Spaces:
Sleeping
Sleeping
Commit
·
f80e242
1
Parent(s):
48a0d5a
Add memo planner
Browse files- memo/__pycache__/core.cpython-311.pyc +0 -0
- memo/__pycache__/legacy.cpython-311.pyc +0 -0
- memo/__pycache__/persistent.cpython-311.pyc +0 -0
- memo/__pycache__/planning.cpython-311.pyc +0 -0
- memo/conversation.py +12 -1
- memo/core.py +88 -5
- memo/history.py +2 -13
- memo/planning.py +770 -0
- memo/retrieval.py +38 -3
memo/__pycache__/core.cpython-311.pyc
ADDED
|
Binary file (23.2 kB). View file
|
|
|
memo/__pycache__/legacy.cpython-311.pyc
ADDED
|
Binary file (3.51 kB). View file
|
|
|
memo/__pycache__/persistent.cpython-311.pyc
ADDED
|
Binary file (14.3 kB). View file
|
|
|
memo/__pycache__/planning.cpython-311.pyc
ADDED
|
Binary file (34.6 kB). View file
|
|
|
memo/conversation.py
CHANGED
|
@@ -35,7 +35,7 @@ class ConversationManager:
|
|
| 35 |
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 36 |
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 37 |
"""
|
| 38 |
-
Get intelligent context for conversation with enhanced
|
| 39 |
|
| 40 |
Args:
|
| 41 |
user_id: User identifier
|
|
@@ -55,6 +55,17 @@ class ConversationManager:
|
|
| 55 |
logger.error(f"[CONVERSATION_MANAGER] Smart context failed: {e}")
|
| 56 |
return "", "", {"error": str(e)}
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
async def consolidate_memories(self, user_id: str, nvidia_rotator=None) -> Dict[str, Any]:
|
| 59 |
"""Consolidate and prune memories to prevent information overload"""
|
| 60 |
try:
|
|
|
|
| 35 |
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 36 |
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 37 |
"""
|
| 38 |
+
Get intelligent context for conversation with enhanced memory planning.
|
| 39 |
|
| 40 |
Args:
|
| 41 |
user_id: User identifier
|
|
|
|
| 55 |
logger.error(f"[CONVERSATION_MANAGER] Smart context failed: {e}")
|
| 56 |
return "", "", {"error": str(e)}
|
| 57 |
|
| 58 |
+
async def get_enhancement_context(self, user_id: str, question: str,
|
| 59 |
+
nvidia_rotator=None, project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
|
| 60 |
+
"""Get context specifically optimized for enhancement requests"""
|
| 61 |
+
try:
|
| 62 |
+
return await self.retrieval_manager.get_enhancement_context(
|
| 63 |
+
user_id, question, nvidia_rotator, project_id
|
| 64 |
+
)
|
| 65 |
+
except Exception as e:
|
| 66 |
+
logger.error(f"[CONVERSATION_MANAGER] Enhancement context failed: {e}")
|
| 67 |
+
return "", "", {"error": str(e)}
|
| 68 |
+
|
| 69 |
async def consolidate_memories(self, user_id: str, nvidia_rotator=None) -> Dict[str, Any]:
|
| 70 |
"""Consolidate and prune memories to prevent information overload"""
|
| 71 |
try:
|
memo/core.py
CHANGED
|
@@ -142,6 +142,15 @@ class MemorySystem:
|
|
| 142 |
logger.error(f"[CORE_MEMORY] Failed to get conversation context: {e}")
|
| 143 |
return "", ""
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
async def search_memories(self, user_id: str, query: str,
|
| 146 |
project_id: Optional[str] = None,
|
| 147 |
limit: int = 10) -> List[Tuple[str, float]]:
|
|
@@ -211,16 +220,90 @@ class MemorySystem:
|
|
| 211 |
async def get_smart_context(self, user_id: str, question: str,
|
| 212 |
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 213 |
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 214 |
-
"""Get smart context using advanced
|
| 215 |
try:
|
| 216 |
-
from memo.
|
| 217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
|
|
|
| 221 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
except Exception as e:
|
| 223 |
logger.error(f"[CORE_MEMORY] Failed to get smart context: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
return "", "", {"error": str(e)}
|
| 225 |
|
| 226 |
# ────────────────────────────── Private Helper Methods ──────────────────────────────
|
|
|
|
| 142 |
logger.error(f"[CORE_MEMORY] Failed to get conversation context: {e}")
|
| 143 |
return "", ""
|
| 144 |
|
| 145 |
+
async def get_enhanced_context(self, user_id: str, question: str,
|
| 146 |
+
project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
|
| 147 |
+
"""Get enhanced context using the new memory planning system"""
|
| 148 |
+
try:
|
| 149 |
+
return await self.get_smart_context(user_id, question, None, project_id, "chat")
|
| 150 |
+
except Exception as e:
|
| 151 |
+
logger.error(f"[CORE_MEMORY] Failed to get enhanced context: {e}")
|
| 152 |
+
return "", "", {"error": str(e)}
|
| 153 |
+
|
| 154 |
async def search_memories(self, user_id: str, query: str,
|
| 155 |
project_id: Optional[str] = None,
|
| 156 |
limit: int = 10) -> List[Tuple[str, float]]:
|
|
|
|
| 220 |
async def get_smart_context(self, user_id: str, question: str,
|
| 221 |
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 222 |
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 223 |
+
"""Get smart context using advanced memory planning strategy"""
|
| 224 |
try:
|
| 225 |
+
from memo.planning import get_memory_planner
|
| 226 |
+
memory_planner = get_memory_planner(self, self.embedder)
|
| 227 |
+
|
| 228 |
+
# Plan memory strategy based on user intent
|
| 229 |
+
execution_plan = await memory_planner.plan_memory_strategy(
|
| 230 |
+
user_id, question, nvidia_rotator, project_id
|
| 231 |
+
)
|
| 232 |
|
| 233 |
+
# Execute the planned strategy
|
| 234 |
+
recent_context, semantic_context, metadata = await memory_planner.execute_memory_plan(
|
| 235 |
+
user_id, question, execution_plan, nvidia_rotator, project_id
|
| 236 |
)
|
| 237 |
+
|
| 238 |
+
# Add planning metadata to response
|
| 239 |
+
metadata.update({
|
| 240 |
+
"memory_planning": True,
|
| 241 |
+
"intent": execution_plan["intent"].value,
|
| 242 |
+
"strategy": execution_plan["strategy"].value,
|
| 243 |
+
"enhancement_focus": execution_plan["enhancement_focus"],
|
| 244 |
+
"qa_focus": execution_plan["qa_focus"]
|
| 245 |
+
})
|
| 246 |
+
|
| 247 |
+
return recent_context, semantic_context, metadata
|
| 248 |
+
|
| 249 |
except Exception as e:
|
| 250 |
logger.error(f"[CORE_MEMORY] Failed to get smart context: {e}")
|
| 251 |
+
# Fallback to original conversation manager
|
| 252 |
+
try:
|
| 253 |
+
from memo.conversation import get_conversation_manager
|
| 254 |
+
conversation_manager = get_conversation_manager(self, self.embedder)
