Spaces:
Sleeping
Sleeping
Commit
·
fe5243a
1
Parent(s):
556224a
Upd memo managers
Browse files- memo/context.py +0 -196
- memo/conversation.py +723 -0
- memo/core.py +44 -24
- routes/chats.py +23 -50
- routes/reports.py +24 -7
memo/context.py
CHANGED
|
@@ -79,199 +79,3 @@ async def get_legacy_context(user_id: str, question: str, memory_system,
|
|
| 79 |
sem_text = await semantic_context(question, rest17, embedder, topk_sem)
|
| 80 |
|
| 81 |
return recent_text, sem_text
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
# ────────────────────────────── Memory Enhancement Functions ──────────────────────────────
|
| 85 |
-
|
| 86 |
-
async def enhance_question_with_memory(user_id: str, question: str, memory, nvidia_rotator, embedder: EmbeddingClient) -> Tuple[str, str]:
|
| 87 |
-
"""Enhance the user's question with relevant conversation history using STM (latest 3 messages)"""
|
| 88 |
-
try:
|
| 89 |
-
# Get recent conversation history (STM - latest 3 messages)
|
| 90 |
-
recent_memories = memory.recent(user_id, 3)
|
| 91 |
-
|
| 92 |
-
if not recent_memories:
|
| 93 |
-
logger.info("[CONTEXT_MANAGER] No recent conversation history found")
|
| 94 |
-
return question, ""
|
| 95 |
-
|
| 96 |
-
# Use NVIDIA to determine if recent memories are relevant to current question
|
| 97 |
-
if nvidia_rotator:
|
| 98 |
-
try:
|
| 99 |
-
from memo.nvidia import related_recent_context
|
| 100 |
-
relevant_context = await related_recent_context(question, recent_memories, nvidia_rotator)
|
| 101 |
-
|
| 102 |
-
if relevant_context:
|
| 103 |
-
# Enhance the question with relevant context
|
| 104 |
-
enhanced_question = await create_enhanced_prompt(question, relevant_context, nvidia_rotator)
|
| 105 |
-
logger.info(f"[CONTEXT_MANAGER] Enhanced question with {len(relevant_context)} chars of relevant context")
|
| 106 |
-
return enhanced_question, relevant_context
|
| 107 |
-
else:
|
| 108 |
-
logger.info("[CONTEXT_MANAGER] No relevant recent context found")
|
| 109 |
-
return question, ""
|
| 110 |
-
|
| 111 |
-
except Exception as e:
|
| 112 |
-
logger.warning(f"[CONTEXT_MANAGER] NVIDIA context enhancement failed: {e}")
|
| 113 |
-
# Fallback to semantic similarity
|
| 114 |
-
return await enhance_with_semantic_similarity(question, recent_memories, embedder)
|
| 115 |
-
else:
|
| 116 |
-
# Use semantic similarity if no NVIDIA rotator
|
| 117 |
-
return await enhance_with_semantic_similarity(question, recent_memories, embedder)
|
| 118 |
-
|
| 119 |
-
except Exception as e:
|
| 120 |
-
logger.error(f"[CONTEXT_MANAGER] Memory enhancement failed: {e}")
|
| 121 |
-
return question, ""
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
async def enhance_instructions_with_memory(user_id: str, instructions: str, memory, nvidia_rotator, embedder: EmbeddingClient) -> Tuple[str, str]:
|
| 125 |
-
"""Enhance the user's report instructions with relevant conversation history using STM (latest 3 messages)"""
|
| 126 |
-
try:
|
| 127 |
-
# Get recent conversation history (STM - latest 3 messages)
|
| 128 |
-
recent_memories = memory.recent(user_id, 3)
|
| 129 |
-
|
| 130 |
-
if not recent_memories:
|
| 131 |
-
logger.info("[CONTEXT_MANAGER] No recent conversation history found")
|
| 132 |
-
return instructions, ""
|
| 133 |
-
|
| 134 |
-
# Use NVIDIA to determine if recent memories are relevant to current instructions
|
| 135 |
-
if nvidia_rotator:
|
| 136 |
-
try:
|
| 137 |
-
from memo.nvidia import related_recent_context
|
| 138 |
-
relevant_context = await related_recent_context(instructions, recent_memories, nvidia_rotator)
|
| 139 |
-
|
| 140 |
-
if relevant_context:
|
| 141 |
-
# Enhance the instructions with relevant context
|
| 142 |
-
enhanced_instructions = await create_enhanced_report_prompt(instructions, relevant_context, nvidia_rotator)
|
| 143 |
-
logger.info(f"[CONTEXT_MANAGER] Enhanced instructions with {len(relevant_context)} chars of relevant context")
|
| 144 |
-
return enhanced_instructions, relevant_context
|
| 145 |
-
else:
|
| 146 |
-
logger.info("[CONTEXT_MANAGER] No relevant recent context found")
|
| 147 |
-
return instructions, ""
|
| 148 |
-
|
| 149 |
-
except Exception as e:
|
| 150 |
-
logger.warning(f"[CONTEXT_MANAGER] NVIDIA context enhancement failed: {e}")
|
| 151 |
-
# Fallback to semantic similarity
|
| 152 |
-
return await enhance_report_with_semantic_similarity(instructions, recent_memories, embedder)
|
| 153 |
-
else:
|
| 154 |
-
# Use semantic similarity if no NVIDIA rotator
|
| 155 |
-
return await enhance_report_with_semantic_similarity(instructions, recent_memories, embedder)
|
| 156 |
-
|
| 157 |
-
except Exception as e:
|
| 158 |
-
logger.error(f"[CONTEXT_MANAGER] Memory enhancement failed: {e}")
|
| 159 |
-
return instructions, ""
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
async def enhance_with_semantic_similarity(question: str, recent_memories: List[str], embedder: EmbeddingClient) -> Tuple[str, str]:
|
| 163 |
-
"""Enhance question using semantic similarity as fallback"""
|
| 164 |
-
try:
|
| 165 |
-
relevant_context = await semantic_context(question, recent_memories, embedder, 2)
|
| 166 |
-
|
| 167 |
-
if relevant_context:
|
| 168 |
-
# Simple enhancement by prepending context
|
| 169 |
-
enhanced_question = f"Based on our previous conversation:\n{relevant_context}\n\nNow, {question}"
|
| 170 |
-
logger.info(f"[CONTEXT_MANAGER] Enhanced question with semantic context: {len(relevant_context)} chars")
|
| 171 |
-
return enhanced_question, relevant_context
|
| 172 |
-
else:
|
| 173 |
-
return question, ""
|
| 174 |
-
|
| 175 |
-
except Exception as e:
|
| 176 |
-
logger.warning(f"[CONTEXT_MANAGER] Semantic enhancement failed: {e}")
|
| 177 |
-
return question, ""
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
async def enhance_report_with_semantic_similarity(instructions: str, recent_memories: List[str], embedder: EmbeddingClient) -> Tuple[str, str]:
|
| 181 |
-
"""Enhance report instructions using semantic similarity as fallback"""
|
| 182 |
-
try:
|
| 183 |
-
relevant_context = await semantic_context(instructions, recent_memories, embedder, 2)
|
| 184 |
-
|
| 185 |
-
if relevant_context:
|
| 186 |
-
# Simple enhancement by prepending context
|
| 187 |
-
enhanced_instructions = f"Based on our previous conversation:\n{relevant_context}\n\nNow, {instructions}"
|
| 188 |
-
logger.info(f"[CONTEXT_MANAGER] Enhanced instructions with semantic context: {len(relevant_context)} chars")
|
| 189 |
-
return enhanced_instructions, relevant_context
|
| 190 |
-
else:
|
| 191 |
-
return instructions, ""
|
| 192 |
-
|
| 193 |
-
except Exception as e:
|
| 194 |
-
logger.warning(f"[CONTEXT_MANAGER] Semantic enhancement failed: {e}")
|
| 195 |
-
return instructions, ""
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
async def create_enhanced_prompt(original_question: str, relevant_context: str, nvidia_rotator) -> str:
|
| 199 |
-
"""Use NVIDIA to create an enhanced prompt that incorporates relevant context intelligently"""
|
| 200 |
-
try:
|
| 201 |
-
from utils.api.router import generate_answer_with_model
|
| 202 |
-
|
| 203 |
-
sys_prompt = """You are an expert at enhancing user questions with relevant conversation context.
