})
|
| 1227 |
+
|
| 1228 |
+
return {
|
| 1229 |
+
"status": "success",
|
| 1230 |
+
"message": "Database connection and operations working correctly",
|
| 1231 |
+
"test_id": str(result.inserted_id),
|
| 1232 |
+
"found_doc": str(found["_id"]) if found else None
|
| 1233 |
+
}
|
| 1234 |
+
|
| 1235 |
+
except Exception as e:
|
| 1236 |
+
logger.error(f"[TEST-DB] Database test failed: {str(e)}")
|
| 1237 |
+
return {
|
| 1238 |
+
"status": "error",
|
| 1239 |
+
"message": f"Database test failed: {str(e)}",
|
| 1240 |
+
"error_type": str(type(e))
|
| 1241 |
+
}
|
| 1242 |
+
|
| 1243 |
+
|
| 1244 |
+
@app.get("/rag-status")
|
| 1245 |
+
async def rag_status():
|
| 1246 |
+
"""Check the status of the RAG store"""
|
| 1247 |
+
if not rag:
|
| 1248 |
+
return {
|
| 1249 |
+
"status": "error",
|
| 1250 |
+
"message": "RAG store not initialized",
|
| 1251 |
+
"rag_available": False
|
| 1252 |
+
}
|
| 1253 |
+
|
| 1254 |
+
try:
|
| 1255 |
+
# Test connection
|
| 1256 |
+
rag.client.admin.command('ping')
|
| 1257 |
+
return {
|
| 1258 |
+
"status": "success",
|
| 1259 |
+
"message": "RAG store is available and connected",
|
| 1260 |
+
"rag_available": True,
|
| 1261 |
+
"database": rag.db.name,
|
| 1262 |
+
"collections": {
|
| 1263 |
+
"chunks": rag.chunks.name,
|
| 1264 |
+
"files": rag.files.name
|
| 1265 |
+
}
|
| 1266 |
+
}
|
| 1267 |
+
except Exception as e:
|
| 1268 |
+
return {
|
| 1269 |
+
"status": "error",
|
| 1270 |
+
"message": f"RAG store connection failed: {str(e)}",
|
| 1271 |
+
"rag_available": False,
|
| 1272 |
+
"error": str(e)
|
| 1273 |
+
}
|
| 1274 |
+
|
| 1275 |
+
# Local dev
|
| 1276 |
+
# if __name__ == "__main__":
|
| 1277 |
+
# import uvicorn
|
| 1278 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
helpers/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Package init for helpers. Exposes FastAPI app for external import.
|
| 2 |
+
from .setup import app, logger # re-export for convenience
|
helpers/models.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Dict, Any, Optional
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# ────────────────────────────── Response Models ──────────────────────────────
|
| 6 |
+
class ProjectResponse(BaseModel):
|
| 7 |
+
project_id: str
|
| 8 |
+
user_id: str
|
| 9 |
+
name: str
|
| 10 |
+
description: str
|
| 11 |
+
created_at: str
|
| 12 |
+
updated_at: str
|
| 13 |
+
|
| 14 |
+
class ProjectsListResponse(BaseModel):
|
| 15 |
+
projects: List[ProjectResponse]
|
| 16 |
+
|
| 17 |
+
class ChatMessageResponse(BaseModel):
|
| 18 |
+
user_id: str
|
| 19 |
+
project_id: str
|
| 20 |
+
role: str
|
| 21 |
+
content: str
|
| 22 |
+
timestamp: float
|
| 23 |
+
created_at: str
|
| 24 |
+
sources: Optional[List[Dict[str, Any]]] = None
|
| 25 |
+
|
| 26 |
+
class ChatHistoryResponse(BaseModel):
|
| 27 |
+
messages: List[ChatMessageResponse]
|
| 28 |
+
|
| 29 |
+
class MessageResponse(BaseModel):
|
| 30 |
+
message: str
|
| 31 |
+
|
| 32 |
+
class UploadResponse(BaseModel):
|
| 33 |
+
job_id: str
|
| 34 |
+
status: str
|
| 35 |
+
total_files: Optional[int] = None
|
| 36 |
+
|
| 37 |
+
class FileSummaryResponse(BaseModel):
|
| 38 |
+
filename: str
|
| 39 |
+
summary: str
|
| 40 |
+
|
| 41 |
+
class ChatAnswerResponse(BaseModel):
|
| 42 |
+
answer: str
|
| 43 |
+
sources: List[Dict[str, Any]]
|
| 44 |
+
relevant_files: Optional[List[str]] = None
|
| 45 |
+
|
| 46 |
+
class HealthResponse(BaseModel):
|
| 47 |
+
ok: bool
|
| 48 |
+
|
| 49 |
+
class ReportResponse(BaseModel):
|
| 50 |
+
filename: str
|
| 51 |
+
report_markdown: str
|
| 52 |
+
sources: List[Dict[str, Any]]
|
| 53 |
+
|
| 54 |
+
|
helpers/pages.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List, Dict, Any
|
| 3 |
+
from fastapi import HTTPException
|
| 4 |
+
from utils.ingestion.parser import parse_pdf_bytes, parse_docx_bytes
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# ────────────────────────────── Helpers ──────────────────────────────
|
| 8 |
+
def _infer_mime(filename: str) -> str:
|
| 9 |
+
lower = filename.lower()
|
| 10 |
+
if lower.endswith(".pdf"):
|
| 11 |
+
return "application/pdf"
|
| 12 |
+
if lower.endswith(".docx"):
|
| 13 |
+
return "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
|
| 14 |
+
return "application/octet-stream"
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def _extract_pages(filename: str, file_bytes: bytes) -> List[Dict[str, Any]]:
|
| 18 |
+
mime = _infer_mime(filename)
|
| 19 |
+
if mime == "application/pdf":
|
| 20 |
+
return parse_pdf_bytes(file_bytes)
|
| 21 |
+
elif mime == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
| 22 |
+
return parse_docx_bytes(file_bytes)
|
| 23 |
+
else:
|
| 24 |
+
raise HTTPException(status_code=400, detail=f"Unsupported file type: {filename}")
|
| 25 |
+
|
| 26 |
+
|
helpers/setup.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, logging
|
| 2 |
+
from dotenv import load_dotenv
|
| 3 |
+
load_dotenv()
|
| 4 |
+
|
| 5 |
+
from fastapi import FastAPI
|
| 6 |
+
from fastapi.staticfiles import StaticFiles
|
| 7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 8 |
+
|
| 9 |
+
from utils.logger import get_logger
|
| 10 |
+
from utils.api.rotator import APIKeyRotator
|
| 11 |
+
from utils.ingestion.caption import BlipCaptioner
|
| 12 |
+
from utils.rag.embeddings import EmbeddingClient
|
| 13 |
+
from utils.rag.rag import RAGStore, ensure_indexes
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# ────────────────────────────── App Setup ──────────────────────────────
|
| 17 |
+
logger = get_logger("APP", name="studybuddy")
|
| 18 |
+
|
| 19 |
+
app = FastAPI(title="StudyBuddy RAG", version="0.1.0")
|
| 20 |
+
app.add_middleware(
|
| 21 |
+
CORSMiddleware,
|
| 22 |
+
allow_origins=["*"],
|
| 23 |
+
allow_credentials=True,
|
| 24 |
+
allow_methods=["*"],
|
| 25 |
+
allow_headers=["*"],
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Serve static files (index.html, scripts.js, styles.css)
|
| 29 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 30 |
+
|
| 31 |
+
# In-memory job tracker (for progress queries)
|
| 32 |
+
app.state.jobs = {}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# ────────────────────────────── Global Clients ──────────────────────────────
|
| 36 |
+
# API rotators (round robin + auto failover on quota errors)
|
| 37 |
+
gemini_rotator = APIKeyRotator(prefix="GEMINI_API_", max_slots=5)
|
| 38 |
+
nvidia_rotator = APIKeyRotator(prefix="NVIDIA_API_", max_slots=5)
|
| 39 |
+
|
| 40 |
+
# Captioner + Embeddings (lazy init inside classes)
|
| 41 |
+
captioner = BlipCaptioner()
|
| 42 |
+
embedder = EmbeddingClient(model_name=os.getenv("EMBED_MODEL", "sentence-transformers/all-MiniLM-L6-v2"))
|
| 43 |
+
|
| 44 |
+
# Mongo / RAG store
|
| 45 |
+
try:
|
| 46 |
+
rag = RAGStore(mongo_uri=os.getenv("MONGO_URI"), db_name=os.getenv("MONGO_DB", "studybuddy"))
|
| 47 |
+
# Test the connection
|
| 48 |
+
rag.client.admin.command('ping')
|
| 49 |
+
logger.info("[APP] MongoDB connection successful")
|
| 50 |
+
ensure_indexes(rag)
|
| 51 |
+
logger.info("[APP] MongoDB indexes ensured")
|
| 52 |
+
except Exception as e:
|
| 53 |
+
logger.error(f"[APP] Failed to initialize MongoDB/RAG store: {str(e)}")
|
| 54 |
+
logger.error(f"[APP] MONGO_URI: {os.getenv('MONGO_URI', 'Not set')}")
|
| 55 |
+
logger.error(f"[APP] MONGO_DB: {os.getenv('MONGO_DB', 'studybuddy')}")
|
| 56 |
+
# Create a dummy RAG store for now - this will cause errors but prevents the app from crashing
|
| 57 |
+
rag = None
|
| 58 |
+
|
| 59 |
+
|
routes/auth.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import uuid, time, hashlib, secrets