|
| 255 |
+
|
| 256 |
+
return await conversation_manager.get_smart_context(
|
| 257 |
+
user_id, question, nvidia_rotator, project_id, conversation_mode
|
| 258 |
+
)
|
| 259 |
+
except Exception as fallback_error:
|
| 260 |
+
logger.error(f"[CORE_MEMORY] Fallback also failed: {fallback_error}")
|
| 261 |
+
return "", "", {"error": str(e)}
|
| 262 |
+
|
| 263 |
+
async def get_enhancement_context(self, user_id: str, question: str,
|
| 264 |
+
nvidia_rotator=None, project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
|
| 265 |
+
"""Get context specifically optimized for enhancement requests"""
|
| 266 |
+
try:
|
| 267 |
+
from memo.planning import get_memory_planner, QueryIntent, MemoryStrategy
|
| 268 |
+
memory_planner = get_memory_planner(self, self.embedder)
|
| 269 |
+
|
| 270 |
+
# Force enhancement intent and focused Q&A strategy
|
| 271 |
+
execution_plan = {
|
| 272 |
+
"intent": QueryIntent.ENHANCEMENT,
|
| 273 |
+
"strategy": MemoryStrategy.FOCUSED_QA,
|
| 274 |
+
"retrieval_params": {
|
| 275 |
+
"recent_limit": 5,
|
| 276 |
+
"semantic_limit": 10,
|
| 277 |
+
"qa_focus": True,
|
| 278 |
+
"enhancement_mode": True,
|
| 279 |
+
"priority_types": ["conversation", "qa"],
|
| 280 |
+
"similarity_threshold": 0.05, # Very low threshold for maximum recall
|
| 281 |
+
"use_ai_selection": True
|
| 282 |
+
},
|
| 283 |
+
"conversation_context": {},
|
| 284 |
+
"enhancement_focus": True,
|
| 285 |
+
"qa_focus": True
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
# Execute the enhancement-focused strategy
|
| 289 |
+
recent_context, semantic_context, metadata = await memory_planner.execute_memory_plan(
|
| 290 |
+
user_id, question, execution_plan, nvidia_rotator, project_id
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# Add enhancement-specific metadata
|
| 294 |
+
metadata.update({
|
| 295 |
+
"enhancement_mode": True,
|
| 296 |
+
"qa_focused": True,
|
| 297 |
+
"memory_planning": True,
|
| 298 |
+
"intent": "enhancement",
|
| 299 |
+
"strategy": "focused_qa"
|
| 300 |
+
})
|
| 301 |
+
|
| 302 |
+
logger.info(f"[CORE_MEMORY] Enhancement context retrieved: {len(recent_context)} recent, {len(semantic_context)} semantic")
|
| 303 |
+
return recent_context, semantic_context, metadata
|
| 304 |
+
|
| 305 |
+
except Exception as e:
|
| 306 |
+
logger.error(f"[CORE_MEMORY] Failed to get enhancement context: {e}")
|
| 307 |
return "", "", {"error": str(e)}
|
| 308 |
|
| 309 |
# ────────────────────────────── Private Helper Methods ──────────────────────────────
|
memo/history.py
CHANGED
|
@@ -86,19 +86,8 @@ class HistoryManager:
|
|
| 86 |
|
| 87 |
# ────────────────────────────── Legacy Functions (Backward Compatibility) ──────────────────────────────
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
#
|
| 91 |
-
# return await summarize_qa(question, answer, rotator)
|
| 92 |
-
|
| 93 |
-
# async def files_relevance_legacy(question: str, file_summaries: List[Dict[str, str]], rotator) -> Dict[str, bool]:
|
| 94 |
-
# """Legacy function - use HistoryManager.files_relevance() instead"""
|
| 95 |
-
# return await files_relevance(question, file_summaries, rotator)
|
| 96 |
-
|
| 97 |
-
# async def related_recent_and_semantic_context(user_id: str, question: str, memory, embedder: EmbeddingClient, topk_sem: int = 3, nvidia_rotator=None) -> Tuple[str, str]:
|
| 98 |
-
# """Legacy function - use HistoryManager.related_recent_and_semantic_context() instead"""
|
| 99 |
-
# # Create a temporary history manager for legacy compatibility
|
| 100 |
-
# history_manager = HistoryManager(memory)
|
| 101 |
-
# return await history_manager.related_recent_and_semantic_context(user_id, question, embedder, topk_sem, nvidia_rotator)
|
| 102 |
|
| 103 |
# ────────────────────────────── Global Instance ──────────────────────────────
|
| 104 |
|
|
|
|
| 86 |
|
| 87 |
# ────────────────────────────── Legacy Functions (Backward Compatibility) ──────────────────────────────
|
| 88 |
|
| 89 |
+
# These legacy functions have been removed as they are no longer needed with the new memory planning system.
|
| 90 |
+
# Use the appropriate methods from the core memory system or memory planner instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# ────────────────────────────── Global Instance ──────────────────────────────
|
| 93 |
|
memo/planning.py
ADDED
|
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ────────────────────────────── memo/planning.py ──────────────────────────────
|
| 2 |
+
"""
|
| 3 |
+
Memory Planning Strategy
|
| 4 |
+
|
| 5 |
+
Intelligent memory planning system that analyzes user intent and determines
|
| 6 |
+
the optimal memory retrieval strategy, especially for enhancement requests.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import re
|
| 10 |
+
from typing import List, Dict, Any, Tuple, Optional, Set
|
| 11 |
+
from enum import Enum
|
| 12 |
+
|
| 13 |
+
from utils.logger import get_logger
|
| 14 |
+
from utils.rag.embeddings import EmbeddingClient
|
| 15 |
+
|
| 16 |
+
logger = get_logger("MEMORY_PLANNER", __name__)
|
| 17 |
+
|
| 18 |
+
class QueryIntent(Enum):
|
| 19 |
+
"""Types of user query intents"""
|
| 20 |
+
ENHANCEMENT = "enhancement" # User wants more details/elaboration
|
| 21 |
+
CLARIFICATION = "clarification" # User wants clarification
|
| 22 |
+
CONTINUATION = "continuation" # User is continuing previous topic
|
| 23 |
+
NEW_TOPIC = "new_topic" # User is starting a new topic
|
| 24 |
+
COMPARISON = "comparison" # User wants to compare with previous content
|
| 25 |
+
REFERENCE = "reference" # User is referencing specific past content
|
| 26 |
+
|
| 27 |
+
class MemoryStrategy(Enum):
|
| 28 |
+
"""Memory retrieval strategies"""
|
| 29 |
+
FOCUSED_QA = "focused_qa" # Focus on past Q&A pairs
|
| 30 |
+
BROAD_CONTEXT = "broad_context" # Use broad semantic context
|
| 31 |
+
RECENT_FOCUS = "recent_focus" # Focus on recent memories
|
| 32 |
+
SEMANTIC_DEEP = "semantic_deep" # Deep semantic search
|
| 33 |
+
MIXED_APPROACH = "mixed_approach" # Combine multiple strategies
|
| 34 |
+
|
| 35 |
+
class MemoryPlanner:
|
| 36 |
+
"""
|
| 37 |
+
Intelligent memory planning system that determines optimal memory retrieval
|
| 38 |
+
strategy based on user intent and query characteristics.