|
| 204 |
-
|
| 205 |
-
Given a user's current question and relevant context from previous conversations, create an enhanced question that:
|
| 206 |
-
1. Incorporates the relevant context naturally
|
| 207 |
-
2. Maintains the user's original intent
|
| 208 |
-
3. Provides better context for answering
|
| 209 |
-
4. Flows naturally and doesn't sound forced
|
| 210 |
-
|
| 211 |
-
The enhanced question should help the AI provide more detailed, contextual, and relevant answers.
|
| 212 |
-
|
| 213 |
-
Return ONLY the enhanced question, no meta-commentary."""
|
| 214 |
-
|
| 215 |
-
user_prompt = f"""ORIGINAL QUESTION: {original_question}
|
| 216 |
-
|
| 217 |
-
RELEVANT CONTEXT FROM PREVIOUS CONVERSATION:
|
| 218 |
-
{relevant_context}
|
| 219 |
-
|
| 220 |
-
Create an enhanced version of the question that incorporates this context naturally."""
|
| 221 |
-
|
| 222 |
-
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 223 |
-
enhanced_question = await generate_answer_with_model(
|
| 224 |
-
selection=selection,
|
| 225 |
-
system_prompt=sys_prompt,
|
| 226 |
-
user_prompt=user_prompt,
|
| 227 |
-
gemini_rotator=None,
|
| 228 |
-
nvidia_rotator=nvidia_rotator
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
return enhanced_question.strip()
|
| 232 |
-
|
| 233 |
-
except Exception as e:
|
| 234 |
-
logger.warning(f"[CONTEXT_MANAGER] Prompt enhancement failed: {e}")
|
| 235 |
-
# Fallback to simple concatenation
|
| 236 |
-
return f"Based on our previous conversation:\n{relevant_context}\n\nNow, {original_question}"
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
async def create_enhanced_report_prompt(original_instructions: str, relevant_context: str, nvidia_rotator) -> str:
|
| 240 |
-
"""Use NVIDIA to create enhanced report instructions that incorporate relevant context intelligently"""
|
| 241 |
-
try:
|
| 242 |
-
from utils.api.router import generate_answer_with_model
|
| 243 |
-
|
| 244 |
-
sys_prompt = """You are an expert at enhancing report instructions with relevant conversation context.
|
| 245 |
-
|
| 246 |
-
Given a user's current report instructions and relevant context from previous conversations, create enhanced instructions that:
|
| 247 |
-
1. Incorporates the relevant context naturally
|
| 248 |
-
2. Maintains the user's original intent for the report
|
| 249 |
-
3. Provides better context for generating a comprehensive report
|
| 250 |
-
4. Flows naturally and doesn't sound forced
|
| 251 |
-
|
| 252 |
-
The enhanced instructions should help generate a more detailed, contextual, and relevant report.
|
| 253 |
-
|
| 254 |
-
Return ONLY the enhanced instructions, no meta-commentary."""
|
| 255 |
-
|
| 256 |
-
user_prompt = f"""ORIGINAL REPORT INSTRUCTIONS: {original_instructions}
|
| 257 |
-
|
| 258 |
-
RELEVANT CONTEXT FROM PREVIOUS CONVERSATION:
|
| 259 |
-
{relevant_context}
|
| 260 |
-
|
| 261 |
-
Create an enhanced version of the report instructions that incorporates this context naturally."""
|
| 262 |
-
|
| 263 |
-
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 264 |
-
enhanced_instructions = await generate_answer_with_model(
|
| 265 |
-
selection=selection,
|
| 266 |
-
system_prompt=sys_prompt,
|
| 267 |
-
user_prompt=user_prompt,
|
| 268 |
-
gemini_rotator=None,
|
| 269 |
-
nvidia_rotator=nvidia_rotator
|
| 270 |
-
)
|
| 271 |
-
|
| 272 |
-
return enhanced_instructions.strip()
|
| 273 |
-
|
| 274 |
-
except Exception as e:
|
| 275 |
-
logger.warning(f"[CONTEXT_MANAGER] Prompt enhancement failed: {e}")
|
| 276 |
-
# Fallback to simple concatenation
|
| 277 |
-
return f"Based on our previous conversation:\n{relevant_context}\n\nNow, {original_instructions}"
|
|
|
|
| 79 |
sem_text = await semantic_context(question, rest17, embedder, topk_sem)
|
| 80 |
|
| 81 |
return recent_text, sem_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
memo/conversation.py
ADDED
|
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ────────────────────────────── memo/conversation.py ──────────────────────────────
|
| 2 |
+
"""
|
| 3 |
+
Advanced Conversation Management
|
| 4 |
+
|
| 5 |
+
Handles conversation continuity, context switching, memory consolidation,
|
| 6 |
+
and edge cases for natural conversational flow.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import re
|
| 10 |
+
import time
|
| 11 |
+
from typing import List, Dict, Any, Tuple, Optional, Set
|
| 12 |
+
from datetime import datetime, timezone, timedelta
|
| 13 |
+
|
| 14 |
+
from utils.logger import get_logger
|
| 15 |
+
from utils.rag.embeddings import EmbeddingClient
|
| 16 |
+
from memo.context import cosine_similarity, semantic_context
|
| 17 |
+
|
| 18 |
+
logger = get_logger("CONVERSATION_MANAGER", __name__)
|
| 19 |
+
|
| 20 |
+
class ConversationManager:
|
| 21 |
+
"""
|
| 22 |
+
Advanced conversation manager that handles:
|
| 23 |
+
- Conversation continuity and context switching
|
| 24 |
+
- Memory consolidation and pruning
|
| 25 |
+
- Edge case handling for natural conversation flow
|
| 26 |
+
- Intelligent context retrieval
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
def __init__(self, memory_system, embedder: EmbeddingClient):
|
| 30 |
+
self.memory_system = memory_system
|
| 31 |
+
self.embedder = embedder
|
| 32 |
+
self.conversation_sessions = {} # Track active conversation sessions
|
| 33 |
+
self.context_cache = {} # Cache recent context for performance
|
| 34 |
+
self.memory_consolidation_threshold = 10 # Consolidate after 10 memories
|
| 35 |
+
|
| 36 |
+
async def get_smart_context(self, user_id: str, question: str,
|
| 37 |
+
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 38 |
+
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 39 |
+
"""
|
| 40 |
+
Get intelligent context for conversation with enhanced edge case handling.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
user_id: User identifier
|
| 44 |
+
question: Current question/instruction
|
| 45 |
+
nvidia_rotator: NVIDIA API rotator for AI enhancement
|
| 46 |
+
project_id: Project context
|
| 47 |
+
conversation_mode: "chat" or "report"
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
Tuple of (recent_context, semantic_context, metadata)
|
| 51 |
+
"""
|
| 52 |
+
try:
|
| 53 |
+
# Check for conversation session continuity
|
| 54 |
+
session_info = self._get_or_create_session(user_id, question, conversation_mode)
|
| 55 |
+
|
| 56 |
+
# Get enhanced context based on conversation state
|
| 57 |
+
if session_info["is_continuation"]:
|
| 58 |
+
recent_context, semantic_context = await self._get_continuation_context(
|
| 59 |
+
user_id, question, session_info, nvidia_rotator, project_id
|
| 60 |
+
)
|
| 61 |
+
else:
|
| 62 |
+
recent_context, semantic_context = await self._get_fresh_context(
|
| 63 |
+
user_id, question, nvidia_rotator, project_id
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Enhance question/instructions with context if beneficial
|
| 67 |
+
enhanced_input, context_used = await self._enhance_input_with_context(
|
| 68 |
+
question, recent_context, semantic_context, nvidia_rotator, conversation_mode
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Update session tracking
|
| 72 |
+
self._update_session(user_id, question, enhanced_input, context_used)
|
| 73 |
+
|
| 74 |
+
# Prepare metadata
|
| 75 |
+
metadata = {
|
| 76 |
+
"session_id": session_info["session_id"],
|
| 77 |
+
"is_continuation": session_info["is_continuation"],
|
| 78 |
+
"context_enhanced": context_used,
|
| 79 |
+
"conversation_depth": session_info["depth"],
|
| 80 |
+
"last_activity": session_info["last_activity"]
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
return recent_context, semantic_context, metadata
|
| 84 |
+
|
| 85 |
+
except Exception as e:
|
| 86 |
+
logger.error(f"[CONVERSATION_MANAGER] Smart context failed: {e}")
|
| 87 |
+
return "", "", {"error": str(e)}
|
| 88 |
+
|
| 89 |
+
async def consolidate_memories(self, user_id: str, nvidia_rotator=None) -> Dict[str, Any]:
|
| 90 |
+
"""
|
| 91 |
+
Consolidate and prune memories to prevent information overload.