|
| 2 |
+
from typing import Optional
|
| 3 |
+
from fastapi import Form, HTTPException
|
| 4 |
+
|
| 5 |
+
from helpers.setup import app, rag, logger
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
# ────────────────────────────── Auth Helpers/Routes ───────────────────────────
|
| 9 |
+
def _hash_password(password: str, salt: Optional[str] = None):
|
| 10 |
+
salt = salt or secrets.token_hex(16)
|
| 11 |
+
dk = hashlib.pbkdf2_hmac("sha256", password.encode("utf-8"), bytes.fromhex(salt), 120000)
|
| 12 |
+
return {"salt": salt, "hash": dk.hex()}
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def _verify_password(password: str, salt: str, expected_hex: str) -> bool:
|
| 16 |
+
dk = hashlib.pbkdf2_hmac("sha256", password.encode("utf-8"), bytes.fromhex(salt), 120000)
|
| 17 |
+
return secrets.compare_digest(dk.hex(), expected_hex)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@app.post("/auth/signup")
|
| 21 |
+
async def signup(email: str = Form(...), password: str = Form(...)):
|
| 22 |
+
email = email.strip().lower()
|
| 23 |
+
if not email or not password or "@" not in email:
|
| 24 |
+
raise HTTPException(400, detail="Invalid email or password")
|
| 25 |
+
users = rag.db["users"]
|
| 26 |
+
if users.find_one({"email": email}):
|
| 27 |
+
raise HTTPException(409, detail="Email already registered")
|
| 28 |
+
user_id = str(uuid.uuid4())
|
| 29 |
+
hp = _hash_password(password)
|
| 30 |
+
users.insert_one({
|
| 31 |
+
"email": email,
|
| 32 |
+
"user_id": user_id,
|
| 33 |
+
"pw_salt": hp["salt"],
|
| 34 |
+
"pw_hash": hp["hash"],
|
| 35 |
+
"created_at": int(time.time())
|
| 36 |
+
})
|
| 37 |
+
logger.info(f"[AUTH] Created user {email} -> {user_id}")
|
| 38 |
+
return {"email": email, "user_id": user_id}
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@app.post("/auth/login")
|
| 42 |
+
async def login(email: str = Form(...), password: str = Form(...)):
|
| 43 |
+
email = email.strip().lower()
|
| 44 |
+
users = rag.db["users"]
|
| 45 |
+
doc = users.find_one({"email": email})
|
| 46 |
+
if not doc:
|
| 47 |
+
raise HTTPException(401, detail="Invalid credentials")
|
| 48 |
+
if not _verify_password(password, doc.get("pw_salt", ""), doc.get("pw_hash", "")):
|
| 49 |
+
raise HTTPException(401, detail="Invalid credentials")
|
| 50 |
+
logger.info(f"[AUTH] Login {email}")
|
| 51 |
+
return {"email": email, "user_id": doc.get("user_id")}
|
| 52 |
+
|
| 53 |
+
|
routes/chats.py
ADDED
|
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json, time, re, uuid, asyncio, os
|
| 2 |
+
from datetime import datetime, timezone
|
| 3 |
+
from typing import Any, Dict, List, Optional
|
| 4 |
+
from fastapi import Form, HTTPException
|
| 5 |
+
|
| 6 |
+
from helpers.setup import app, rag, logger, embedder, captioner, gemini_rotator, nvidia_rotator
|
| 7 |
+
from helpers.models import ChatMessageResponse, ChatHistoryResponse, MessageResponse, ChatAnswerResponse
|
| 8 |
+
from utils.service.common import trim_text
|
| 9 |
+
from utils.api.router import select_model, generate_answer_with_model
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@app.post("/chat/save", response_model=MessageResponse)
|
| 13 |
+
async def save_chat_message(
|
| 14 |
+
user_id: str = Form(...),
|
| 15 |
+
project_id: str = Form(...),
|
| 16 |
+
role: str = Form(...),
|
| 17 |
+
content: str = Form(...),
|
| 18 |
+
timestamp: Optional[float] = Form(None),
|
| 19 |
+
sources: Optional[str] = Form(None)
|
| 20 |
+
):
|
| 21 |
+
"""Save a chat message to the session"""
|
| 22 |
+
if role not in ["user", "assistant"]:
|
| 23 |
+
raise HTTPException(400, detail="Invalid role")
|
| 24 |
+
|
| 25 |
+
# Parse optional sources JSON
|
| 26 |
+
parsed_sources: Optional[List[Dict[str, Any]]] = None
|
| 27 |
+
if sources:
|
| 28 |
+
try:
|
| 29 |
+
parsed = json.loads(sources)
|
| 30 |
+
if isinstance(parsed, list):
|
| 31 |
+
parsed_sources = parsed
|
| 32 |
+
except Exception:
|
| 33 |
+
parsed_sources = None
|
| 34 |
+
|
| 35 |
+
message = {
|
| 36 |
+
"user_id": user_id,
|
| 37 |
+
"project_id": project_id,
|
| 38 |
+
"role": role,
|
| 39 |
+
"content": content,
|
| 40 |
+
"timestamp": timestamp or time.time(),
|
| 41 |
+
"created_at": datetime.now(timezone.utc),
|
| 42 |
+
**({"sources": parsed_sources} if parsed_sources is not None else {})
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
rag.db["chat_sessions"].insert_one(message)
|
| 46 |
+
return MessageResponse(message="Chat message saved")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@app.get("/chat/history", response_model=ChatHistoryResponse)
|
| 50 |
+
async def get_chat_history(user_id: str, project_id: str, limit: int = 100):
|
| 51 |
+
"""Get chat history for a project"""
|
| 52 |
+
messages_cursor = rag.db["chat_sessions"].find(
|
| 53 |
+
{"user_id": user_id, "project_id": project_id}
|
| 54 |
+
).sort("timestamp", 1).limit(limit)
|
| 55 |
+
|
| 56 |
+
messages = []
|
| 57 |
+
for message in messages_cursor:
|
| 58 |
+
messages.append(ChatMessageResponse(
|
| 59 |
+
user_id=message["user_id"],
|
| 60 |
+
project_id=message["project_id"],
|
| 61 |
+
role=message["role"],
|
| 62 |
+
content=message["content"],
|
| 63 |
+
timestamp=message["timestamp"],
|
| 64 |
+
created_at=message["created_at"].isoformat() if isinstance(message["created_at"], datetime) else str(message["created_at"]),
|
| 65 |
+
sources=message.get("sources")
|
| 66 |
+
))
|
| 67 |
+
|
| 68 |
+
return ChatHistoryResponse(messages=messages)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@app.delete("/chat/history", response_model=MessageResponse)
|
| 72 |
+
async def delete_chat_history(user_id: str, project_id: str):
|
| 73 |
+
try:
|
| 74 |
+
rag.db["chat_sessions"].delete_many({"user_id": user_id, "project_id": project_id})
|
| 75 |
+
logger.info(f"[CHAT] Cleared history for user {user_id} project {project_id}")
|
| 76 |
+
# Also clear in-memory LRU for this user to avoid stale context
|
| 77 |
+
try:
|
| 78 |
+
from memo.core import get_memory_system
|
| 79 |
+
memory = get_memory_system()
|
| 80 |
+
memory.clear(user_id)
|
| 81 |
+
logger.info(f"[CHAT] Cleared memory for user {user_id}")
|
| 82 |
+
except Exception as me:
|
| 83 |
+
logger.warning(f"[CHAT] Failed to clear memory for user {user_id}: {me}")
|
| 84 |
+
return MessageResponse(message="Chat history cleared")
|
| 85 |
+
except Exception as e:
|
| 86 |
+
raise HTTPException(500, detail=f"Failed to clear chat history: {str(e)}")
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# ────────────────────────────── RAG Chat and Helpers ──────────────────────────────
|
| 90 |
+
async def _generate_query_variations(question: str, nvidia_rotator) -> List[str]:
|
| 91 |
+
"""
|
| 92 |
+
Generate multiple query variations using Chain of Thought reasoning
|
| 93 |
+
"""
|
| 94 |
+
if not nvidia_rotator:
|
| 95 |
+
return [question] # Fallback to original question
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
# Use NVIDIA to generate query variations
|
| 99 |
+
sys_prompt = """You are an expert at query expansion and reformulation. Given a user question, generate 3-5 different ways to ask the same question that would help retrieve relevant information from a document database.
|
| 100 |
+
|
| 101 |
+
Focus on:
|
| 102 |
+
1. Different terminology and synonyms
|
| 103 |
+
2. More specific technical terms
|
| 104 |
+
3. Broader conceptual queries
|
| 105 |
+
4. Question reformulations
|
| 106 |
+
|
| 107 |
+
Return only the variations, one per line, no numbering or extra text."""