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
def __init__(self, memory_system, embedder: EmbeddingClient):
|
| 42 |
+
self.memory_system = memory_system
|
| 43 |
+
self.embedder = embedder
|
| 44 |
+
|
| 45 |
+
# Enhancement request patterns
|
| 46 |
+
self.enhancement_patterns = [
|
| 47 |
+
r'\b(enhance|elaborate|expand|detail|elaborate on|be more detailed|more details|more information)\b',
|
| 48 |
+
r'\b(explain more|tell me more|go deeper|dive deeper|more context)\b',
|
| 49 |
+
r'\b(what else|anything else|additional|further|supplement)\b',
|
| 50 |
+
r'\b(comprehensive|thorough|complete|full)\b',
|
| 51 |
+
r'\b(based on|from our|as we discussed|following up|regarding)\b'
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
# Clarification patterns
|
| 55 |
+
self.clarification_patterns = [
|
| 56 |
+
r'\b(what do you mean|clarify|explain|what is|define)\b',
|
| 57 |
+
r'\b(how does|why does|when does|where does)\b',
|
| 58 |
+
r'\b(can you explain|help me understand)\b'
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
# Comparison patterns
|
| 62 |
+
self.comparison_patterns = [
|
| 63 |
+
r'\b(compare|versus|vs|difference|similar|different)\b',
|
| 64 |
+
r'\b(like|unlike|similar to|different from)\b',
|
| 65 |
+
r'\b(contrast|opposite|better|worse)\b'
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
# Reference patterns
|
| 69 |
+
self.reference_patterns = [
|
| 70 |
+
r'\b(you said|we discussed|earlier|before|previously)\b',
|
| 71 |
+
r'\b(that|this|it|the above|mentioned)\b',
|
| 72 |
+
r'\b(according to|based on|from|in)\b'
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
async def plan_memory_strategy(self, user_id: str, question: str,
|
| 76 |
+
nvidia_rotator=None, project_id: Optional[str] = None) -> Dict[str, Any]:
|
| 77 |
+
"""
|
| 78 |
+
Plan the optimal memory retrieval strategy based on user intent and context.
|
| 79 |
+
|
| 80 |
+
Args:
|
| 81 |
+
user_id: User identifier
|
| 82 |
+
question: Current user question/instruction
|
| 83 |
+
nvidia_rotator: NVIDIA API rotator for AI analysis
|
| 84 |
+
project_id: Project context
|
| 85 |
+
|
| 86 |
+
Returns:
|
| 87 |
+
Dictionary containing strategy, intent, and retrieval parameters
|
| 88 |
+
"""
|
| 89 |
+
try:
|
| 90 |
+
# Detect user intent
|
| 91 |
+
intent = await self._detect_user_intent(question, nvidia_rotator)
|
| 92 |
+
|
| 93 |
+
# Get conversation context for better planning
|
| 94 |
+
conversation_context = await self._get_conversation_context(user_id, question)
|
| 95 |
+
|
| 96 |
+
# Determine memory strategy based on intent and context
|
| 97 |
+
strategy = self._determine_memory_strategy(intent, question, conversation_context)
|
| 98 |
+
|
| 99 |
+
# Plan specific retrieval parameters
|
| 100 |
+
retrieval_params = await self._plan_retrieval_parameters(
|
| 101 |
+
user_id, question, intent, strategy, conversation_context, nvidia_rotator
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
# Create execution plan
|
| 105 |
+
execution_plan = {
|
| 106 |
+
"intent": intent,
|
| 107 |
+
"strategy": strategy,
|
| 108 |
+
"retrieval_params": retrieval_params,
|
| 109 |
+
"conversation_context": conversation_context,
|
| 110 |
+
"enhancement_focus": intent == QueryIntent.ENHANCEMENT,
|
| 111 |
+
"qa_focus": intent in [QueryIntent.ENHANCEMENT, QueryIntent.CLARIFICATION, QueryIntent.REFERENCE]
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
logger.info(f"[MEMORY_PLANNER] Planned strategy: {strategy.value} for intent: {intent.value}")
|
| 115 |
+
return execution_plan
|
| 116 |
+
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logger.error(f"[MEMORY_PLANNER] Memory planning failed: {e}")
|
| 119 |
+
return self._get_fallback_plan()
|
| 120 |
+
|
| 121 |
+
async def _detect_user_intent(self, question: str, nvidia_rotator) -> QueryIntent:
|
| 122 |
+
"""Detect user intent from the question"""
|
| 123 |
+
try:
|
| 124 |
+
question_lower = question.lower()
|
| 125 |
+
|
| 126 |
+
# Check for enhancement patterns
|
| 127 |
+
if any(re.search(pattern, question_lower) for pattern in self.enhancement_patterns):
|
| 128 |
+
return QueryIntent.ENHANCEMENT
|
| 129 |
+
|
| 130 |
+
# Check for clarification patterns
|
| 131 |
+
if any(re.search(pattern, question_lower) for pattern in self.clarification_patterns):
|
| 132 |
+
return QueryIntent.CLARIFICATION
|
| 133 |
+
|
| 134 |
+
# Check for comparison patterns
|
| 135 |
+
if any(re.search(pattern, question_lower) for pattern in self.comparison_patterns):
|
| 136 |
+
return QueryIntent.COMPARISON
|
| 137 |
+
|
| 138 |
+
# Check for reference patterns
|
| 139 |
+
if any(re.search(pattern, question_lower) for pattern in self.reference_patterns):
|
| 140 |
+
return QueryIntent.REFERENCE
|
| 141 |
+
|
| 142 |
+
# Use AI for more sophisticated intent detection
|
| 143 |
+
if nvidia_rotator:
|
| 144 |
+
try:
|
| 145 |
+
return await self._ai_intent_detection(question, nvidia_rotator)
|
| 146 |
+
except Exception as e:
|
| 147 |
+
logger.warning(f"[MEMORY_PLANNER] AI intent detection failed: {e}")
|
| 148 |
+
|
| 149 |
+
# Default to continuation if no clear patterns
|
| 150 |
+
return QueryIntent.CONTINUATION
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
logger.warning(f"[MEMORY_PLANNER] Intent detection failed: {e}")
|
| 154 |
+
return QueryIntent.CONTINUATION
|
| 155 |
+
|
| 156 |
+
async def _ai_intent_detection(self, question: str, nvidia_rotator) -> QueryIntent:
|
| 157 |
+
"""Use AI to detect user intent more accurately"""
|
| 158 |
+
try:
|
| 159 |
+
from utils.api.router import generate_answer_with_model
|
| 160 |
+
|
| 161 |
+
sys_prompt = """You are an expert at analyzing user intent in questions.
|
| 162 |
+
|
| 163 |
+
Classify the user's question into one of these intents:
|
| 164 |
+
- ENHANCEMENT: User wants more details, elaboration, or comprehensive information
|
| 165 |
+
- CLARIFICATION: User wants explanation or clarification of something
|
| 166 |
+
- CONTINUATION: User is continuing a previous topic or conversation
|
| 167 |
+
- NEW_TOPIC: User is starting a completely new topic
|
| 168 |
+
- COMPARISON: User wants to compare or contrast things
|
| 169 |
+
- REFERENCE: User is referencing specific past content or discussions
|
| 170 |
+
|
| 171 |
+
Respond with only the intent name (e.g., "ENHANCEMENT")."""
|
| 172 |
+
|
| 173 |
+
user_prompt = f"Question: {question}\n\nWhat is the user's intent?"