|
| 92 |
+
"""
|
| 93 |
+
try:
|
| 94 |
+
if not self.memory_system.is_enhanced_available():
|
| 95 |
+
return {"consolidated": 0, "pruned": 0}
|
| 96 |
+
|
| 97 |
+
# Get all memories for user
|
| 98 |
+
all_memories = self.memory_system.enhanced_memory.get_memories(user_id, limit=100)
|
| 99 |
+
|
| 100 |
+
if len(all_memories) < self.memory_consolidation_threshold:
|
| 101 |
+
return {"consolidated": 0, "pruned": 0}
|
| 102 |
+
|
| 103 |
+
# Group similar memories
|
| 104 |
+
memory_groups = await self._group_similar_memories(all_memories, nvidia_rotator)
|
| 105 |
+
|
| 106 |
+
# Consolidate each group
|
| 107 |
+
consolidated_count = 0
|
| 108 |
+
pruned_count = 0
|
| 109 |
+
|
| 110 |
+
for group in memory_groups:
|
| 111 |
+
if len(group) > 1:
|
| 112 |
+
# Consolidate similar memories
|
| 113 |
+
consolidated_memory = await self._consolidate_memory_group(group, nvidia_rotator)
|
| 114 |
+
|
| 115 |
+
if consolidated_memory:
|
| 116 |
+
# Remove old memories and add consolidated one
|
| 117 |
+
for memory in group:
|
| 118 |
+
self.memory_system.enhanced_memory.memories.delete_one({"_id": memory["_id"]})
|
| 119 |
+
pruned_count += 1
|
| 120 |
+
|
| 121 |
+
# Add consolidated memory
|
| 122 |
+
self.memory_system.enhanced_memory.add_memory(
|
| 123 |
+
user_id=user_id,
|
| 124 |
+
content=consolidated_memory["content"],
|
| 125 |
+
memory_type=consolidated_memory["memory_type"],
|
| 126 |
+
importance="high", # Consolidated memories are important
|
| 127 |
+
tags=consolidated_memory["tags"] + ["consolidated"]
|
| 128 |
+
)
|
| 129 |
+
consolidated_count += 1
|
| 130 |
+
|
| 131 |
+
logger.info(f"[CONVERSATION_MANAGER] Consolidated {consolidated_count} groups, pruned {pruned_count} memories")
|
| 132 |
+
return {"consolidated": consolidated_count, "pruned": pruned_count}
|
| 133 |
+
|
| 134 |
+
except Exception as e:
|
| 135 |
+
logger.error(f"[CONVERSATION_MANAGER] Memory consolidation failed: {e}")
|
| 136 |
+
return {"consolidated": 0, "pruned": 0, "error": str(e)}
|
| 137 |
+
|
| 138 |
+
async def handle_context_switch(self, user_id: str, new_question: str,
|
| 139 |
+
nvidia_rotator=None) -> Dict[str, Any]:
|
| 140 |
+
"""
|
| 141 |
+
Handle context switching when user changes topics or asks unrelated questions.
|
| 142 |
+
"""
|
| 143 |
+
try:
|
| 144 |
+
session_info = self.conversation_sessions.get(user_id, {})
|
| 145 |
+
|
| 146 |
+
if not session_info:
|
| 147 |
+
return {"is_context_switch": False, "confidence": 0.0}
|
| 148 |
+
|
| 149 |
+
# Check if this is a context switch
|
| 150 |
+
is_switch, confidence = await self._detect_context_switch(
|
| 151 |
+
session_info.get("last_question", ""), new_question, nvidia_rotator
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
if is_switch and confidence > 0.7:
|
| 155 |
+
# Clear recent context cache for fresh start
|
| 156 |
+
self.context_cache.pop(user_id, None)
|
| 157 |
+
|
| 158 |
+
# Update session to indicate context switch
|
| 159 |
+
session_info["context_switches"] = session_info.get("context_switches", 0) + 1
|
| 160 |
+
session_info["last_context_switch"] = time.time()
|
| 161 |
+
|
| 162 |
+
logger.info(f"[CONVERSATION_MANAGER] Context switch detected for user {user_id} (confidence: {confidence:.2f})")
|
| 163 |
+
|
| 164 |
+
return {
|
| 165 |
+
"is_context_switch": True,
|
| 166 |
+
"confidence": confidence,
|
| 167 |
+
"switch_count": session_info["context_switches"]
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
return {"is_context_switch": False, "confidence": confidence}
|
| 171 |
+
|
| 172 |
+
except Exception as e:
|
| 173 |
+
logger.error(f"[CONVERSATION_MANAGER] Context switch detection failed: {e}")
|
| 174 |
+
return {"is_context_switch": False, "confidence": 0.0, "error": str(e)}
|
| 175 |
+
|
| 176 |
+
def get_conversation_insights(self, user_id: str) -> Dict[str, Any]:
|
| 177 |
+
"""
|
| 178 |
+
Get insights about the user's conversation patterns.