|
| 108 |
+
|
| 109 |
+
user_prompt = f"Original question: {question}\n\nGenerate query variations:"
|
| 110 |
+
|
| 111 |
+
from utils.api.router import generate_answer_with_model
|
| 112 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 113 |
+
response = await generate_answer_with_model(selection, sys_prompt, user_prompt, None, nvidia_rotator)
|
| 114 |
+
|
| 115 |
+
# Parse variations
|
| 116 |
+
variations = [line.strip() for line in response.split('\n') if line.strip()]
|
| 117 |
+
variations = [v for v in variations if len(v) > 10] # Filter out too short variations
|
| 118 |
+
|
| 119 |
+
# Always include original question
|
| 120 |
+
if question not in variations:
|
| 121 |
+
variations.insert(0, question)
|
| 122 |
+
|
| 123 |
+
return variations[:5] # Limit to 5 variations
|
| 124 |
+
|
| 125 |
+
except Exception as e:
|
| 126 |
+
logger.warning(f"Query variation generation failed: {e}")
|
| 127 |
+
return [question]
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def _deduplicate_and_rank_hits(all_hits: List[Dict], original_question: str) -> List[Dict]:
|
| 131 |
+
"""
|
| 132 |
+
Deduplicate hits by chunk ID and rank by relevance to original question
|
| 133 |
+
"""
|
| 134 |
+
if not all_hits:
|
| 135 |
+
return []
|
| 136 |
+
|
| 137 |
+
# Deduplicate by chunk ID
|
| 138 |
+
seen_ids = set()
|
| 139 |
+
unique_hits = []
|
| 140 |
+
|
| 141 |
+
for hit in all_hits:
|
| 142 |
+
chunk_id = str(hit.get("doc", {}).get("_id", ""))
|
| 143 |
+
if chunk_id not in seen_ids:
|
| 144 |
+
seen_ids.add(chunk_id)
|
| 145 |
+
unique_hits.append(hit)
|
| 146 |
+
|
| 147 |
+
# Simple ranking: boost scores for hits that contain question keywords
|
| 148 |
+
question_words = set(original_question.lower().split())
|
| 149 |
+
|
| 150 |
+
for hit in unique_hits:
|
| 151 |
+
content = hit.get("doc", {}).get("content", "").lower()
|
| 152 |
+
topic = hit.get("doc", {}).get("topic_name", "").lower()
|
| 153 |
+
|
| 154 |
+
# Count keyword matches
|
| 155 |
+
content_matches = sum(1 for word in question_words if word in content)
|
| 156 |
+
topic_matches = sum(1 for word in question_words if word in topic)
|
| 157 |
+
|
| 158 |
+
# Boost score based on keyword matches
|
| 159 |
+
keyword_boost = 1.0 + (content_matches * 0.1) + (topic_matches * 0.2)
|
| 160 |
+
hit["score"] = hit.get("score", 0.0) * keyword_boost
|
| 161 |
+
|
| 162 |
+
# Sort by boosted score
|
| 163 |
+
unique_hits.sort(key=lambda x: x.get("score", 0.0), reverse=True)
|
| 164 |
+
|
| 165 |
+
return unique_hits
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
@app.post("/chat", response_model=ChatAnswerResponse)
|
| 169 |
+
async def chat(
|
| 170 |
+
user_id: str = Form(...),
|
| 171 |
+
project_id: str = Form(...),
|
| 172 |
+
question: str = Form(...),
|
| 173 |
+
k: int = Form(6)
|
| 174 |
+
):
|
| 175 |
+
import asyncio
|
| 176 |
+
try:
|
| 177 |
+
return await asyncio.wait_for(_chat_impl(user_id, project_id, question, k), timeout=120.0)
|
| 178 |
+
except asyncio.TimeoutError:
|
| 179 |
+
logger.error("[CHAT] Chat request timed out after 120 seconds")
|
| 180 |
+
return ChatAnswerResponse(
|
| 181 |
+
answer="Sorry, the request took too long to process. Please try again with a simpler question.",
|
| 182 |
+
sources=[],
|
| 183 |
+
relevant_files=[]
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
async def _chat_impl(
|
| 188 |
+
user_id: str,
|
| 189 |
+
project_id: str,
|
| 190 |
+
question: str,
|
| 191 |
+
k: int
|
| 192 |
+
):
|
| 193 |
+
import sys
|
| 194 |
+
from memo.core import get_memory_system
|
| 195 |
+
from utils.api.router import NVIDIA_SMALL # reuse default name
|
| 196 |
+
memory = get_memory_system()
|
| 197 |
+
logger.info("[CHAT] User Q/chat: %s", trim_text(question, 15).replace("\n", " "))
|
| 198 |
+
|
| 199 |
+
mentioned = set([m.group(0).strip() for m in re.finditer(r"\b[^\s/\\]+?\.(?:pdf|docx|doc)\b", question, re.IGNORECASE)])
|
| 200 |
+
if mentioned:
|
| 201 |
+
logger.info(f"[CHAT] Detected mentioned filenames in question: {list(mentioned)}")
|
| 202 |
+
|
| 203 |
+
if mentioned and (re.search(r"\b(summary|summarize|about|overview)\b", question, re.IGNORECASE)):
|
| 204 |
+
if len(mentioned) == 1:
|
| 205 |
+
fn = next(iter(mentioned))
|
| 206 |
+
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=fn)
|
| 207 |
+
if doc:
|
| 208 |
+
return ChatAnswerResponse(
|
| 209 |
+
answer=doc.get("summary", ""),
|
| 210 |
+
sources=[{"filename": fn, "file_summary": True}]
|
| 211 |
+
)
|
| 212 |
+
files_ci = rag.list_files(user_id=user_id, project_id=project_id)
|
| 213 |
+
match = next((f["filename"] for f in files_ci if f.get("filename", "").lower() == fn.lower()), None)
|
| 214 |
+
if match:
|
| 215 |
+
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=match)
|
| 216 |
+
if doc:
|
| 217 |
+
return ChatAnswerResponse(
|
| 218 |
+
answer=doc.get("summary", ""),
|
| 219 |
+
sources=[{"filename": match, "file_summary": True}]
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
files_list = rag.list_files(user_id=user_id, project_id=project_id)
|
| 223 |
+
|
| 224 |
+
filenames_ci_map = {f.get("filename", "").lower(): f.get("filename") for f in files_list if f.get("filename")}
|
| 225 |
+
mentioned_normalized = []
|
| 226 |
+
for mfn in mentioned:
|
| 227 |
+
key = mfn.lower()
|
| 228 |
+
if key in filenames_ci_map:
|
| 229 |
+
mentioned_normalized.append(filenames_ci_map[key])
|
| 230 |
+
if mentioned and not mentioned_normalized and files_list:
|
| 231 |
+
norm = {f.get("filename", "").lower().replace(" ", ""): f.get("filename") for f in files_list if f.get("filename")}
|
| 232 |
+
for mfn in mentioned:
|
| 233 |
+
key2 = mfn.lower().replace(" ", "")
|
| 234 |
+
if key2 in norm:
|
| 235 |
+
mentioned_normalized.append(norm[key2])
|
| 236 |
+
if mentioned_normalized:
|
| 237 |
+
logger.info(f"[CHAT] Normalized mentions to stored filenames: {mentioned_normalized}")
|
| 238 |
+
|
| 239 |
+
try:
|
| 240 |
+
from memo.history import get_history_manager
|
| 241 |
+
history_manager = get_history_manager(memory)
|
| 242 |
+
relevant_map = await history_manager.files_relevance(question, files_list, nvidia_rotator)
|
| 243 |
+
relevant_files = [fn for fn, ok in relevant_map.items() if ok]
|
| 244 |
+
logger.info(f"[CHAT] NVIDIA relevant files: {relevant_files}")
|
| 245 |
+
except Exception as e:
|
| 246 |
+
logger.warning(f"[CHAT] NVIDIA relevance failed, defaulting to all files: {e}")
|
| 247 |
+
relevant_files = [f.get("filename") for f in files_list if f.get("filename")]
|
| 248 |
+
|
| 249 |
+
if mentioned_normalized:
|
| 250 |
+
extra = [fn for fn in mentioned_normalized if fn not in relevant_files]
|
| 251 |
+
relevant_files.extend(extra)
|
| 252 |
+
if extra:
|
| 253 |
+
logger.info(f"[CHAT] Forced-include mentioned files into relevance: {extra}")
|
| 254 |
+
|
| 255 |
+
try:
|
| 256 |
+
from memo.history import get_history_manager
|
| 257 |
+
history_manager = get_history_manager(memory)
|
| 258 |
+
recent_related, semantic_related = await history_manager.related_recent_and_semantic_context(
|
| 259 |
+
user_id, question, embedder
|
| 260 |
+
)
|
| 261 |
+
except Exception as e:
|
| 262 |
+
logger.warning(f"[CHAT] Enhanced context retrieval failed, using fallback: {e}")
|
| 263 |
+
recent3 = memory.recent(user_id, 3)
|
| 264 |
+
if recent3:
|
| 265 |
+
sys = "Pick only items that directly relate to the new question. Output the selected items verbatim, no commentary. If none, output nothing."