|
| 174 |
+
|
| 175 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 176 |
+
response = await generate_answer_with_model(
|
| 177 |
+
selection=selection,
|
| 178 |
+
system_prompt=sys_prompt,
|
| 179 |
+
user_prompt=user_prompt,
|
| 180 |
+
gemini_rotator=None,
|
| 181 |
+
nvidia_rotator=nvidia_rotator
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Parse response
|
| 185 |
+
response_upper = response.strip().upper()
|
| 186 |
+
for intent in QueryIntent:
|
| 187 |
+
if intent.name in response_upper:
|
| 188 |
+
return intent
|
| 189 |
+
|
| 190 |
+
return QueryIntent.CONTINUATION
|
| 191 |
+
|
| 192 |
+
except Exception as e:
|
| 193 |
+
logger.warning(f"[MEMORY_PLANNER] AI intent detection failed: {e}")
|
| 194 |
+
return QueryIntent.CONTINUATION
|
| 195 |
+
|
| 196 |
+
def _determine_memory_strategy(self, intent: QueryIntent, question: str,
|
| 197 |
+
conversation_context: Dict[str, Any]) -> MemoryStrategy:
|
| 198 |
+
"""Determine the optimal memory retrieval strategy"""
|
| 199 |
+
try:
|
| 200 |
+
# Enhancement requests need focused Q&A retrieval
|
| 201 |
+
if intent == QueryIntent.ENHANCEMENT:
|
| 202 |
+
return MemoryStrategy.FOCUSED_QA
|
| 203 |
+
|
| 204 |
+
# Clarification requests need recent context and Q&A
|
| 205 |
+
if intent == QueryIntent.CLARIFICATION:
|
| 206 |
+
return MemoryStrategy.RECENT_FOCUS
|
| 207 |
+
|
| 208 |
+
# Comparison requests need broad context
|
| 209 |
+
if intent == QueryIntent.COMPARISON:
|
| 210 |
+
return MemoryStrategy.BROAD_CONTEXT
|
| 211 |
+
|
| 212 |
+
# Reference requests need focused Q&A
|
| 213 |
+
if intent == QueryIntent.REFERENCE:
|
| 214 |
+
return MemoryStrategy.FOCUSED_QA
|
| 215 |
+
|
| 216 |
+
# New topics need semantic deep search
|
| 217 |
+
if intent == QueryIntent.NEW_TOPIC:
|
| 218 |
+
return MemoryStrategy.SEMANTIC_DEEP
|
| 219 |
+
|
| 220 |
+
# Continuation requests use mixed approach
|
| 221 |
+
if intent == QueryIntent.CONTINUATION:
|
| 222 |
+
return MemoryStrategy.MIXED_APPROACH
|
| 223 |
+
|
| 224 |
+
# Default to mixed approach
|
| 225 |
+
return MemoryStrategy.MIXED_APPROACH
|
| 226 |
+
|
| 227 |
+
except Exception as e:
|
| 228 |
+
logger.warning(f"[MEMORY_PLANNER] Strategy determination failed: {e}")
|
| 229 |
+
return MemoryStrategy.MIXED_APPROACH
|
| 230 |
+
|
| 231 |
+
async def _plan_retrieval_parameters(self, user_id: str, question: str, intent: QueryIntent,
|
| 232 |
+
strategy: MemoryStrategy, conversation_context: Dict[str, Any],
|
| 233 |
+
nvidia_rotator) -> Dict[str, Any]:
|
| 234 |
+
"""Plan specific retrieval parameters based on strategy"""
|
| 235 |
+
try:
|
| 236 |
+
params = {
|
| 237 |
+
"recent_limit": 3,
|
| 238 |
+
"semantic_limit": 5,
|
| 239 |
+
"qa_focus": False,
|
| 240 |
+
"enhancement_mode": False,
|
| 241 |
+
"priority_types": ["conversation"],
|
| 242 |
+
"similarity_threshold": 0.15,
|
| 243 |
+
"use_ai_selection": False
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
# Adjust parameters based on strategy
|
| 247 |
+
if strategy == MemoryStrategy.FOCUSED_QA:
|
| 248 |
+
params.update({
|
| 249 |
+
"recent_limit": 5, # More recent Q&A pairs
|
| 250 |
+
"semantic_limit": 10, # More semantic Q&A pairs
|
| 251 |
+
"qa_focus": True,
|
| 252 |
+
"enhancement_mode": True,
|
| 253 |
+
"priority_types": ["conversation", "qa"],
|
| 254 |
+
"similarity_threshold": 0.1, # Lower threshold for more results
|
| 255 |
+
"use_ai_selection": True
|
| 256 |
+
})
|
| 257 |
+
|
| 258 |
+
elif strategy == MemoryStrategy.RECENT_FOCUS:
|
| 259 |
+
params.update({
|
| 260 |
+
"recent_limit": 5,
|
| 261 |
+
"semantic_limit": 3,
|
| 262 |
+
"qa_focus": True,
|
| 263 |
+
"priority_types": ["conversation"]
|
| 264 |
+
})
|
| 265 |
+
|
| 266 |
+
elif strategy == MemoryStrategy.BROAD_CONTEXT:
|
| 267 |
+
params.update({
|
| 268 |
+
"recent_limit": 3,
|
| 269 |
+
"semantic_limit": 15,
|
| 270 |
+
"qa_focus": False,
|
| 271 |
+
"priority_types": ["conversation", "general", "knowledge"],
|
| 272 |
+
"similarity_threshold": 0.2
|
| 273 |
+
})
|
| 274 |
+
|
| 275 |
+
elif strategy == MemoryStrategy.SEMANTIC_DEEP:
|
| 276 |
+
params.update({
|
| 277 |
+
"recent_limit": 2,
|
| 278 |
+
"semantic_limit": 20,
|
| 279 |
+
"qa_focus": False,
|
| 280 |
+
"priority_types": ["conversation", "general", "knowledge", "qa"],
|
| 281 |
+
"similarity_threshold": 0.1,
|
| 282 |
+
"use_ai_selection": True
|
| 283 |
+
})
|
| 284 |
+
|
| 285 |
+
elif strategy == MemoryStrategy.MIXED_APPROACH:
|
| 286 |
+
params.update({
|
| 287 |
+
"recent_limit": 4,
|
| 288 |
+
"semantic_limit": 8,
|
| 289 |
+
"qa_focus": True,
|
| 290 |
+
"priority_types": ["conversation", "qa"],
|
| 291 |
+
"use_ai_selection": True
|
| 292 |
+
})
|
| 293 |
+
|
| 294 |
+
# Special handling for enhancement requests
|
| 295 |
+
if intent == QueryIntent.ENHANCEMENT:
|
| 296 |
+
params["enhancement_mode"] = True
|
| 297 |
+
params["qa_focus"] = True
|
| 298 |
+
params["use_ai_selection"] = True
|
| 299 |
+
params["similarity_threshold"] = 0.05 # Very low threshold for maximum recall
|
| 300 |
+
|
| 301 |
+
return params
|
| 302 |
+
|
| 303 |
+
except Exception as e:
|
| 304 |
+
logger.warning(f"[MEMORY_PLANNER] Parameter planning failed: {e}")
|
| 305 |
+
return {
|
| 306 |
+
"recent_limit": 3,
|
| 307 |
+
"semantic_limit": 5,
|
| 308 |
+
"qa_focus": False,
|
| 309 |
+
"enhancement_mode": False,
|
| 310 |
+
"priority_types": ["conversation"],
|
| 311 |
+
"similarity_threshold": 0.15,
|
| 312 |
+
"use_ai_selection": False
|
| 313 |
+
}
|
| 314 |
+
|
| 315 |
+
async def _get_conversation_context(self, user_id: str, question: str) -> Dict[str, Any]:
|
| 316 |
+