|
| 179 |
+
"""
|
| 180 |
+
try:
|
| 181 |
+
session_info = self.conversation_sessions.get(user_id, {})
|
| 182 |
+
|
| 183 |
+
if not session_info:
|
| 184 |
+
return {"status": "no_active_session"}
|
| 185 |
+
|
| 186 |
+
return {
|
| 187 |
+
"session_duration": time.time() - session_info.get("start_time", time.time()),
|
| 188 |
+
"message_count": session_info.get("message_count", 0),
|
| 189 |
+
"context_switches": session_info.get("context_switches", 0),
|
| 190 |
+
"last_activity": session_info.get("last_activity", 0),
|
| 191 |
+
"conversation_depth": session_info.get("depth", 0),
|
| 192 |
+
"enhancement_rate": session_info.get("enhancement_rate", 0.0)
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
except Exception as e:
|
| 196 |
+
logger.error(f"[CONVERSATION_MANAGER] Failed to get conversation insights: {e}")
|
| 197 |
+
return {"error": str(e)}
|
| 198 |
+
|
| 199 |
+
# ────────────────────────────── Private Helper Methods ──────────────────────────────
|
| 200 |
+
|
| 201 |
+
def _get_or_create_session(self, user_id: str, question: str, conversation_mode: str) -> Dict[str, Any]:
|
| 202 |
+
"""Get or create conversation session for user"""
|
| 203 |
+
current_time = time.time()
|
| 204 |
+
|
| 205 |
+
if user_id not in self.conversation_sessions:
|
| 206 |
+
# New session
|
| 207 |
+
self.conversation_sessions[user_id] = {
|
| 208 |
+
"session_id": f"{user_id}_{int(current_time)}",
|
| 209 |
+
"start_time": current_time,
|
| 210 |
+
"last_activity": current_time,
|
| 211 |
+
"message_count": 0,
|
| 212 |
+
"context_switches": 0,
|
| 213 |
+
"depth": 0,
|
| 214 |
+
"enhancement_rate": 0.0,
|
| 215 |
+
"conversation_mode": conversation_mode,
|
| 216 |
+
"last_question": "",
|
| 217 |
+
"is_continuation": False
|
| 218 |
+
}
|
| 219 |
+
return self.conversation_sessions[user_id]
|
| 220 |
+
|
| 221 |
+
session = self.conversation_sessions[user_id]
|
| 222 |
+
|
| 223 |
+
# Check if this is a continuation (within 30 minutes and same mode)
|
| 224 |
+
time_since_last = current_time - session["last_activity"]
|
| 225 |
+
is_continuation = (time_since_last < 1800 and # 30 minutes
|
| 226 |
+
session["conversation_mode"] == conversation_mode)
|
| 227 |
+
|
| 228 |
+
session["is_continuation"] = is_continuation
|
| 229 |
+
session["last_activity"] = current_time
|
| 230 |
+
session["message_count"] += 1
|
| 231 |
+
|
| 232 |
+
return session
|
| 233 |
+
|
| 234 |
+
def _update_session(self, user_id: str, original_question: str,
|
| 235 |
+
enhanced_input: str, context_used: bool):
|
| 236 |
+
"""Update session with new information"""
|
| 237 |
+
if user_id not in self.conversation_sessions:
|
| 238 |
+
return
|
| 239 |
+
|
| 240 |
+
session = self.conversation_sessions[user_id]
|
| 241 |
+
session["last_question"] = original_question
|
| 242 |
+
session["depth"] += 1
|
| 243 |
+
|
| 244 |
+
# Update enhancement rate
|
| 245 |
+
total_enhancements = session.get("total_enhancements", 0)
|
| 246 |
+
if context_used:
|
| 247 |
+
total_enhancements += 1
|
| 248 |
+
session["total_enhancements"] = total_enhancements
|
| 249 |
+
session["enhancement_rate"] = total_enhancements / session["message_count"]
|
| 250 |
+
|
| 251 |
+
async def _get_continuation_context(self, user_id: str, question: str,
|
| 252 |
+
session_info: Dict[str, Any], nvidia_rotator,
|
| 253 |
+
project_id: Optional[str]) -> Tuple[str, str]:
|
| 254 |
+
"""Get context for conversation continuation"""
|
| 255 |
+
try:
|
| 256 |
+
# Use enhanced context retrieval with focus on recent conversation
|
| 257 |
+
if self.memory_system.is_enhanced_available():
|
| 258 |
+
recent_context, semantic_context = await self.memory_system.get_conversation_context(
|
| 259 |
+
user_id, question, project_id
|
| 260 |
+
)
|
| 261 |
+
else:
|
| 262 |
+
# Fallback to legacy with enhanced selection
|
| 263 |
+
recent_memories = self.memory_system.recent(user_id, 5) # More recent for continuation
|
| 264 |
+
rest_memories = self.memory_system.rest(user_id, 5)
|
| 265 |
+
|
| 266 |
+
recent_context = ""
|
| 267 |
+
if recent_memories and nvidia_rotator:
|
| 268 |
+
try:
|
| 269 |
+
from memo.nvidia import related_recent_context
|
| 270 |
+
recent_context = await related_recent_context(question, recent_memories, nvidia_rotator)
|
| 271 |
+
except Exception as e:
|
| 272 |
+
logger.warning(f"[CONVERSATION_MANAGER] NVIDIA recent context failed: {e}")
|
| 273 |
+
recent_context = await semantic_context(question, recent_memories, self.embedder, 3)
|
| 274 |
+
|
| 275 |
+
semantic_context = ""
|
| 276 |
+
if rest_memories:
|
| 277 |
+
semantic_context = await semantic_context(question, rest_memories, self.embedder, 5)
|
| 278 |
+
|
| 279 |
+
return recent_context, semantic_context
|
| 280 |
+
|
| 281 |
+
except Exception as e:
|
| 282 |
+
logger.error(f"[CONVERSATION_MANAGER] Continuation context failed: {e}")
|
| 283 |
+
return "", ""
|
| 284 |
+
|
| 285 |
+
async def _get_fresh_context(self, user_id: str, question: str,
|
| 286 |
+
nvidia_rotator, project_id: Optional[str]) -> Tuple[str, str]:
|
| 287 |
+
"""Get context for fresh conversation or context switch"""
|
| 288 |
+
try:
|
| 289 |
+
# Use standard context retrieval
|
| 290 |
+
if self.memory_system.is_enhanced_available():
|
| 291 |
+
recent_context, semantic_context = await self.memory_system.get_conversation_context(
|
| 292 |
+
user_id, question, project_id
|
| 293 |
+
)
|
| 294 |
+
else:
|
| 295 |
+
# Legacy fallback
|
| 296 |
+
recent_memories = self.memory_system.recent(user_id, 3)
|
| 297 |
+
rest_memories = self.memory_system.rest(user_id, 3)
|
| 298 |
+
|
| 299 |
+
recent_context = await semantic_context(question, recent_memories, self.embedder, 2)
|
| 300 |
+
semantic_context = await semantic_context(question, rest_memories, self.embedder, 3)
|
| 301 |
+
|
| 302 |
+
return recent_context, semantic_context
|
| 303 |
+
|
| 304 |
+
except Exception as e:
|
| 305 |
+
logger.error(f"[CONVERSATION_MANAGER] Fresh context failed: {e}")
|
| 306 |
+
return "", ""
|
| 307 |
+
|
| 308 |
+
async def _enhance_input_with_context(self, original_input: str, recent_context: str,
|
| 309 |
+
semantic_context: str, nvidia_rotator,
|
| 310 |
+
conversation_mode: str) -> Tuple[str, bool]:
|
| 311 |
+
"""Enhance input with relevant context if beneficial"""
|
| 312 |
+
try:
|
| 313 |
+
# Determine if enhancement would be beneficial
|
| 314 |
+
should_enhance = await self._should_enhance_input(
|
| 315 |
+
original_input, recent_context, semantic_context, nvidia_rotator
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
if not should_enhance:
|
| 319 |
+
return original_input, False
|
| 320 |
+
|
| 321 |
+
# Enhance based on conversation mode
|
| 322 |
+
if conversation_mode == "chat":
|
| 323 |
+
return await self._enhance_question(original_input, recent_context, semantic_context, nvidia_rotator)
|
| 324 |
+
else: # report mode
|
| 325 |
+
return await self._enhance_instructions(original_input, recent_context, semantic_context, nvidia_rotator)
|
| 326 |
+
|
| 327 |
+
except Exception as e:
|
| 328 |
+
logger.warning(f"[CONVERSATION_MANAGER] Input enhancement failed: {e}")
|
| 329 |
+
return original_input, False
|
| 330 |
+
|
| 331 |
+
async def _should_enhance_input(self, original_input: str, recent_context: str,
|
| 332 |
+
semantic_context: str, nvidia_rotator) -> bool:
|
| 333 |
+
"""Determine if input should be enhanced with context"""
|
| 334 |
+
try:
|
| 335 |
+
# Don't enhance if no context available
|
| 336 |
+
if not recent_context and not semantic_context:
|
| 337 |
+
return False
|
| 338 |
+
|
| 339 |
+
# Don't enhance very specific questions that seem complete
|
| 340 |
+
if len(original_input.split()) > 20: # Long, detailed questions
|
| 341 |
+
return False
|
| 342 |
+
|
| 343 |
+
# Don't enhance if input already contains context indicators
|
| 344 |
+
context_indicators = ["based on", "from our", "as we discussed", "following up", "regarding"]
|
| 345 |
+
if any(indicator in original_input.lower() for indicator in context_indicators):
|
| 346 |
+
return False
|
| 347 |
+
|
| 348 |
+
# Use NVIDIA to determine if enhancement would be helpful
|
| 349 |
+
if nvidia_rotator:
|
| 350 |
+
try:
|
| 351 |
+
from utils.api.router import generate_answer_with_model
|
| 352 |
+
|
| 353 |
+
sys_prompt = """You are an expert at determining if a user's question would benefit from additional context.