|
| 266 |
+
numbered = [{"id": i+1, "text": s} for i, s in enumerate(recent3)]
|
| 267 |
+
user = f"Question: {question}\nCandidates:\n{json.dumps(numbered, ensure_ascii=False)}\nSelect any related items and output ONLY their 'text' values concatenated."
|
| 268 |
+
try:
|
| 269 |
+
from utils.api.rotator import robust_post_json
|
| 270 |
+
key = nvidia_rotator.get_key()
|
| 271 |
+
url = "https://integrate.api.nvidia.com/v1/chat/completions"
|
| 272 |
+
payload = {
|
| 273 |
+
"model": os.getenv("NVIDIA_SMALL", "meta/llama-3.1-8b-instruct"),
|
| 274 |
+
"temperature": 0.0,
|
| 275 |
+
"messages": [
|
| 276 |
+
{"role": "system", "content": sys},
|
| 277 |
+
{"role": "user", "content": user},
|
| 278 |
+
]
|
| 279 |
+
}
|
| 280 |
+
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key or ''}"}
|
| 281 |
+
data = await robust_post_json(url, headers, payload, nvidia_rotator)
|
| 282 |
+
recent_related = data["choices"][0]["message"]["content"].strip()
|
| 283 |
+
except Exception as e:
|
| 284 |
+
logger.warning(f"Recent-related NVIDIA error: {e}")
|
| 285 |
+
recent_related = ""
|
| 286 |
+
else:
|
| 287 |
+
recent_related = ""
|
| 288 |
+
rest17 = memory.rest(user_id, 3)
|
| 289 |
+
if rest17:
|
| 290 |
+
import numpy as np
|
| 291 |
+
def _cosine(a: np.ndarray, b: np.ndarray) -> float:
|
| 292 |
+
denom = (np.linalg.norm(a) * np.linalg.norm(b)) or 1.0
|
| 293 |
+
return float(np.dot(a, b) / denom)
|
| 294 |
+
qv = np.array(embedder.embed([question])[0], dtype="float32")
|
| 295 |
+
mats = embedder.embed([s.strip() for s in rest17])
|
| 296 |
+
sims = [(_cosine(qv, np.array(v, dtype="float32")), s) for v, s in zip(mats, rest17)]
|
| 297 |
+
sims.sort(key=lambda x: x[0], reverse=True)
|
| 298 |
+
top = [s for (sc, s) in sims[:3] if sc > 0.15]
|
| 299 |
+
semantic_related = "\n\n".join(top) if top else ""
|
| 300 |
+
|
| 301 |
+
logger.info(f"[CHAT] Starting enhanced vector search with relevant_files={relevant_files}")
|
| 302 |
+
enhanced_queries = await _generate_query_variations(question, nvidia_rotator)
|
| 303 |
+
logger.info(f"[CHAT] Generated {len(enhanced_queries)} query variations")
|
| 304 |
+
all_hits = []
|
| 305 |
+
search_strategies = ["flat", "hybrid", "local"]
|
| 306 |
+
for strategy in search_strategies:
|
| 307 |
+
for query_variant in enhanced_queries:
|
| 308 |
+
q_vec = embedder.embed([query_variant])[0]
|
| 309 |
+
hits = rag.vector_search(
|
| 310 |
+
user_id=user_id,
|
| 311 |
+
project_id=project_id,
|
| 312 |
+
query_vector=q_vec,
|
| 313 |
+
k=k,
|
| 314 |
+
filenames=relevant_files if relevant_files else None,
|
| 315 |
+
search_type=strategy
|
| 316 |
+
)
|
| 317 |
+
if hits:
|
| 318 |
+
all_hits.extend(hits)
|
| 319 |
+
logger.info(f"[CHAT] {strategy} search with '{query_variant[:50]}...' returned {len(hits)} hits")
|
| 320 |
+
break
|
| 321 |
+
if all_hits:
|
| 322 |
+
break
|
| 323 |
+
hits = _deduplicate_and_rank_hits(all_hits, question)
|
| 324 |
+
logger.info(f"[CHAT] Final vector search returned {len(hits) if hits else 0} hits")
|
| 325 |
+
if not hits:
|
| 326 |
+
logger.info(f"[CHAT] No hits with relevance filter. relevant_files={relevant_files}")
|
| 327 |
+
q_vec_original = embedder.embed([question])[0]
|
| 328 |
+
hits = rag.vector_search(
|
| 329 |
+
user_id=user_id,
|
| 330 |
+
project_id=project_id,
|
| 331 |
+
query_vector=q_vec_original,
|
| 332 |
+
k=k,
|
| 333 |
+
filenames=relevant_files if relevant_files else None,
|
| 334 |
+
search_type="flat"
|
| 335 |
+
)
|
| 336 |
+
logger.info(f"[CHAT] Fallback flat search → hits={len(hits) if hits else 0}")
|
| 337 |
+
if not hits and mentioned_normalized:
|
| 338 |
+
hits = rag.vector_search(
|
| 339 |
+
user_id=user_id,
|
| 340 |
+
project_id=project_id,
|
| 341 |
+
query_vector=q_vec_original,
|
| 342 |
+
k=k,
|
| 343 |
+
filenames=mentioned_normalized,
|
| 344 |
+
search_type="flat"
|
| 345 |
+
)
|
| 346 |
+
logger.info(f"[CHAT] Fallback with mentioned files only → hits={len(hits) if hits else 0}")
|
| 347 |
+
if not hits:
|
| 348 |
+
hits = rag.vector_search(
|
| 349 |
+
user_id=user_id,
|
| 350 |
+
project_id=project_id,
|
| 351 |
+
query_vector=q_vec_original,
|
| 352 |
+
k=k,
|
| 353 |
+
filenames=None,
|
| 354 |
+
search_type="flat"
|
| 355 |
+
)
|
| 356 |
+
logger.info(f"[CHAT] Fallback with all files → hits={len(hits) if hits else 0}")
|
| 357 |
+
if not hits and mentioned_normalized:
|
| 358 |
+
fsum_map = {f["filename"]: f.get("summary", "") for f in files_list}
|
| 359 |
+
summaries = [fsum_map.get(fn, "") for fn in mentioned_normalized]
|
| 360 |
+
summaries = [s for s in summaries if s]
|
| 361 |
+
if summaries:
|
| 362 |
+
answer = ("\n\n---\n\n").join(summaries)
|
| 363 |
+
return ChatAnswerResponse(
|
| 364 |
+
answer=answer,
|
| 365 |
+
sources=[{"filename": fn, "file_summary": True} for fn in mentioned_normalized],
|
| 366 |
+
relevant_files=mentioned_normalized
|
| 367 |
+
)
|
| 368 |
+
if not hits:
|
| 369 |
+
candidates = mentioned_normalized or relevant_files or []
|
| 370 |
+
if candidates:
|
| 371 |
+
fsum_map = {f["filename"]: f.get("summary", "") for f in files_list}
|
| 372 |
+
summaries = [fsum_map.get(fn, "") for fn in candidates]
|
| 373 |
+
summaries = [s for s in summaries if s]
|
| 374 |
+
if summaries:
|
| 375 |
+
answer = ("\n\n---\n\n").join(summaries)
|
| 376 |
+
logger.info(f"[CHAT] Falling back to file-level summaries for: {candidates}")
|
| 377 |
+
return ChatAnswerResponse(
|
| 378 |
+
answer=answer,
|
| 379 |
+
sources=[{"filename": fn, "file_summary": True} for fn in candidates],
|
| 380 |
+
relevant_files=candidates
|
| 381 |
+
)
|
| 382 |
+
return ChatAnswerResponse(
|
| 383 |
+
answer="I don't know based on your uploaded materials. Try uploading more sources or rephrasing the question.",
|
| 384 |
+
sources=[],
|
| 385 |
+
relevant_files=relevant_files or mentioned_normalized
|
| 386 |
+
)
|
| 387 |
+
contexts = []
|
| 388 |
+
sources_meta = []
|
| 389 |
+
for h in hits:
|
| 390 |
+
doc = h["doc"]
|
| 391 |
+
score = h["score"]
|
| 392 |
+
contexts.append(f"[{doc.get('topic_name','Topic')}] {trim_text(doc.get('content',''), 2000)}")
|
| 393 |
+
sources_meta.append({
|
| 394 |
+
"filename": doc.get("filename"),
|
| 395 |
+
"topic_name": doc.get("topic_name"),
|
| 396 |
+
"page_span": doc.get("page_span"),
|
| 397 |
+
"score": float(score),
|
| 398 |
+
"chunk_id": str(doc.get("_id", ""))
|
| 399 |
+
})
|
| 400 |
+
context_text = "\n\n---\n\n".join(contexts)
|
| 401 |
+
|
| 402 |
+
file_summary_block = ""
|
| 403 |
+
if relevant_files:
|
| 404 |
+
fsum_map = {f["filename"]: f.get("summary","") for f in files_list}
|
| 405 |
+
lines = [f"[{fn}] {fsum_map.get(fn, '')}" for fn in relevant_files]
|
| 406 |
+
file_summary_block = "\n".join(lines)
|
| 407 |
+
|
| 408 |
+
system_prompt = (
|
| 409 |
+
"You are a careful study assistant. Answer strictly using the given CONTEXT.\n"
|
| 410 |
+
"If the answer isn't in the context, say 'I don't know based on the provided materials.'\n"
|
| 411 |
+
"Write concise, clear explanations with citations like (source: actual_filename, topic).\n"
|
| 412 |
+
"Use the exact filename as provided in the context, not placeholders.\n"
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
history_block = ""
|
| 416 |
+
if recent_related or semantic_related:
|
| 417 |
+
history_block = "RECENT_CHAT_CONTEXT:\n" + (recent_related or "") + ("\n\nHISTORICAL_SIMILARITY_CONTEXT:\n" + semantic_related if semantic_related else "")
|
| 418 |
+
composed_context = ""
|
| 419 |
+
if history_block:
|
| 420 |
+
composed_context += history_block + "\n\n"
|
| 421 |
+
if file_summary_block:
|
| 422 |
+
composed_context += "FILE_SUMMARIES:\n" + file_summary_block + "\n\n"
|
| 423 |
+
composed_context += "DOC_CONTEXT:\n" + context_text
|
| 424 |
+
|
| 425 |
+
user_prompt = f"QUESTION:\n{question}\n\nCONTEXT:\n{composed_context}"
|
| 426 |
+
selection = select_model(question=question, context=composed_context)
|
| 427 |
+
logger.info(f"Model selection: {selection}")
|
| 428 |
+
logger.info(f"[CHAT] Generating answer with {selection['provider']} {selection['model']}")
|
| 429 |
+
try:
|
| 430 |
+
answer = await generate_answer_with_model(
|
| 431 |
+
selection=selection,
|
| 432 |
+
system_prompt=system_prompt,
|
| 433 |
+
user_prompt=user_prompt,
|
| 434 |
+
gemini_rotator=gemini_rotator,
|
| 435 |
+
nvidia_rotator=nvidia_rotator
|
| 436 |
+
)
|
| 437 |
+
logger.info(f"[CHAT] Answer generated successfully, length: {len(answer)}")
|
| 438 |
+
except Exception as e:
|
| 439 |
+
logger.error(f"LLM error: {e}")
|
| 440 |
+
answer = "I had trouble contacting the language model provider just now. Please try again."