"""Get conversation context for better planning"""
|
| 317 |
+
try:
|
| 318 |
+
context = {
|
| 319 |
+
"has_recent_memories": False,
|
| 320 |
+
"memory_count": 0,
|
| 321 |
+
"conversation_depth": 0,
|
| 322 |
+
"last_question": "",
|
| 323 |
+
"is_continuation": False
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
if self.memory_system.is_enhanced_available():
|
| 327 |
+
# Get enhanced memory stats
|
| 328 |
+
stats = self.memory_system.get_memory_stats(user_id)
|
| 329 |
+
context["memory_count"] = stats.get("total_memories", 0)
|
| 330 |
+
|
| 331 |
+
# Get recent memories
|
| 332 |
+
recent_memories = self.memory_system.enhanced_memory.get_memories(
|
| 333 |
+
user_id, memory_type="conversation", limit=5
|
| 334 |
+
)
|
| 335 |
+
context["has_recent_memories"] = len(recent_memories) > 0
|
| 336 |
+
|
| 337 |
+
if recent_memories:
|
| 338 |
+
context["last_question"] = recent_memories[0].get("content", "")
|
| 339 |
+
else:
|
| 340 |
+
# Legacy memory stats
|
| 341 |
+
recent_memories = self.memory_system.recent(user_id, 3)
|
| 342 |
+
context["has_recent_memories"] = len(recent_memories) > 0
|
| 343 |
+
context["memory_count"] = len(self.memory_system.all(user_id))
|
| 344 |
+
|
| 345 |
+
if recent_memories:
|
| 346 |
+
context["last_question"] = recent_memories[0]
|
| 347 |
+
|
| 348 |
+
return context
|
| 349 |
+
|
| 350 |
+
except Exception as e:
|
| 351 |
+
logger.warning(f"[MEMORY_PLANNER] Context retrieval failed: {e}")
|
| 352 |
+
return {
|
| 353 |
+
"has_recent_memories": False,
|
| 354 |
+
"memory_count": 0,
|
| 355 |
+
"conversation_depth": 0,
|
| 356 |
+
"last_question": "",
|
| 357 |
+
"is_continuation": False
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
def _get_fallback_plan(self) -> Dict[str, Any]:
|
| 361 |
+
"""Get fallback plan when planning fails"""
|
| 362 |
+
return {
|
| 363 |
+
"intent": QueryIntent.CONTINUATION,
|
| 364 |
+
"strategy": MemoryStrategy.MIXED_APPROACH,
|
| 365 |
+
"retrieval_params": {
|
| 366 |
+
"recent_limit": 3,
|
| 367 |
+
"semantic_limit": 5,
|
| 368 |
+
"qa_focus": False,
|
| 369 |
+
"enhancement_mode": False,
|
| 370 |
+
"priority_types": ["conversation"],
|
| 371 |
+
"similarity_threshold": 0.15,
|
| 372 |
+
"use_ai_selection": False
|
| 373 |
+
},
|
| 374 |
+
"conversation_context": {},
|
| 375 |
+
"enhancement_focus": False,
|
| 376 |
+
"qa_focus": False
|
| 377 |
+
}
|
| 378 |
+
|
| 379 |
+
async def execute_memory_plan(self, user_id: str, question: str, execution_plan: Dict[str, Any],
|
| 380 |
+
nvidia_rotator=None, project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
|
| 381 |
+
"""
|
| 382 |
+
Execute the planned memory retrieval strategy.
|
| 383 |
+
|
| 384 |
+
Returns:
|
| 385 |
+
Tuple of (recent_context, semantic_context, metadata)
|
| 386 |
+
"""
|
| 387 |
+
try:
|
| 388 |
+
params = execution_plan["retrieval_params"]
|
| 389 |
+
strategy = execution_plan["strategy"]
|
| 390 |
+
intent = execution_plan["intent"]
|
| 391 |
+
|
| 392 |
+
# Execute based on strategy
|
| 393 |
+
if strategy == MemoryStrategy.FOCUSED_QA:
|
| 394 |
+
return await self._execute_focused_qa_retrieval(
|
| 395 |
+
user_id, question, params, nvidia_rotator, project_id
|
| 396 |
+
)
|
| 397 |
+
elif strategy == MemoryStrategy.RECENT_FOCUS:
|
| 398 |
+
return await self._execute_recent_focus_retrieval(
|
| 399 |
+
user_id, question, params, nvidia_rotator, project_id
|
| 400 |
+
)
|
| 401 |
+
elif strategy == MemoryStrategy.BROAD_CONTEXT:
|
| 402 |
+
return await self._execute_broad_context_retrieval(
|
| 403 |
+
user_id, question, params, nvidia_rotator, project_id
|
| 404 |
+
)
|
| 405 |
+
elif strategy == MemoryStrategy.SEMANTIC_DEEP:
|
| 406 |
+
return await self._execute_semantic_deep_retrieval(
|
| 407 |
+
user_id, question, params, nvidia_rotator, project_id
|
| 408 |
+
)
|
| 409 |
+
else: # MIXED_APPROACH
|
| 410 |
+
return await self._execute_mixed_approach_retrieval(
|
| 411 |
+
user_id, question, params, nvidia_rotator, project_id
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
except Exception as e:
|
| 415 |
+
logger.error(f"[MEMORY_PLANNER] Plan execution failed: {e}")
|
| 416 |
+
return "", "", {"error": str(e)}
|
| 417 |
+
|
| 418 |
+
async def _execute_focused_qa_retrieval(self, user_id: str, question: str, params: Dict[str, Any],
|
| 419 |
+
nvidia_rotator, project_id: Optional[str]) -> Tuple[str, str, Dict[str, Any]]:
|
| 420 |
+
"""Execute focused Q&A retrieval for enhancement requests"""
|
| 421 |
+
try:
|
| 422 |
+
recent_context = ""
|
| 423 |
+
semantic_context = ""
|
| 424 |
+
metadata = {"strategy": "focused_qa", "qa_focus": True}
|
| 425 |
+
|
| 426 |
+
if self.memory_system.is_enhanced_available():
|
| 427 |
+
# Get Q&A focused memories
|
| 428 |
+
qa_memories = self.memory_system.enhanced_memory.get_memories(
|
| 429 |
+
user_id, memory_type="conversation", limit=params["recent_limit"]
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
if qa_memories:
|
| 433 |
+
# Use AI to select most relevant Q&A pairs for enhancement
|
| 434 |
+
if params["use_ai_selection"] and nvidia_rotator:
|
| 435 |
+
recent_context = await self._ai_select_qa_memories(
|
| 436 |
+
question, qa_memories, nvidia_rotator, "recent"
|
| 437 |
+
)
|
| 438 |
+
else:
|
| 439 |
+
recent_context = await self._semantic_select_qa_memories(
|
| 440 |
+
question, qa_memories, params["similarity_threshold"]
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
# Get additional semantic Q&A context
|
| 444 |
+
all_memories = self.memory_system.enhanced_memory.get_memories(
|
| 445 |
+
user_id, limit=params["semantic_limit"]
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