|
| 354 |
+
|
| 355 |
+
Given a user's question and available context, determine if enhancing the question with context would:
|
| 356 |
+
1. Make the answer more relevant and helpful
|
| 357 |
+
2. Provide better continuity in conversation
|
| 358 |
+
3. Not make the question unnecessarily complex
|
| 359 |
+
|
| 360 |
+
Respond with only "YES" or "NO"."""
|
| 361 |
+
|
| 362 |
+
user_prompt = f"""USER QUESTION: {original_input}
|
| 363 |
+
|
| 364 |
+
AVAILABLE CONTEXT:
|
| 365 |
+
Recent: {recent_context[:200]}...
|
| 366 |
+
Semantic: {semantic_context[:200]}...
|
| 367 |
+
|
| 368 |
+
Should this question be enhanced with context?"""
|
| 369 |
+
|
| 370 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 371 |
+
response = await generate_answer_with_model(
|
| 372 |
+
selection=selection,
|
| 373 |
+
system_prompt=sys_prompt,
|
| 374 |
+
user_prompt=user_prompt,
|
| 375 |
+
gemini_rotator=None,
|
| 376 |
+
nvidia_rotator=nvidia_rotator
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
return "YES" in response.upper()
|
| 380 |
+
|
| 381 |
+
except Exception as e:
|
| 382 |
+
logger.warning(f"[CONVERSATION_MANAGER] Enhancement decision failed: {e}")
|
| 383 |
+
|
| 384 |
+
# Fallback: enhance if we have substantial context
|
| 385 |
+
total_context_length = len(recent_context) + len(semantic_context)
|
| 386 |
+
return total_context_length > 100
|
| 387 |
+
|
| 388 |
+
except Exception as e:
|
| 389 |
+
logger.warning(f"[CONVERSATION_MANAGER] Enhancement decision failed: {e}")
|
| 390 |
+
return False
|
| 391 |
+
|
| 392 |
+
async def _enhance_question(self, question: str, recent_context: str,
|
| 393 |
+
semantic_context: str, nvidia_rotator) -> Tuple[str, bool]:
|
| 394 |
+
"""Enhance question with context"""
|
| 395 |
+
try:
|
| 396 |
+
from utils.api.router import generate_answer_with_model
|
| 397 |
+
|
| 398 |
+
sys_prompt = """You are an expert at enhancing user questions with relevant conversation context.
|
| 399 |
+
|
| 400 |
+
Given a user's question and relevant context, create an enhanced question that:
|
| 401 |
+
1. Incorporates the context naturally and seamlessly
|
| 402 |
+
2. Maintains the user's original intent
|
| 403 |
+
3. Provides better context for answering
|
| 404 |
+
4. Flows naturally and doesn't sound forced
|
| 405 |
+
|
| 406 |
+
Return ONLY the enhanced question, no meta-commentary."""
|
| 407 |
+
|
| 408 |
+
context_text = ""
|
| 409 |
+
if recent_context:
|
| 410 |
+
context_text += f"Recent conversation:\n{recent_context}\n\n"
|
| 411 |
+
if semantic_context:
|
| 412 |
+
context_text += f"Related information:\n{semantic_context}\n\n"
|
| 413 |
+
|
| 414 |
+
user_prompt = f"""ORIGINAL QUESTION: {question}
|
| 415 |
+
|
| 416 |
+
RELEVANT CONTEXT:
|
| 417 |
+
{context_text}
|
| 418 |
+
|
| 419 |
+
Create an enhanced version that incorporates this context naturally."""
|
| 420 |
+
|
| 421 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 422 |
+
enhanced_question = await generate_answer_with_model(
|
| 423 |
+
selection=selection,
|
| 424 |
+
system_prompt=sys_prompt,
|
| 425 |
+
user_prompt=user_prompt,
|
| 426 |
+
gemini_rotator=None,
|
| 427 |
+
nvidia_rotator=nvidia_rotator
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
return enhanced_question.strip(), True
|
| 431 |
+
|
| 432 |
+
except Exception as e:
|
| 433 |
+
logger.warning(f"[CONVERSATION_MANAGER] Question enhancement failed: {e}")
|
| 434 |
+
return question, False
|
| 435 |
+
|
| 436 |
+
async def _enhance_instructions(self, instructions: str, recent_context: str,
|
| 437 |
+
semantic_context: str, nvidia_rotator) -> Tuple[str, bool]:
|
| 438 |
+
"""Enhance report instructions with context"""
|
| 439 |
+
try:
|
| 440 |
+
from utils.api.router import generate_answer_with_model
|
| 441 |
+
|
| 442 |
+
sys_prompt = """You are an expert at enhancing report instructions with relevant conversation context.
|
| 443 |
+
|
| 444 |
+
Given report instructions and relevant context, create enhanced instructions that:
|
| 445 |
+
1. Incorporates the context naturally and seamlessly
|
| 446 |
+
2. Maintains the user's original intent for the report
|
| 447 |
+
3. Provides better context for generating a comprehensive report
|
| 448 |
+
4. Flows naturally and doesn't sound forced
|
| 449 |
+
|
| 450 |
+
Return ONLY the enhanced instructions, no meta-commentary."""
|
| 451 |
+
|
| 452 |
+
context_text = ""
|
| 453 |
+
if recent_context:
|
| 454 |
+
context_text += f"Recent conversation:\n{recent_context}\n\n"
|
| 455 |
+
if semantic_context:
|
| 456 |
+
context_text += f"Related information:\n{semantic_context}\n\n"
|
| 457 |
+
|
| 458 |
+
user_prompt = f"""ORIGINAL REPORT INSTRUCTIONS: {instructions}
|
| 459 |
+
|
| 460 |
+
RELEVANT CONTEXT:
|
| 461 |
+
{context_text}
|
| 462 |
+
|
| 463 |
+
Create an enhanced version that incorporates this context naturally."""