|
| 441 |
+
try:
|
| 442 |
+
from memo.history import get_history_manager
|
| 443 |
+
history_manager = get_history_manager(memory)
|
| 444 |
+
qa_sum = await history_manager.summarize_qa_with_nvidia(question, answer, nvidia_rotator)
|
| 445 |
+
memory.add(user_id, qa_sum)
|
| 446 |
+
if memory.is_enhanced_available():
|
| 447 |
+
await memory.add_conversation_memory(
|
| 448 |
+
user_id=user_id,
|
| 449 |
+
question=question,
|
| 450 |
+
answer=answer,
|
| 451 |
+
project_id=project_id,
|
| 452 |
+
context={
|
| 453 |
+
"relevant_files": relevant_files,
|
| 454 |
+
"sources_count": len(sources_meta),
|
| 455 |
+
"timestamp": time.time()
|
| 456 |
+
}
|
| 457 |
+
)
|
| 458 |
+
except Exception as e:
|
| 459 |
+
logger.warning(f"QA summarize/store failed: {e}")
|
| 460 |
+
logger.info("LLM answer (trimmed): %s", trim_text(answer, 200).replace("\n", " "))
|
| 461 |
+
return ChatAnswerResponse(answer=answer, sources=sources_meta, relevant_files=relevant_files)
|
| 462 |
+
|
| 463 |
+
|
routes/files.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, io, json, uuid, time, asyncio
|
| 2 |
+
from typing import List, Dict, Any, Optional
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from fastapi import UploadFile, File, Form, Request, HTTPException, BackgroundTasks
|
| 5 |
+
from fastapi.responses import FileResponse, HTMLResponse
|
| 6 |
+
|
| 7 |
+
from helpers.setup import app, rag, logger, embedder, captioner
|
| 8 |
+
from helpers.models import UploadResponse, FileSummaryResponse, MessageResponse
|
| 9 |
+
from helpers.pages import _extract_pages
|
| 10 |
+
|
| 11 |
+
from utils.service.summarizer import cheap_summarize
|
| 12 |
+
from utils.ingestion.chunker import build_cards_from_pages
|
| 13 |
+
from utils.service.common import trim_text
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
@app.get("/", response_class=HTMLResponse)
|
| 17 |
+
def index():
|
| 18 |
+
index_path = os.path.join("static", "index.html")
|
| 19 |
+
if not os.path.exists(index_path):
|
| 20 |
+
return HTMLResponse("<h1>StudyBuddy</h1><p>Static files not found.</p>")
|
| 21 |
+
return FileResponse(index_path)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@app.post("/upload", response_model=UploadResponse)
|
| 25 |
+
async def upload_files(
|
| 26 |
+
request: Request,
|
| 27 |
+
background_tasks: BackgroundTasks,
|
| 28 |
+
user_id: str = Form(...),
|
| 29 |
+
project_id: str = Form(...),
|
| 30 |
+
files: List[UploadFile] = File(...),
|
| 31 |
+
replace_filenames: Optional[str] = Form(None),
|
| 32 |
+
rename_map: Optional[str] = Form(None),
|
| 33 |
+
):
|
| 34 |
+
"""
|
| 35 |
+
Ingest many files: PDF/DOCX.
|
| 36 |
+
Steps:
|
| 37 |
+
1) Extract text & images
|
| 38 |
+
2) Caption images (BLIP base, CPU ok)
|
| 39 |
+
3) Merge captions into page text
|
| 40 |
+
4) Chunk into semantic cards (topic_name, summary, content + metadata)
|
| 41 |
+
5) Embed with all-MiniLM-L6-v2
|
| 42 |
+
6) Store in MongoDB with per-user and per-project metadata
|
| 43 |
+
7) Create a file-level summary
|
| 44 |
+
"""
|
| 45 |
+
job_id = str(uuid.uuid4())
|
| 46 |
+
|
| 47 |
+
max_files = int(os.getenv("MAX_FILES_PER_UPLOAD", "15"))
|
| 48 |
+
max_mb = int(os.getenv("MAX_FILE_MB", "50"))
|
| 49 |
+
if len(files) > max_files:
|
| 50 |
+
raise HTTPException(400, detail=f"Too many files. Max {max_files} allowed per upload.")