if all_memories:
|
| 449 |
+
if params["use_ai_selection"] and nvidia_rotator:
|
| 450 |
+
semantic_context = await self._ai_select_qa_memories(
|
| 451 |
+
question, all_memories, nvidia_rotator, "semantic"
|
| 452 |
+
)
|
| 453 |
+
else:
|
| 454 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 455 |
+
question, all_memories, params["similarity_threshold"]
|
| 456 |
+
)
|
| 457 |
+
else:
|
| 458 |
+
# Legacy fallback
|
| 459 |
+
recent_memories = self.memory_system.recent(user_id, params["recent_limit"])
|
| 460 |
+
rest_memories = self.memory_system.rest(user_id, params["recent_limit"])
|
| 461 |
+
|
| 462 |
+
if recent_memories:
|
| 463 |
+
recent_context = await self._semantic_select_qa_memories(
|
| 464 |
+
question, [{"content": m} for m in recent_memories], params["similarity_threshold"]
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
if rest_memories:
|
| 468 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 469 |
+
question, [{"content": m} for m in rest_memories], params["similarity_threshold"]
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
metadata["enhancement_focus"] = True
|
| 473 |
+
metadata["qa_memories_found"] = len(recent_context) > 0 or len(semantic_context) > 0
|
| 474 |
+
|
| 475 |
+
return recent_context, semantic_context, metadata
|
| 476 |
+
|
| 477 |
+
except Exception as e:
|
| 478 |
+
logger.error(f"[MEMORY_PLANNER] Focused Q&A retrieval failed: {e}")
|
| 479 |
+
return "", "", {"error": str(e)}
|
| 480 |
+
|
| 481 |
+
async def _execute_recent_focus_retrieval(self, user_id: str, question: str, params: Dict[str, Any],
|
| 482 |
+
nvidia_rotator, project_id: Optional[str]) -> Tuple[str, str, Dict[str, Any]]:
|
| 483 |
+
"""Execute recent focus retrieval for clarification requests"""
|
| 484 |
+
try:
|
| 485 |
+
recent_context = ""
|
| 486 |
+
semantic_context = ""
|
| 487 |
+
metadata = {"strategy": "recent_focus"}
|
| 488 |
+
|
| 489 |
+
if self.memory_system.is_enhanced_available():
|
| 490 |
+
recent_memories = self.memory_system.enhanced_memory.get_memories(
|
| 491 |
+
user_id, memory_type="conversation", limit=params["recent_limit"]
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
if recent_memories:
|
| 495 |
+
recent_context = "\n\n".join([m["content"] for m in recent_memories])
|
| 496 |
+
|
| 497 |
+
# Get some semantic context
|
| 498 |
+
all_memories = self.memory_system.enhanced_memory.get_memories(
|
| 499 |
+
user_id, limit=params["semantic_limit"]
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
if all_memories:
|
| 503 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 504 |
+
question, all_memories, params["similarity_threshold"]
|
| 505 |
+
)
|
| 506 |
+
else:
|
| 507 |
+
# Legacy fallback
|
| 508 |
+
recent_memories = self.memory_system.recent(user_id, params["recent_limit"])
|
| 509 |
+
rest_memories = self.memory_system.rest(user_id, params["recent_limit"])
|
| 510 |
+
|
| 511 |
+
recent_context = "\n\n".join(recent_memories)
|
| 512 |
+
|
| 513 |
+
if rest_memories:
|
| 514 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 515 |
+
question, [{"content": m} for m in rest_memories], params["similarity_threshold"]
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
return recent_context, semantic_context, metadata
|
| 519 |
+
|
| 520 |
+
except Exception as e:
|
| 521 |
+
logger.error(f"[MEMORY_PLANNER] Recent focus retrieval failed: {e}")
|
| 522 |
+
return "", "", {"error": str(e)}
|
| 523 |
+
|
| 524 |
+
async def _execute_broad_context_retrieval(self, user_id: str, question: str, params: Dict[str, Any],
|
| 525 |
+
nvidia_rotator, project_id: Optional[str]) -> Tuple[str, str, Dict[str, Any]]:
|
| 526 |
+
"""Execute broad context retrieval for comparison requests"""
|
| 527 |
+
try:
|
| 528 |
+
recent_context = ""
|
| 529 |
+
semantic_context = ""
|
| 530 |
+
metadata = {"strategy": "broad_context"}
|
| 531 |
+
|
| 532 |
+
if self.memory_system.is_enhanced_available():
|
| 533 |
+
# Get recent context
|
| 534 |
+
recent_memories = self.memory_system.enhanced_memory.get_memories(
|
| 535 |
+
user_id, memory_type="conversation", limit=params["recent_limit"]
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
if recent_memories:
|
| 539 |
+
recent_context = "\n\n".join([m["content"] for m in recent_memories])
|
| 540 |
+
|
| 541 |
+
# Get broad semantic context
|
| 542 |
+
all_memories = self.memory_system.enhanced_memory.get_memories(
|
| 543 |
+
user_id, limit=params["semantic_limit"]
|
| 544 |
+
)
|
| 545 |
+
|
| 546 |
+
if all_memories:
|
| 547 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 548 |
+
question, all_memories, params["similarity_threshold"]
|
| 549 |
+
)
|
| 550 |
+
else:
|
| 551 |
+
# Legacy fallback
|
| 552 |
+
recent_memories = self.memory_system.recent(user_id, params["recent_limit"])
|
| 553 |
+
rest_memories = self.memory_system.rest(user_id, params["recent_limit"])
|
| 554 |
+
|
| 555 |
+
recent_context = "\n\n".join(recent_memories)
|
| 556 |
+
semantic_context = "\n\n".join(rest_memories)
|
| 557 |
+
|
| 558 |
+
return recent_context, semantic_context, metadata
|
| 559 |
+
|
| 560 |
+
except Exception as e:
|
| 561 |
+
logger.error(f"[MEMORY_PLANNER] Broad context retrieval failed: {e}")
|
| 562 |
+
return "", "", {"error": str(e)}
|
| 563 |
+
|
| 564 |
+
async def _execute_semantic_deep_retrieval(self, user_id: str, question: str, params: Dict[str, Any],
|
| 565 |
+
nvidia_rotator, project_id: Optional[str]) -> Tuple[str, str, Dict[str, Any]]:
|
| 566 |
+
"""Execute semantic deep retrieval for new topics"""
|
| 567 |
+
try:
|
| 568 |
+
recent_context = ""
|