|
| 464 |
+
|
| 465 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 466 |
+
enhanced_instructions = await generate_answer_with_model(
|
| 467 |
+
selection=selection,
|
| 468 |
+
system_prompt=sys_prompt,
|
| 469 |
+
user_prompt=user_prompt,
|
| 470 |
+
gemini_rotator=None,
|
| 471 |
+
nvidia_rotator=nvidia_rotator
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
return enhanced_instructions.strip(), True
|
| 475 |
+
|
| 476 |
+
except Exception as e:
|
| 477 |
+
logger.warning(f"[CONVERSATION_MANAGER] Instructions enhancement failed: {e}")
|
| 478 |
+
return instructions, False
|
| 479 |
+
|
| 480 |
+
async def _detect_context_switch(self, last_question: str, new_question: str,
|
| 481 |
+
nvidia_rotator) -> Tuple[bool, float]:
|
| 482 |
+
"""Detect if user has switched context/topic"""
|
| 483 |
+
try:
|
| 484 |
+
if not last_question or not new_question:
|
| 485 |
+
return False, 0.0
|
| 486 |
+
|
| 487 |
+
if nvidia_rotator:
|
| 488 |
+
try:
|
| 489 |
+
from utils.api.router import generate_answer_with_model
|
| 490 |
+
|
| 491 |
+
sys_prompt = """You are an expert at detecting context switches in conversations.
|
| 492 |
+
|
| 493 |
+
Given two consecutive questions, determine if the user has switched to a completely different topic or context.
|
| 494 |
+
|
| 495 |
+
Consider:
|
| 496 |
+
- Different subject matter
|
| 497 |
+
- Different intent or goal
|
| 498 |
+
- No logical connection between questions
|
| 499 |
+
- Change in conversation direction
|
| 500 |
+
|
| 501 |
+
Respond with a JSON object: {"is_context_switch": true/false, "confidence": 0.0-1.0}"""
|
| 502 |
+
|
| 503 |
+
user_prompt = f"""PREVIOUS QUESTION: {last_question}
|
| 504 |
+
|
| 505 |
+
CURRENT QUESTION: {new_question}
|
| 506 |
+
|
| 507 |
+
Is this a context switch?"""
|
| 508 |
+
|
| 509 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 510 |
+
response = await generate_answer_with_model(
|
| 511 |
+
selection=selection,
|
| 512 |
+
system_prompt=sys_prompt,
|
| 513 |
+
user_prompt=user_prompt,
|
| 514 |
+
gemini_rotator=None,
|
| 515 |
+
nvidia_rotator=nvidia_rotator
|
| 516 |
+
)
|
| 517 |
+
|
| 518 |
+
# Parse JSON response
|
| 519 |
+
import json
|
| 520 |
+
try:
|
| 521 |
+
result = json.loads(response.strip())
|
| 522 |
+
return result.get("is_context_switch", False), result.get("confidence", 0.0)
|
| 523 |
+
except:
|
| 524 |
+
pass
|
| 525 |
+
|
| 526 |
+
except Exception as e:
|
| 527 |
+
logger.warning(f"[CONVERSATION_MANAGER] Context switch detection failed: {e}")
|
| 528 |
+
|
| 529 |
+
# Fallback: simple keyword-based detection
|
| 530 |
+
return self._simple_context_switch_detection(last_question, new_question)
|
| 531 |
+
|
| 532 |
+
except Exception as e:
|
| 533 |
+
logger.warning(f"[CONVERSATION_MANAGER] Context switch detection failed: {e}")
|
| 534 |
+
return False, 0.0
|
| 535 |
+
|
| 536 |
+
def _simple_context_switch_detection(self, last_question: str, new_question: str) -> Tuple[bool, float]:
|
| 537 |
+
"""Simple keyword-based context switch detection"""
|
| 538 |
+
try:
|
| 539 |
+
# Extract keywords from both questions
|
| 540 |
+
last_words = set(re.findall(r'\b\w+\b', last_question.lower()))
|
| 541 |
+
new_words = set(re.findall(r'\b\w+\b', new_question.lower()))
|
| 542 |
+
|
| 543 |
+
# Calculate overlap
|
| 544 |
+
overlap = len(last_words.intersection(new_words))
|
| 545 |
+
total_unique = len(last_words.union(new_words))
|
| 546 |
+
|
| 547 |
+
if total_unique == 0:
|
| 548 |
+
return False, 0.0
|
| 549 |
+
|
| 550 |
+
similarity = overlap / total_unique
|
| 551 |
+
|
| 552 |
+
# Context switch if similarity is very low
|
| 553 |
+
is_switch = similarity < 0.1
|
| 554 |
+
confidence = 1.0 - similarity if is_switch else similarity
|
| 555 |
+
|
| 556 |
+
return is_switch, confidence
|
| 557 |
+
|
| 558 |
+
except Exception as e:
|
| 559 |
+
logger.warning(f"[CONVERSATION_MANAGER] Simple context switch detection failed: {e}")
|
| 560 |
+
return False, 0.0
|
| 561 |
+
|
| 562 |
+
async def _group_similar_memories(self, memories: List[Dict[str, Any]],
|
| 563 |
+
nvidia_rotator) -> List[List[Dict[str, Any]]]:
|
| 564 |
+
"""Group similar memories for consolidation"""
|
| 565 |
+
try:
|
| 566 |
+
if not memories or len(memories) < 2:
|
| 567 |
+
return [memories] if memories else []
|
| 568 |
+
|
| 569 |
+
groups = []
|
| 570 |
+
used = set()
|
| 571 |
+
|
| 572 |
+
for i, memory in enumerate(memories):
|
| 573 |
+
if i in used:
|
| 574 |
+
continue
|
| 575 |
+
|
| 576 |
+
group = [memory]
|
| 577 |
+
used.add(i)
|
| 578 |
+
|
| 579 |
+
# Find similar memories
|
| 580 |
+
for j, other_memory in enumerate(memories[i+1:], i+1):
|
| 581 |
+
if j in used:
|
| 582 |
+
continue
|
| 583 |
+
|
| 584 |
+
# Calculate similarity
|
| 585 |
+
similarity = await self._calculate_memory_similarity(memory, other_memory, nvidia_rotator)
|
| 586 |
+
|
| 587 |
+
if similarity > 0.7: # High similarity threshold
|
| 588 |
+
group.append(other_memory)
|
| 589 |
+
used.add(j)
|
| 590 |
+
|
| 591 |
+
groups.append(group)
|
| 592 |
+
|
| 593 |
+
return groups
|
| 594 |
+
|
| 595 |
+
except Exception as e:
|
| 596 |
+
logger.error(f"[CONVERSATION_MANAGER] Memory grouping failed: {e}")
|
| 597 |
+
return [memories] if memories else []
|
| 598 |
+
|
| 599 |
+
async def _calculate_memory_similarity(self, memory1: Dict[str, Any],
|
| 600 |
+
memory2: Dict[str, Any], nvidia_rotator) -> float:
|
| 601 |
+
"""Calculate similarity between two memories"""
|
| 602 |
+
try:
|
| 603 |
+
# Use embedding similarity if available
|
| 604 |
+
if memory1.get("embedding") and memory2.get("embedding"):
|
| 605 |
+
return cosine_similarity(
|
| 606 |
+
memory1["embedding"],
|
| 607 |
+
memory2["embedding"]
|
| 608 |
+
)
|
| 609 |
+
|
| 610 |
+
# Fallback to content similarity
|
| 611 |
+
content1 = memory1.get("content", "")
|
| 612 |
+
content2 = memory2.get("content", "")
|
| 613 |
+
|
| 614 |
+
if not content1 or not content2:
|
| 615 |
+
return 0.0
|
| 616 |
+
|
| 617 |
+
# Simple word overlap similarity
|