|
| 51 |
+
|
| 52 |
+
replace_set = set()
|
| 53 |
+
try:
|
| 54 |
+
if replace_filenames:
|
| 55 |
+
replace_set = set(json.loads(replace_filenames))
|
| 56 |
+
except Exception:
|
| 57 |
+
pass
|
| 58 |
+
rename_dict: Dict[str, str] = {}
|
| 59 |
+
try:
|
| 60 |
+
if rename_map:
|
| 61 |
+
rename_dict = json.loads(rename_map)
|
| 62 |
+
except Exception:
|
| 63 |
+
pass
|
| 64 |
+
|
| 65 |
+
preloaded_files = []
|
| 66 |
+
for uf in files:
|
| 67 |
+
raw = await uf.read()
|
| 68 |
+
if len(raw) > max_mb * 1024 * 1024:
|
| 69 |
+
raise HTTPException(400, detail=f"{uf.filename} exceeds {max_mb} MB limit")
|
| 70 |
+
eff_name = rename_dict.get(uf.filename, uf.filename)
|
| 71 |
+
preloaded_files.append((eff_name, raw))
|
| 72 |
+
|
| 73 |
+
app.state.jobs[job_id] = {
|
| 74 |
+
"created_at": time.time(),
|
| 75 |
+
"total": len(preloaded_files),
|
| 76 |
+
"completed": 0,
|
| 77 |
+
"status": "processing",
|
| 78 |
+
"last_error": None,
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
async def _process_all():
|
| 82 |
+
for idx, (fname, raw) in enumerate(preloaded_files, start=1):
|
| 83 |
+
try:
|
| 84 |
+
if fname in replace_set:
|
| 85 |
+
try:
|
| 86 |
+
rag.db["chunks"].delete_many({"user_id": user_id, "project_id": project_id, "filename": fname})
|
| 87 |
+
rag.db["files"].delete_many({"user_id": user_id, "project_id": project_id, "filename": fname})
|
| 88 |
+
logger.info(f"[{job_id}] Replaced prior data for {fname}")
|
| 89 |
+
except Exception as de:
|
| 90 |
+
logger.warning(f"[{job_id}] Replace delete failed for {fname}: {de}")
|
| 91 |
+
logger.info(f"[{job_id}] ({idx}/{len(preloaded_files)}) Parsing {fname} ({len(raw)} bytes)")
|
| 92 |
+
|
| 93 |
+
pages = _extract_pages(fname, raw)
|
| 94 |
+
|
| 95 |
+
num_imgs = sum(len(p.get("images", [])) for p in pages)
|
| 96 |
+
captions = []
|
| 97 |
+
if num_imgs > 0:
|
| 98 |
+
for p in pages:
|
| 99 |
+
caps = []
|
| 100 |
+
for im in p.get("images", []):
|
| 101 |
+
try:
|
| 102 |
+
cap = captioner.caption_image(im)
|
| 103 |
+
caps.append(cap)
|
| 104 |
+
except Exception as e:
|
| 105 |
+
logger.warning(f"[{job_id}] Caption error in {fname}: {e}")
|
| 106 |
+
captions.append(caps)
|
| 107 |
+
else:
|
| 108 |
+
captions = [[] for _ in pages]
|
| 109 |
+
|
| 110 |
+
for p, caps in zip(pages, captions):
|
| 111 |
+
if caps:
|
| 112 |
+
p["text"] = (p.get("text", "") + "\n\n" + "\n".join([f"[Image] {c}" for c in caps])).strip()
|
| 113 |
+
|
| 114 |
+
cards = await build_cards_from_pages(pages, filename=fname, user_id=user_id, project_id=project_id)
|
| 115 |
+
logger.info(f"[{job_id}] Built {len(cards)} cards for {fname}")
|
| 116 |
+
|
| 117 |
+
embeddings = embedder.embed([c["content"] for c in cards])
|
| 118 |
+
for c, vec in zip(cards, embeddings):
|
| 119 |
+
c["embedding"] = vec
|
| 120 |
+
|
| 121 |
+
rag.store_cards(cards)
|
| 122 |
+
|
| 123 |
+
full_text = "\n\n".join(p.get("text", "") for p in pages)
|
| 124 |
+
file_summary = await cheap_summarize(full_text, max_sentences=6)
|
| 125 |
+
rag.upsert_file_summary(user_id=user_id, project_id=project_id, filename=fname, summary=file_summary)
|
| 126 |
+
logger.info(f"[{job_id}] Completed {fname}")
|
| 127 |
+
job = app.state.jobs.get(job_id)
|
| 128 |
+
if job:
|
| 129 |
+
job["completed"] = idx
|
| 130 |
+
job["status"] = "processing" if idx < job.get("total", 0) else "completed"
|
| 131 |
+
except Exception as e:
|
| 132 |
+
logger.error(f"[{job_id}] Failed processing {fname}: {e}")
|
| 133 |
+
job = app.state.jobs.get(job_id)
|
| 134 |
+
if job:
|
| 135 |
+
job["last_error"] = str(e)
|
| 136 |
+
job["completed"] = idx
|
| 137 |
+
finally:
|
| 138 |
+
await asyncio.sleep(0)
|
| 139 |
+
|
| 140 |
+
logger.info(f"[{job_id}] Ingestion complete for {len(preloaded_files)} files")
|
| 141 |
+
job = app.state.jobs.get(job_id)
|
| 142 |
+
if job:
|
| 143 |
+
job["status"] = "completed"
|
| 144 |
+
|
| 145 |
+
background_tasks.add_task(_process_all)
|
| 146 |
+
return UploadResponse(job_id=job_id, status="processing", total_files=len(preloaded_files))
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
@app.get("/upload/status")
|
| 150 |
+
async def upload_status(job_id: str):
|
| 151 |
+
job = app.state.jobs.get(job_id)
|
| 152 |
+
if not job:
|
| 153 |
+
raise HTTPException(404, detail="Job not found")
|
| 154 |
+
percent = 0
|
| 155 |
+
if job.get("total"):
|
| 156 |
+
percent = int(round((job.get("completed", 0) / job.get("total", 1)) * 100))
|
| 157 |
+
return {
|
| 158 |
+
"job_id": job_id,
|
| 159 |
+
"status": job.get("status"),
|
| 160 |
+
"completed": job.get("completed"),
|
| 161 |
+
"total": job.get("total"),
|
| 162 |
+
"percent": percent,
|
| 163 |
+
"last_error": job.get("last_error"),
|
| 164 |
+
"created_at": job.get("created_at"),
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
@app.get("/files")
|
| 169 |
+
async def list_project_files(user_id: str, project_id: str):
|
| 170 |
+
"""Return stored filenames and summaries for a project."""
|
| 171 |
+
files = rag.list_files(user_id=user_id, project_id=project_id)
|
| 172 |
+
filenames = [f.get("filename") for f in files if f.get("filename")]
|
| 173 |
+
return {"files": files, "filenames": filenames}
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
@app.delete("/files", response_model=MessageResponse)
|
| 177 |
+
async def delete_file(user_id: str, project_id: str, filename: str):
|
| 178 |
+
"""Delete a file summary and associated chunks for a project."""
|
| 179 |
+
try:
|
| 180 |
+
rag.db["files"].delete_many({"user_id": user_id, "project_id": project_id, "filename": filename})
|
| 181 |
+
rag.db["chunks"].delete_many({"user_id": user_id, "project_id": project_id, "filename": filename})
|
| 182 |
+
logger.info(f"[FILES] Deleted file {filename} for user {user_id} project {project_id}")
|
| 183 |
+
return MessageResponse(message="File deleted")
|
| 184 |
+
except Exception as e:
|
| 185 |
+
raise HTTPException(500, detail=f"Failed to delete file: {str(e)}")
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
@app.get("/cards")
|
| 189 |
+
def list_cards(user_id: str, project_id: str, filename: Optional[str] = None, limit: int = 50, skip: int = 0):
|
| 190 |
+
"""List cards for a project"""
|
| 191 |
+
cards = rag.list_cards(user_id=user_id, project_id=project_id, filename=filename, limit=limit, skip=skip)
|
| 192 |
+
# Ensure all cards are JSON serializable
|
| 193 |
+
serializable_cards = []
|
| 194 |
+
for card in cards:
|
| 195 |
+
serializable_card = {}
|
| 196 |
+
for key, value in card.items():
|
| 197 |
+
if key == '_id':
|
| 198 |
+
serializable_card[key] = str(value) # Convert ObjectId to string
|
| 199 |
+
elif isinstance(value, datetime):
|
| 200 |
+
serializable_card[key] = value.isoformat() # Convert datetime to ISO string
|
| 201 |
+
else:
|
| 202 |
+
serializable_card[key] = value
|
| 203 |
+
serializable_cards.append(serializable_card)
|
| 204 |
+
# Sort cards by topic_name
|
| 205 |
+
return {"cards": serializable_cards}
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
@app.get("/file-summary", response_model=FileSummaryResponse)
|
| 209 |
+
def get_file_summary(user_id: str, project_id: str, filename: str):
|
| 210 |
+
doc = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=filename)
|
| 211 |
+
if not doc:
|
| 212 |
+
raise HTTPException(404, detail="No summary found for that file.")