| 569 |
+
semantic_context = ""
|
| 570 |
+
metadata = {"strategy": "semantic_deep"}
|
| 571 |
+
|
| 572 |
+
if self.memory_system.is_enhanced_available():
|
| 573 |
+
# Get all memories for deep semantic search
|
| 574 |
+
all_memories = self.memory_system.enhanced_memory.get_memories(
|
| 575 |
+
user_id, limit=params["semantic_limit"]
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
if all_memories:
|
| 579 |
+
if params["use_ai_selection"] and nvidia_rotator:
|
| 580 |
+
semantic_context = await self._ai_select_qa_memories(
|
| 581 |
+
question, all_memories, nvidia_rotator, "semantic"
|
| 582 |
+
)
|
| 583 |
+
else:
|
| 584 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 585 |
+
question, all_memories, params["similarity_threshold"]
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
# Get some recent context
|
| 589 |
+
recent_memories = self.memory_system.enhanced_memory.get_memories(
|
| 590 |
+
user_id, memory_type="conversation", limit=params["recent_limit"]
|
| 591 |
+
)
|
| 592 |
+
|
| 593 |
+
if recent_memories:
|
| 594 |
+
recent_context = "\n\n".join([m["content"] for m in recent_memories])
|
| 595 |
+
else:
|
| 596 |
+
# Legacy fallback
|
| 597 |
+
all_memories = self.memory_system.all(user_id)
|
| 598 |
+
recent_memories = self.memory_system.recent(user_id, params["recent_limit"])
|
| 599 |
+
|
| 600 |
+
if all_memories:
|
| 601 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 602 |
+
question, [{"content": m} for m in all_memories], params["similarity_threshold"]
|
| 603 |
+
)
|
| 604 |
+
|
| 605 |
+
recent_context = "\n\n".join(recent_memories)
|
| 606 |
+
|
| 607 |
+
return recent_context, semantic_context, metadata
|
| 608 |
+
|
| 609 |
+
except Exception as e:
|
| 610 |
+
logger.error(f"[MEMORY_PLANNER] Semantic deep retrieval failed: {e}")
|
| 611 |
+
return "", "", {"error": str(e)}
|
| 612 |
+
|
| 613 |
+
async def _execute_mixed_approach_retrieval(self, user_id: str, question: str, params: Dict[str, Any],
|
| 614 |
+
nvidia_rotator, project_id: Optional[str]) -> Tuple[str, str, Dict[str, Any]]:
|
| 615 |
+
"""Execute mixed approach retrieval for continuation requests"""
|
| 616 |
+
try:
|
| 617 |
+
recent_context = ""
|
| 618 |
+
semantic_context = ""
|
| 619 |
+
metadata = {"strategy": "mixed_approach"}
|
| 620 |
+
|
| 621 |
+
if self.memory_system.is_enhanced_available():
|
| 622 |
+
# Get recent context
|
| 623 |
+
recent_memories = self.memory_system.enhanced_memory.get_memories(
|
| 624 |
+
user_id, memory_type="conversation", limit=params["recent_limit"]
|
| 625 |
+
)
|
| 626 |
+
|
| 627 |
+
if recent_memories:
|
| 628 |
+
if params["use_ai_selection"] and nvidia_rotator:
|
| 629 |
+
recent_context = await self._ai_select_qa_memories(
|
| 630 |
+
question, recent_memories, nvidia_rotator, "recent"
|
| 631 |
+
)
|
| 632 |
+
else:
|
| 633 |
+
recent_context = await self._semantic_select_qa_memories(
|
| 634 |
+
question, recent_memories, params["similarity_threshold"]
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
# Get semantic context
|
| 638 |
+
all_memories = self.memory_system.enhanced_memory.get_memories(
|
| 639 |
+
user_id, limit=params["semantic_limit"]
|
| 640 |
+
)
|
| 641 |
+
|
| 642 |
+
if all_memories:
|
| 643 |
+
if params["use_ai_selection"] and nvidia_rotator:
|
| 644 |
+
semantic_context = await self._ai_select_qa_memories(
|
| 645 |
+
question, all_memories, nvidia_rotator, "semantic"
|
| 646 |
+
)
|
| 647 |
+
else:
|
| 648 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 649 |
+
question, all_memories, params["similarity_threshold"]
|
| 650 |
+
)
|
| 651 |
+
else:
|
| 652 |
+
# Legacy fallback
|
| 653 |
+
recent_memories = self.memory_system.recent(user_id, params["recent_limit"])
|
| 654 |
+
rest_memories = self.memory_system.rest(user_id, params["recent_limit"])
|
| 655 |
+
|
| 656 |
+
if recent_memories:
|
| 657 |
+
recent_context = await self._semantic_select_qa_memories(
|
| 658 |
+
question, [{"content": m} for m in recent_memories], params["similarity_threshold"]
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
if rest_memories:
|
| 662 |
+
semantic_context = await self._semantic_select_qa_memories(
|
| 663 |
+
question, [{"content": m} for m in rest_memories], params["similarity_threshold"]
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
return recent_context, semantic_context, metadata
|
| 667 |
+
|
| 668 |
+
except Exception as e:
|
| 669 |
+
logger.error(f"[MEMORY_PLANNER] Mixed approach retrieval failed: {e}")
|
| 670 |
+
return "", "", {"error": str(e)}
|
| 671 |
+
|
| 672 |
+
async def _ai_select_qa_memories(self, question: str, memories: List[Dict[str, Any]],
|
| 673 |
+
nvidia_rotator, context_type: str) -> str:
|
| 674 |
+
"""Use AI to select the most relevant Q&A memories"""
|
| 675 |
+
try:
|
| 676 |
+
from utils.api.router import generate_answer_with_model
|
| 677 |
+
|
| 678 |
+
if not memories:
|
| 679 |
+
return ""
|
| 680 |
+
|
| 681 |
+
sys_prompt = f"""You are an expert at selecting the most relevant Q&A memories for {context_type} context.
|
| 682 |
+
|
| 683 |
+
Given a user's question and a list of Q&A memories, select the most relevant ones that would help provide a comprehensive and detailed answer.
|
| 684 |
+
|
| 685 |
+
Focus on:
|
| 686 |
+
1. Direct relevance to the question
|
| 687 |
+
2. Q&A pairs that provide supporting information
|
| 688 |
+
3. Memories that add context and depth
|
| 689 |
+
4. Past discussions that relate to the current question
|
| 690 |
+
|
| 691 |
+
Return ONLY the selected Q&A memories, concatenated together. If none are relevant, return nothing."""