| 618 |
+
words1 = set(re.findall(r'\b\w+\b', content1.lower()))
|
| 619 |
+
words2 = set(re.findall(r'\b\w+\b', content2.lower()))
|
| 620 |
+
|
| 621 |
+
if not words1 or not words2:
|
| 622 |
+
return 0.0
|
| 623 |
+
|
| 624 |
+
overlap = len(words1.intersection(words2))
|
| 625 |
+
total = len(words1.union(words2))
|
| 626 |
+
|
| 627 |
+
return overlap / total if total > 0 else 0.0
|
| 628 |
+
|
| 629 |
+
except Exception as e:
|
| 630 |
+
logger.warning(f"[CONVERSATION_MANAGER] Memory similarity calculation failed: {e}")
|
| 631 |
+
return 0.0
|
| 632 |
+
|
| 633 |
+
async def _consolidate_memory_group(self, group: List[Dict[str, Any]],
|
| 634 |
+
nvidia_rotator) -> Optional[Dict[str, Any]]:
|
| 635 |
+
"""Consolidate a group of similar memories into one"""
|
| 636 |
+
try:
|
| 637 |
+
if not group or len(group) < 2:
|
| 638 |
+
return None
|
| 639 |
+
|
| 640 |
+
# Extract content from all memories
|
| 641 |
+
contents = [memory.get("content", "") for memory in group]
|
| 642 |
+
memory_types = list(set(memory.get("memory_type", "conversation") for memory in group))
|
| 643 |
+
tags = []
|
| 644 |
+
for memory in group:
|
| 645 |
+
tags.extend(memory.get("tags", []))
|
| 646 |
+
|
| 647 |
+
# Use NVIDIA to consolidate content
|
| 648 |
+
if nvidia_rotator:
|
| 649 |
+
try:
|
| 650 |
+
from utils.api.router import generate_answer_with_model
|
| 651 |
+
|
| 652 |
+
sys_prompt = """You are an expert at consolidating similar conversation memories.
|
| 653 |
+
|
| 654 |
+
Given multiple similar conversation memories, create a single consolidated memory that:
|
| 655 |
+
1. Preserves all important information
|
| 656 |
+
2. Removes redundancy
|
| 657 |
+
3. Maintains the essential context
|
| 658 |
+
4. Is concise but comprehensive
|
| 659 |
+
|
| 660 |
+
Return the consolidated content in the same format as the original memories."""
|
| 661 |
+
|
| 662 |
+
user_prompt = f"""CONSOLIDATE THESE SIMILAR MEMORIES:
|
| 663 |
+
|
| 664 |
+
{chr(10).join(f"Memory {i+1}: {content}" for i, content in enumerate(contents))}
|
| 665 |
+
|
| 666 |
+
Create a single consolidated memory:"""
|
| 667 |
+
|
| 668 |
+
selection = {"provider": "nvidia", "model": "meta/llama-3.1-8b-instruct"}
|
| 669 |
+
consolidated_content = await generate_answer_with_model(
|
| 670 |
+
selection=selection,
|
| 671 |
+
system_prompt=sys_prompt,
|
| 672 |
+
user_prompt=user_prompt,
|
| 673 |
+
gemini_rotator=None,
|
| 674 |
+
nvidia_rotator=nvidia_rotator
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
return {
|
| 678 |
+
"content": consolidated_content.strip(),
|
| 679 |
+
"memory_type": memory_types[0] if memory_types else "conversation",
|
| 680 |
+
"tags": list(set(tags)) + ["consolidated"]
|
| 681 |
+
}
|
| 682 |
+
|
| 683 |
+
except Exception as e:
|
| 684 |
+
logger.warning(f"[CONVERSATION_MANAGER] NVIDIA consolidation failed: {e}")
|
| 685 |
+
|
| 686 |
+
# Fallback: simple concatenation
|
| 687 |
+
consolidated_content = "\n\n".join(contents)
|
| 688 |
+
return {
|
| 689 |
+
"content": consolidated_content,
|
| 690 |
+
"memory_type": memory_types[0] if memory_types else "conversation",
|
| 691 |
+
"tags": list(set(tags)) + ["consolidated"]
|
| 692 |
+
}
|
| 693 |
+
|
| 694 |
+
except Exception as e:
|
| 695 |
+
logger.error(f"[CONVERSATION_MANAGER] Memory consolidation failed: {e}")
|
| 696 |
+
return None
|
| 697 |
+
|
| 698 |
+
|
| 699 |
+
# ────────────────────────────── Global Instance ──────────────────────────────
|
| 700 |
+
|
| 701 |
+
_conversation_manager: Optional[ConversationManager] = None
|
| 702 |
+
|
| 703 |
+
def get_conversation_manager(memory_system=None, embedder: EmbeddingClient = None) -> ConversationManager:
|
| 704 |
+
"""Get the global conversation manager instance"""
|
| 705 |
+
global _conversation_manager
|
| 706 |
+
|
| 707 |
+
if _conversation_manager is None:
|
| 708 |
+
if not memory_system:
|
| 709 |
+
from memo.core import get_memory_system
|
| 710 |
+
memory_system = get_memory_system()
|
| 711 |
+
if not embedder:
|
| 712 |
+
from utils.rag.embeddings import EmbeddingClient
|
| 713 |
+
embedder = EmbeddingClient()
|
| 714 |
+
|
| 715 |
+
_conversation_manager = ConversationManager(memory_system, embedder)
|
| 716 |
+
logger.info("[CONVERSATION_MANAGER] Global conversation manager initialized")
|
| 717 |
+
|
| 718 |
+
return _conversation_manager
|
| 719 |
+
|
| 720 |
+
def reset_conversation_manager():
|
| 721 |
+
"""Reset the global conversation manager (for testing)"""
|
| 722 |
+
global _conversation_manager
|
| 723 |
+
_conversation_manager = None
|
memo/core.py
CHANGED
|
@@ -174,34 +174,54 @@ class MemorySystem:
|
|
| 174 |
"enhanced_available": False
|
| 175 |
}
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
async def get_smart_context(self, user_id: str, question: str,
|
| 178 |
-
nvidia_rotator=None, project_id: Optional[str] = None
|
| 179 |
-
|
|
|
|
| 180 |
try:
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
try:
|
| 188 |
-
from memo.nvidia import related_recent_context
|
| 189 |
-
recent_memories = self.legacy_memory.recent(user_id, 5)
|
| 190 |
-
if recent_memories:
|
| 191 |
-
nvidia_recent = await related_recent_context(question, recent_memories, nvidia_rotator)
|
| 192 |
-
if nvidia_recent:
|
| 193 |
-
recent_context = nvidia_recent
|
| 194 |
-
except Exception as e:
|
| 195 |
-
logger.warning(f"[CORE_MEMORY] NVIDIA context enhancement failed: {e}")
|
| 196 |
-
|
| 197 |
-
return recent_context, semantic_context
|
| 198 |
-
else:
|
| 199 |
-
# Use legacy context with NVIDIA enhancement if available
|
| 200 |
-
from memo.context import get_legacy_context
|
| 201 |
-
return await get_legacy_context(user_id, question, self, self.embedder, 3)
|
| 202 |
except Exception as e:
|
| 203 |
logger.error(f"[CORE_MEMORY] Failed to get smart context: {e}")
|
| 204 |
-
return "", ""
|
| 205 |
|
| 206 |
# ────────────────────────────── Private Helper Methods ──────────────────────────────
|
| 207 |
|
|
|
|
| 174 |
"enhanced_available": False
|