|
| 213 |
+
return FileSummaryResponse(filename=filename, summary=doc.get("summary", ""))
|
| 214 |
+
|
| 215 |
+
|
routes/health.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from helpers.setup import app, rag, logger
|
| 2 |
+
from helpers.models import HealthResponse
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
@app.get("/healthz", response_model=HealthResponse)
|
| 6 |
+
def health():
|
| 7 |
+
return HealthResponse(ok=True)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@app.get("/test-db")
|
| 11 |
+
async def test_database():
|
| 12 |
+
"""Test database connection and basic operations"""
|
| 13 |
+
from datetime import datetime, timezone
|
| 14 |
+
try:
|
| 15 |
+
if not rag:
|
| 16 |
+
return {
|
| 17 |
+
"status": "error",
|
| 18 |
+
"message": "RAG store not initialized",
|
| 19 |
+
"error_type": "RAGStoreNotInitialized"
|
| 20 |
+
}
|
| 21 |
+
rag.client.admin.command('ping')
|
| 22 |
+
test_collection = rag.db["test_collection"]
|
| 23 |
+
test_doc = {"test": True, "timestamp": datetime.now(timezone.utc)}
|
| 24 |
+
result = test_collection.insert_one(test_doc)
|
| 25 |
+
found = test_collection.find_one({"_id": result.inserted_id})
|
| 26 |
+
test_collection.delete_one({"_id": result.inserted_id})
|
| 27 |
+
return {
|
| 28 |
+
"status": "success",
|
| 29 |
+
"message": "Database connection and operations working correctly",
|
| 30 |
+
"test_id": str(result.inserted_id),
|
| 31 |
+
"found_doc": str(found["_id"]) if found else None
|
| 32 |
+
}
|
| 33 |
+
except Exception as e:
|
| 34 |
+
logger.error(f"[TEST-DB] Database test failed: {str(e)}")
|
| 35 |
+
return {
|
| 36 |
+
"status": "error",
|
| 37 |
+
"message": f"Database test failed: {str(e)}",
|
| 38 |
+
"error_type": str(type(e))
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@app.get("/rag-status")
|
| 43 |
+
async def rag_status():
|
| 44 |
+
"""Check the status of the RAG store"""
|
| 45 |
+
if not rag:
|
| 46 |
+
return {
|
| 47 |
+
"status": "error",
|
| 48 |
+
"message": "RAG store not initialized",
|
| 49 |
+
"rag_available": False
|
| 50 |
+
}
|
| 51 |
+
try:
|
| 52 |
+
rag.client.admin.command('ping')
|
| 53 |
+
return {
|
| 54 |
+
"status": "success",
|
| 55 |
+
"message": "RAG store is available and connected",
|
| 56 |
+
"rag_available": True,
|
| 57 |
+
"database": rag.db.name,
|
| 58 |
+
"collections": {
|
| 59 |
+
"chunks": rag.chunks.name,
|
| 60 |
+
"files": rag.files.name
|
| 61 |
+
}
|
| 62 |
+
}
|
| 63 |
+
except Exception as e:
|
| 64 |
+
return {
|
| 65 |
+
"status": "error",
|
| 66 |
+
"message": f"RAG store connection failed: {str(e)}",
|
| 67 |
+
"rag_available": False,
|
| 68 |
+
"error": str(e)
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
|
routes/projects.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import uuid
|
| 2 |
+
import time
|
| 3 |
+
from datetime import datetime, timezone
|
| 4 |
+
from fastapi import Form, HTTPException
|
| 5 |
+
from pymongo.errors import PyMongoError
|
| 6 |
+
|
| 7 |
+
from helpers.setup import app, rag, logger
|
| 8 |
+
from helpers.models import ProjectResponse, ProjectsListResponse, MessageResponse
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
# ────────────────────────────── Project Management ───────────────────────────
|
| 12 |
+
@app.post("/projects/create", response_model=ProjectResponse)
|
| 13 |
+
async def create_project(user_id: str = Form(...), name: str = Form(...), description: str = Form("")):
|
| 14 |
+
"""Create a new project for a user"""
|
| 15 |
+
try:
|
| 16 |
+
if not rag:
|
| 17 |
+
raise HTTPException(500, detail="Database connection not available")
|
| 18 |
+
|
| 19 |
+
if not name.strip():
|
| 20 |
+
raise HTTPException(400, detail="Project name is required")
|
| 21 |
+
|
| 22 |
+
if not user_id.strip():
|
| 23 |
+
raise HTTPException(400, detail="User ID is required")
|
| 24 |
+
|
| 25 |
+
project_id = str(uuid.uuid4())
|
| 26 |
+
current_time = datetime.now(timezone.utc)
|
| 27 |
+
|
| 28 |
+
project = {
|
| 29 |
+
"project_id": project_id,
|
| 30 |
+
"user_id": user_id,
|
| 31 |
+
"name": name.strip(),
|
| 32 |
+
"description": description.strip(),
|
| 33 |
+
"created_at": current_time,
|
| 34 |
+
"updated_at": current_time
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
logger.info(f"[PROJECT] Creating project {name} for user {user_id}")
|
| 38 |
+
|
| 39 |
+
# Insert the project
|
| 40 |
+
try:
|
| 41 |
+
result = rag.db["projects"].insert_one(project)
|
| 42 |
+
logger.info(f"[PROJECT] Created project {name} with ID {project_id}, MongoDB result: {result.inserted_id}")
|
| 43 |
+
except PyMongoError as mongo_error:
|
| 44 |
+
logger.error(f"[PROJECT] MongoDB error creating project: {str(mongo_error)}")
|
| 45 |
+
raise HTTPException(500, detail=f"Database error: {str(mongo_error)}")
|
| 46 |
+
except Exception as db_error:
|
| 47 |
+
logger.error(f"[PROJECT] Database error creating project: {str(db_error)}")
|
| 48 |
+
raise HTTPException(500, detail=f"Database error: {str(db_error)}")
|
| 49 |
+
|
| 50 |
+
# Return a properly formatted response
|
| 51 |
+
response = ProjectResponse(
|
| 52 |
+
project_id=project_id,
|
| 53 |
+
user_id=user_id,
|
| 54 |
+
name=name.strip(),
|
| 55 |
+
description=description.strip(),
|
| 56 |
+
created_at=current_time.isoformat(),
|
| 57 |
+
updated_at=current_time.isoformat()
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
logger.info(f"[PROJECT] Successfully created project {name} for user {user_id}")
|
| 61 |
+
return response
|
| 62 |
+
|
| 63 |
+
except HTTPException:
|
| 64 |
+
# Re-raise HTTP exceptions
|
| 65 |
+
raise
|
| 66 |
+
except Exception as e:
|
| 67 |
+
logger.error(f"[PROJECT] Error creating project: {str(e)}")
|
| 68 |
+
logger.error(f"[PROJECT] Error type: {type(e)}")
|
| 69 |
+
logger.error(f"[PROJECT] Error details: {e}")
|
| 70 |
+
raise HTTPException(500, detail=f"Failed to create project: {str(e)}")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@app.get("/projects", response_model=ProjectsListResponse)
|
| 74 |
+
async def list_projects(user_id: str):
|
| 75 |
+
"""List all projects for a user"""
|
| 76 |
+
projects_cursor = rag.db["projects"].find(
|
| 77 |
+
{"user_id": user_id}
|
| 78 |
+
).sort("updated_at", -1)
|
| 79 |
+
|
| 80 |
+
projects = []
|
| 81 |
+
for project in projects_cursor:
|
| 82 |
+
projects.append(ProjectResponse(
|
| 83 |
+
project_id=project["project_id"],
|
| 84 |
+
user_id=project["user_id"],
|
| 85 |
+
name=project["name"],
|
| 86 |
+
description=project.get("description", ""),
|
| 87 |
+
created_at=project["created_at"].isoformat() if isinstance(project["created_at"], datetime) else str(project["created_at"]),
|
| 88 |
+
updated_at=project["updated_at"].isoformat() if isinstance(project["updated_at"], datetime) else str(project["updated_at"])
|
| 89 |
+
))
|
| 90 |
+
|
| 91 |
+
return ProjectsListResponse(projects=projects)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
@app.get("/projects/{project_id}", response_model=ProjectResponse)
|
| 95 |
+
async def get_project(project_id: str, user_id: str):
|
| 96 |
+
"""Get a specific project (with user ownership check)"""
|
| 97 |
+
project = rag.db["projects"].find_one(
|
| 98 |
+
{"project_id": project_id, "user_id": user_id}
|
| 99 |
+
)
|
| 100 |
+
if not project:
|
| 101 |
+
raise HTTPException(404, detail="Project not found")
|
| 102 |
+
|
| 103 |
+
return ProjectResponse(
|
| 104 |
+
project_id=project["project_id"],
|
| 105 |
+
user_id=project["user_id"],
|
| 106 |
+
name=project["name"],
|
| 107 |
+
description=project.get("description", ""),
|
| 108 |
+
created_at=project["created_at"].isoformat() if isinstance(project["created_at"], datetime) else str(project["created_at"]),
|
| 109 |
+
updated_at=project["updated_at"].isoformat() if isinstance(project["updated_at"], datetime) else str(project["updated_at"])
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@app.delete("/projects/{project_id}", response_model=MessageResponse)
|
| 114 |
+
async def delete_project(project_id: str, user_id: str):
|
| 115 |
+
"""Delete a project and all its associated data"""
|
| 116 |
+
# Check ownership
|
| 117 |
+
project = rag.db["projects"].find_one({"project_id": project_id, "user_id": user_id})
|
| 118 |
+
if not project:
|
| 119 |
+
raise HTTPException(404, detail="Project not found")
|
| 120 |
+
|
| 121 |
+
# Delete project and all associated data
|
| 122 |
+
rag.db["projects"].delete_one({"project_id": project_id})
|
| 123 |
+
rag.db["chunks"].delete_many({"project_id": project_id})
|
| 124 |
+
rag.db["files"].delete_many({"project_id": project_id})
|
| 125 |
+
rag.db["chat_sessions"].delete_many({"project_id": project_id})
|
| 126 |
+
|
| 127 |
+
logger.info(f"[PROJECT] Deleted project {project_id} for user {user_id}")
|
| 128 |
+
return MessageResponse(message="Project deleted successfully")
|
| 129 |
+
|
| 130 |
+
|
routes/reports.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from typing import List, Dict
|
| 4 |
+
from fastapi import Form, HTTPException
|
| 5 |
+
|
| 6 |
+
from helpers.setup import app, rag, logger, embedder, gemini_rotator, nvidia_rotator
|
| 7 |
+
from helpers.models import ReportResponse
|
| 8 |
+
from utils.service.common import trim_text
|
| 9 |
+
from utils.api.router import select_model, generate_answer_with_model
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@app.post("/report", response_model=ReportResponse)
|
| 13 |
+
async def generate_report(
|
| 14 |
+
user_id: str = Form(...),
|
| 15 |
+
project_id: str = Form(...),
|
| 16 |
+
filename: str = Form(...),
|
| 17 |
+
outline_words: int = Form(200),
|
| 18 |
+
report_words: int = Form(1200),
|
| 19 |
+
instructions: str = Form("")
|
| 20 |
+
):
|
| 21 |
+
logger.info("[REPORT] User Q/report: %s", trim_text(instructions, 15).replace("\n", " "))
|
| 22 |
+
files_list = rag.list_files(user_id=user_id, project_id=project_id)
|
| 23 |
+
filenames_ci = {f.get("filename", "").lower(): f.get("filename") for f in files_list}
|
| 24 |
+
eff_name = filenames_ci.get(filename.lower(), filename)
|
| 25 |
+
doc_sum = rag.get_file_summary(user_id=user_id, project_id=project_id, filename=eff_name)
|
| 26 |
+
if not doc_sum:
|
| 27 |
+
raise HTTPException(404, detail="No summary found for that file.")