|
| 692 |
+
|
| 693 |
+
# Format memories for AI
|
| 694 |
+
formatted_memories = []
|
| 695 |
+
for i, memory in enumerate(memories):
|
| 696 |
+
content = memory.get("content", "")
|
| 697 |
+
if content:
|
| 698 |
+
formatted_memories.append(f"Memory {i+1}: {content}")
|
| 699 |
+
|
| 700 |
+
user_prompt = f"""Question: {question}
|
| 701 |
+
|
| 702 |
+
Available Q&A Memories:
|
| 703 |
+
{chr(10).join(formatted_memories)}
|
| 704 |
+
|
| 705 |
+
Select the most relevant Q&A memories:"""
|
| 706 |
+
|
| 707 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 708 |
+
response = await generate_answer_with_model(
|
| 709 |
+
selection=selection,
|
| 710 |
+
system_prompt=sys_prompt,
|
| 711 |
+
user_prompt=user_prompt,
|
| 712 |
+
gemini_rotator=None,
|
| 713 |
+
nvidia_rotator=nvidia_rotator
|
| 714 |
+
)
|
| 715 |
+
|
| 716 |
+
return response.strip()
|
| 717 |
+
|
| 718 |
+
except Exception as e:
|
| 719 |
+
logger.warning(f"[MEMORY_PLANNER] AI Q&A selection failed: {e}")
|
| 720 |
+
return ""
|
| 721 |
+
|
| 722 |
+
async def _semantic_select_qa_memories(self, question: str, memories: List[Dict[str, Any]],
|
| 723 |
+
threshold: float) -> str:
|
| 724 |
+
"""Use semantic similarity to select Q&A memories"""
|
| 725 |
+
try:
|
| 726 |
+
if not memories:
|
| 727 |
+
return ""
|
| 728 |
+
|
| 729 |
+
# Extract content from memories
|
| 730 |
+
memory_contents = [memory.get("content", "") for memory in memories if memory.get("content")]
|
| 731 |
+
|
| 732 |
+
if not memory_contents:
|
| 733 |
+
return ""
|
| 734 |
+
|
| 735 |
+
# Use semantic similarity
|
| 736 |
+
from memo.context import semantic_context
|
| 737 |
+
selected = await semantic_context(question, memory_contents, self.embedder, len(memory_contents))
|
| 738 |
+
|
| 739 |
+
return selected
|
| 740 |
+
|
| 741 |
+
except Exception as e:
|
| 742 |
+
logger.warning(f"[MEMORY_PLANNER] Semantic Q&A selection failed: {e}")
|
| 743 |
+
return ""
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
# ────────────────────────────── Global Instance ──────────────────────────────
|
| 747 |
+
|
| 748 |
+
_memory_planner: Optional[MemoryPlanner] = None
|
| 749 |
+
|
| 750 |
+
def get_memory_planner(memory_system=None, embedder: EmbeddingClient = None) -> MemoryPlanner:
|
| 751 |
+
"""Get the global memory planner instance"""
|
| 752 |
+
global _memory_planner
|
| 753 |
+
|
| 754 |
+
if _memory_planner is None:
|
| 755 |
+
if not memory_system:
|
| 756 |
+
from memo.core import get_memory_system
|
| 757 |
+
memory_system = get_memory_system()
|
| 758 |
+
if not embedder:
|
| 759 |
+
from utils.rag.embeddings import EmbeddingClient
|
| 760 |
+
embedder = EmbeddingClient()
|
| 761 |
+
|
| 762 |
+
_memory_planner = MemoryPlanner(memory_system, embedder)
|
| 763 |
+
logger.info("[MEMORY_PLANNER] Global memory planner initialized")
|
| 764 |
+
|
| 765 |
+
return _memory_planner
|
| 766 |
+
|
| 767 |
+
# def reset_memory_planner():
|
| 768 |
+
# """Reset the global memory planner (for testing)"""
|
| 769 |
+
# global _memory_planner
|
| 770 |
+
# _memory_planner = None
|
memo/retrieval.py
CHANGED
|
@@ -28,7 +28,7 @@ class RetrievalManager:
|
|
| 28 |
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 29 |
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 30 |
"""
|
| 31 |
-
Get intelligent context for conversation with enhanced
|
| 32 |
|
| 33 |
Args:
|
| 34 |
user_id: User identifier
|
|
@@ -40,6 +40,27 @@ class RetrievalManager:
|
|
| 40 |
Returns:
|
| 41 |
Tuple of (recent_context, semantic_context, metadata)
|
| 42 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
try:
|
| 44 |
# Check for conversation session continuity
|
| 45 |
from memo.sessions import get_session_manager
|
|
@@ -71,13 +92,14 @@ class RetrievalManager:
|
|
| 71 |
"context_enhanced": context_used,
|
| 72 |
"enhanced_input": enhanced_input,
|
| 73 |
"conversation_depth": session_info["depth"],
|
| 74 |
-
"last_activity": session_info["last_activity"]
|
|
|
|
| 75 |
}
|
| 76 |
|
| 77 |
return recent_context, semantic_context, metadata
|
| 78 |
|
| 79 |
except Exception as e:
|
| 80 |
-
logger.error(f"[RETRIEVAL_MANAGER]
|
| 81 |
return "", "", {"error": str(e)}
|
| 82 |
|
| 83 |
async def _get_continuation_context(self, user_id: str, question: str,
|
|
@@ -308,6 +330,19 @@ Create an enhanced version that incorporates this context naturally."""
|
|
| 308 |
except Exception as e:
|
| 309 |
logger.warning(f"[RETRIEVAL_MANAGER] Instructions enhancement failed: {e}")
|
| 310 |
return instructions, False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
|
| 313 |
# ────────────────────────────── Global Instance ──────────────────────────────
|
|
|
|
| 28 |
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 29 |
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 30 |
"""
|
| 31 |
+
Get intelligent context for conversation with enhanced memory planning.
|
| 32 |
|
| 33 |
Args:
|
| 34 |
user_id: User identifier
|
|
|
|
| 40 |
Returns:
|
| 41 |
Tuple of (recent_context, semantic_context, metadata)
|
| 42 |
"""
|
| 43 |
+
try:
|
| 44 |
+
# Use the new memory planning system from core memory
|
| 45 |
+
return await self.memory_system.get_smart_context(
|
| 46 |
+
user_id, question, nvidia_rotator, project_id, conversation_mode
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
except Exception as e:
|
| 50 |
+
logger.error(f"[RETRIEVAL_MANAGER] Smart context failed: {e}")
|
| 51 |
+
# Fallback to legacy approach
|
| 52 |
+
try:
|
| 53 |
+
return await self._get_legacy_smart_context(
|
| 54 |
+
user_id, question, nvidia_rotator, project_id, conversation_mode
|
| 55 |
+
)
|
| 56 |
+
except Exception as fallback_error:
|
| 57 |
+
logger.error(f"[RETRIEVAL_MANAGER] Legacy fallback also failed: {fallback_error}")
|
| 58 |
+
return "", "", {"error": str(e)}
|
| 59 |
+
|
| 60 |
+
async def _get_legacy_smart_context(self, user_id: str, question: str,
|
| 61 |
+
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 62 |
+
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 63 |
+
"""Legacy smart context retrieval as fallback"""
|
| 64 |
try:
|
| 65 |
# Check for conversation session continuity
|
| 66 |
from memo.sessions import get_session_manager
|
|
|
|
| 92 |
"context_enhanced": context_used,
|
| 93 |
"enhanced_input": enhanced_input,
|
| 94 |
"conversation_depth": session_info["depth"],
|
| 95 |
+
"last_activity": session_info["last_activity"],
|
| 96 |
+
"legacy_mode": True
|
| 97 |
}
|
| 98 |
|
| 99 |
return recent_context, semantic_context, metadata
|
| 100 |
|
| 101 |
except Exception as e:
|
| 102 |
+
logger.error(f"[RETRIEVAL_MANAGER] Legacy smart context failed: {e}")
|
| 103 |
return "", "", {"error": str(e)}
|
| 104 |
|
| 105 |
async def _get_continuation_context(self, user_id: str, question: str,
|
|
|
|
| 330 |
except Exception as e:
|
| 331 |
logger.warning(f"[RETRIEVAL_MANAGER] Instructions enhancement failed: {e}")
|
| 332 |
return instructions, False
|
| 333 |
+
|
| 334 |
+
async def get_enhancement_context(self, user_id: str, question: str,
|
| 335 |
+
nvidia_rotator=None, project_id: Optional[str] = None) -> Tuple[str, str, Dict[str, Any]]:
|
| 336 |
+
"""Get context specifically optimized for enhancement requests"""
|
| 337 |
+
try:
|
| 338 |
+
# Use the core memory system's enhancement context method
|
| 339 |
+
return await self.memory_system.get_enhancement_context(
|
| 340 |
+
user_id, question, nvidia_rotator, project_id
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
except Exception as e:
|
| 344 |
+
logger.error(f"[RETRIEVAL_MANAGER] Enhancement context failed: {e}")
|
| 345 |
+
return "", "", {"error": str(e)}
|
| 346 |
|
| 347 |
|
| 348 |
# ────────────────────────────── Global Instance ──────────────────────────────
|