|
| 28 |
+
|
| 29 |
+
query_text = f"Comprehensive report for {eff_name}"
|
| 30 |
+
if instructions.strip():
|
| 31 |
+
query_text = f"{instructions} {eff_name}"
|
| 32 |
+
q_vec = embedder.embed([query_text])[0]
|
| 33 |
+
hits = rag.vector_search(user_id=user_id, project_id=project_id, query_vector=q_vec, k=8, filenames=[eff_name], search_type="flat")
|
| 34 |
+
if not hits:
|
| 35 |
+
hits = []
|
| 36 |
+
|
| 37 |
+
contexts: List[str] = []
|
| 38 |
+
sources_meta: List[Dict] = []
|
| 39 |
+
for h in hits:
|
| 40 |
+
doc = h["doc"]
|
| 41 |
+
chunk_id = str(doc.get("_id", ""))
|
| 42 |
+
contexts.append(f"[CHUNK_ID: {chunk_id}] [{doc.get('topic_name','Topic')}] {trim_text(doc.get('content',''), 2000)}")
|
| 43 |
+
sources_meta.append({
|
| 44 |
+
"filename": doc.get("filename"),
|
| 45 |
+
"topic_name": doc.get("topic_name"),
|
| 46 |
+
"page_span": doc.get("page_span"),
|
| 47 |
+
"score": float(h.get("score", 0.0)),
|
| 48 |
+
"chunk_id": chunk_id
|
| 49 |
+
})
|
| 50 |
+
context_text = "\n\n---\n\n".join(contexts) if contexts else ""
|
| 51 |
+
file_summary = doc_sum.get("summary", "")
|
| 52 |
+
|
| 53 |
+
from utils.api.router import GEMINI_MED, GEMINI_PRO
|
| 54 |
+
if instructions.strip():
|
| 55 |
+
filter_sys = (
|
| 56 |
+
"You are an expert content analyst. Given the user's specific instructions and the document content, "
|
| 57 |
+
"identify which sections/chunks are MOST relevant to their request. "
|
| 58 |
+
"Each chunk is prefixed with [CHUNK_ID: <id>] - use these exact IDs in your response. "
|
| 59 |
+
"Return a JSON object with this structure: {\"relevant_chunks\": [\"<chunk_id_1>\", \"<chunk_id_2>\"], \"focus_areas\": [\"key topic 1\", \"key topic 2\"]}"
|
| 60 |
+
)
|
| 61 |
+
filter_user = f"USER_INSTRUCTIONS: {instructions}\n\nDOCUMENT_SUMMARY: {file_summary}\n\nAVAILABLE_CHUNKS:\n{context_text}\n\nIdentify only the chunks that directly address the user's specific request."
|
| 62 |
+
try:
|
| 63 |
+
selection_filter = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
|
| 64 |
+
filter_response = await generate_answer_with_model(selection_filter, filter_sys, filter_user, gemini_rotator, nvidia_rotator)
|
| 65 |
+
logger.info(f"[REPORT] Raw filter response: {filter_response}")
|
| 66 |
+
import json as _json
|
| 67 |
+
try:
|
| 68 |
+
filter_data = _json.loads(filter_response)
|
| 69 |
+
relevant_chunk_ids = filter_data.get("relevant_chunks", [])
|
| 70 |
+
focus_areas = filter_data.get("focus_areas", [])
|
| 71 |
+
logger.info(f"[REPORT] Content filtering identified {len(relevant_chunk_ids)} relevant chunks: {relevant_chunk_ids} and focus areas: {focus_areas}")
|
| 72 |
+
if relevant_chunk_ids and hits:
|
| 73 |
+
filtered_hits = [h for h in hits if str(h["doc"].get("_id", "")) in relevant_chunk_ids]
|
| 74 |
+
if filtered_hits:
|
| 75 |
+
hits = filtered_hits
|
| 76 |
+
logger.info(f"[REPORT] Filtered context from {len(hits)} chunks to {len(filtered_hits)} relevant chunks")
|
| 77 |
+
else:
|
| 78 |
+
logger.warning(f"[REPORT] No matching chunks found for IDs: {relevant_chunk_ids}")
|
| 79 |
+
else:
|
| 80 |
+
logger.warning(f"[REPORT] No relevant chunk IDs returned or no hits available")
|
| 81 |
+
except _json.JSONDecodeError as e:
|
| 82 |
+
logger.warning(f"[REPORT] Could not parse filter response, using all chunks. JSON error: {e}. Response: {filter_response}")
|
| 83 |
+
except Exception as e:
|
| 84 |
+
logger.warning(f"[REPORT] Content filtering failed: {e}")
|
| 85 |
+
|
| 86 |
+
sys_outline = (
|
| 87 |
+
"You are an expert technical writer. Create a focused, hierarchical outline for a report based on the user's specific instructions and the MATERIALS. "
|
| 88 |
+
"The outline should directly address what the user asked for. Output as Markdown bullet list only. Keep it within about {} words."
|
| 89 |
+
).format(max(100, outline_words))
|
| 90 |
+
instruction_context = f"USER_REQUEST: {instructions}\n\n" if instructions.strip() else ""
|
| 91 |
+
user_outline = f"{instruction_context}MATERIALS:\n\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}"
|
| 92 |
+
try:
|
| 93 |
+
selection_outline = {"provider": "gemini", "model": os.getenv("GEMINI_MED", "gemini-2.5-flash")}
|
| 94 |
+
outline_md = await generate_answer_with_model(selection_outline, sys_outline, user_outline, gemini_rotator, nvidia_rotator)
|
| 95 |
+
except Exception as e:
|
| 96 |
+
logger.warning(f"Report outline failed: {e}")
|
| 97 |
+
outline_md = "# Report Outline\n\n- Introduction\n- Key Topics\n- Conclusion"
|
| 98 |
+
|
| 99 |
+
instruction_focus = f"FOCUS ON: {instructions}\n\n" if instructions.strip() else ""
|
| 100 |
+
sys_report = (
|
| 101 |
+
"You are an expert report writer. Write a focused, comprehensive Markdown report that directly addresses the user's specific request. "
|
| 102 |
+
"Using the OUTLINE and MATERIALS:\n"
|
| 103 |
+
"- Structure the report to answer exactly what the user asked for\n"
|
| 104 |
+
"- Use clear section headings\n"
|
| 105 |
+
"- Keep content factual and grounded in the provided materials\n"
|
| 106 |
+
f"- Include brief citations like (source: {eff_name}, topic) - use the actual filename provided\n"
|
| 107 |
+
"- If the user asked for a specific section/topic, focus heavily on that\n"
|
| 108 |
+
f"- Target length ~{max(600, report_words)} words\n"
|
| 109 |
+
"- Ensure the report directly fulfills the user's request"
|
| 110 |
+
)
|
| 111 |
+
user_report = f"{instruction_focus}OUTLINE:\n{outline_md}\n\nMATERIALS:\n[FILE_SUMMARY from {eff_name}]\n{file_summary}\n\n[DOC_CONTEXT]\n{context_text}"
|
| 112 |
+
try:
|
| 113 |
+
selection_report = {"provider": "gemini", "model": os.getenv("GEMINI_PRO", "gemini-2.5-pro")}
|
| 114 |
+
report_md = await generate_answer_with_model(selection_report, sys_report, user_report, gemini_rotator, nvidia_rotator)
|
| 115 |
+
except Exception as e:
|
| 116 |
+
logger.error(f"Report generation failed: {e}")
|
| 117 |
+
report_md = outline_md + "\n\n" + file_summary
|
| 118 |
+
return ReportResponse(filename=eff_name, report_markdown=report_md, sources=sources_meta)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
@app.post("/report/pdf")
|
| 122 |
+
async def generate_report_pdf(
|
| 123 |
+
user_id: str = Form(...),
|
| 124 |
+
project_id: str = Form(...),
|
| 125 |
+
report_content: str = Form(...)
|
| 126 |
+
):
|
| 127 |
+
from utils.service.pdf import generate_report_pdf as generate_pdf
|
| 128 |
+
from fastapi.responses import Response
|
| 129 |
+
try:
|
| 130 |
+
pdf_content = await generate_pdf(report_content, user_id, project_id)
|
| 131 |
+
return Response(
|
| 132 |
+
content=pdf_content,
|
| 133 |
+
media_type="application/pdf",
|
| 134 |
+
headers={"Content-Disposition": f"attachment; filename=report-{datetime.now().strftime('%Y-%m-%d')}.pdf"}
|
| 135 |
+
)
|
| 136 |
+
except HTTPException:
|
| 137 |
+
raise
|
| 138 |
+
|
| 139 |
+
|