| 175 |
}
|
| 176 |
|
| 177 |
+
async def consolidate_memories(self, user_id: str, nvidia_rotator=None) -> Dict[str, Any]:
|
| 178 |
+
"""Consolidate and prune memories to prevent information overload"""
|
| 179 |
+
try:
|
| 180 |
+
from memo.conversation import get_conversation_manager
|
| 181 |
+
conversation_manager = get_conversation_manager(self, self.embedder)
|
| 182 |
+
|
| 183 |
+
return await conversation_manager.consolidate_memories(user_id, nvidia_rotator)
|
| 184 |
+
except Exception as e:
|
| 185 |
+
logger.error(f"[CORE_MEMORY] Memory consolidation failed: {e}")
|
| 186 |
+
return {"consolidated": 0, "pruned": 0, "error": str(e)}
|
| 187 |
+
|
| 188 |
+
async def handle_context_switch(self, user_id: str, new_question: str,
|
| 189 |
+
nvidia_rotator=None) -> Dict[str, Any]:
|
| 190 |
+
"""Handle context switching when user changes topics"""
|
| 191 |
+
try:
|
| 192 |
+
from memo.conversation import get_conversation_manager
|
| 193 |
+
conversation_manager = get_conversation_manager(self, self.embedder)
|
| 194 |
+
|
| 195 |
+
return await conversation_manager.handle_context_switch(user_id, new_question, nvidia_rotator)
|
| 196 |
+
except Exception as e:
|
| 197 |
+
logger.error(f"[CORE_MEMORY] Context switch handling failed: {e}")
|
| 198 |
+
return {"is_context_switch": False, "confidence": 0.0, "error": str(e)}
|
| 199 |
+
|
| 200 |
+
def get_conversation_insights(self, user_id: str) -> Dict[str, Any]:
|
| 201 |
+
"""Get insights about the user's conversation patterns"""
|
| 202 |
+
try:
|
| 203 |
+
from memo.conversation import get_conversation_manager
|
| 204 |
+
conversation_manager = get_conversation_manager(self, self.embedder)
|
| 205 |
+
|
| 206 |
+
return conversation_manager.get_conversation_insights(user_id)
|
| 207 |
+
except Exception as e:
|
| 208 |
+
logger.error(f"[CORE_MEMORY] Failed to get conversation insights: {e}")
|
| 209 |
+
return {"error": str(e)}
|
| 210 |
+
|
| 211 |
async def get_smart_context(self, user_id: str, question: str,
|
| 212 |
+
nvidia_rotator=None, project_id: Optional[str] = None,
|
| 213 |
+
conversation_mode: str = "chat") -> Tuple[str, str, Dict[str, Any]]:
|
| 214 |
+
"""Get smart context using advanced conversation management"""
|
| 215 |
try:
|
| 216 |
+
from memo.conversation import get_conversation_manager
|
| 217 |
+
conversation_manager = get_conversation_manager(self, self.embedder)
|
| 218 |
+
|
| 219 |
+
return await conversation_manager.get_smart_context(
|
| 220 |
+
user_id, question, nvidia_rotator, project_id, conversation_mode
|
| 221 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
except Exception as e:
|
| 223 |
logger.error(f"[CORE_MEMORY] Failed to get smart context: {e}")
|
| 224 |
+
return "", "", {"error": str(e)}
|
| 225 |
|
| 226 |
# ────────────────────────────── Private Helper Methods ──────────────────────────────
|
| 227 |
|
routes/chats.py
CHANGED
|
@@ -8,7 +8,7 @@ from helpers.setup import app, rag, logger, embedder, captioner, gemini_rotator,
|
|
| 8 |
from helpers.models import ChatMessageResponse, ChatHistoryResponse, MessageResponse, ChatAnswerResponse, StatusUpdateResponse
|
| 9 |
from utils.service.common import trim_text
|
| 10 |
from .search import build_web_context
|
| 11 |
-
|
| 12 |
from utils.api.router import select_model, generate_answer_with_model
|
| 13 |
|
| 14 |
|
|
@@ -237,10 +237,25 @@ async def _chat_impl(
|
|
| 237 |
if session_id:
|
| 238 |
update_chat_status(session_id, "receiving", "Receiving request...", 5)
|
| 239 |
|
| 240 |
-
# Step 1: Retrieve and enhance prompt with conversation history FIRST
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
logger.info(f"[CHAT] Enhanced question with memory context: {len(memory_context)} chars")
|
| 245 |
|
| 246 |
mentioned = set([m.group(0).strip() for m in re.finditer(r"\b[^\s/\\]+?\.(?:pdf|docx|doc)\b", question, re.IGNORECASE)])
|
|
@@ -300,51 +315,9 @@ async def _chat_impl(
|
|
| 300 |
if extra:
|
| 301 |
logger.info(f"[CHAT] Forced-include mentioned files into relevance: {extra}")
|
| 302 |
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
recent_related, semantic_related = await history_manager.related_recent_and_semantic_context(
|
| 307 |
-
user_id, question, embedder
|
| 308 |
-
)
|
| 309 |
-
except Exception as e:
|
| 310 |
-
logger.warning(f"[CHAT] Enhanced context retrieval failed, using fallback: {e}")
|
| 311 |
-
recent3 = memory.recent(user_id, 3)
|
| 312 |
-
if recent3:
|
| 313 |
-
sys = "Pick only items that directly relate to the new question. Output the selected items verbatim, no commentary. If none, output nothing."
|
| 314 |
-
numbered = [{"id": i+1, "text": s} for i, s in enumerate(recent3)]
|
| 315 |
-
user = f"Question: {question}\nCandidates:\n{json.dumps(numbered, ensure_ascii=False)}\nSelect any related items and output ONLY their 'text' values concatenated."
|
| 316 |
-
try:
|
| 317 |
-
from utils.api.rotator import robust_post_json
|
| 318 |
-
key = nvidia_rotator.get_key()
|
| 319 |
-
url = "https://integrate.api.nvidia.com/v1/chat/completions"
|
| 320 |
-
payload = {
|
| 321 |
-
"model": os.getenv("NVIDIA_SMALL", "meta/llama-3.1-8b-instruct"),
|
| 322 |
-
"temperature": 0.0,
|
| 323 |
-
"messages": [
|
| 324 |
-
{"role": "system", "content": sys},
|
| 325 |
-
{"role": "user", "content": user},
|
| 326 |
-
]
|
| 327 |
-
}
|
| 328 |
-
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {key or ''}"}
|
| 329 |
-
data = await robust_post_json(url, headers, payload, nvidia_rotator)
|
| 330 |
-
recent_related = data["choices"][0]["message"]["content"].strip()
|
| 331 |
-
except Exception as e:
|
| 332 |
-
logger.warning(f"Recent-related NVIDIA error: {e}")
|
| 333 |
-
recent_related = ""
|
| 334 |
-
else:
|
| 335 |
-
recent_related = ""
|
| 336 |
-
rest17 = memory.rest(user_id, 3)
|
| 337 |
-
if rest17:
|
| 338 |
-
import numpy as np
|
| 339 |
-
def _cosine(a: np.ndarray, b: np.ndarray) -> float:
|
| 340 |
-
denom = (np.linalg.norm(a) * np.linalg.norm(b)) or 1.0
|
| 341 |
-
return float(np.dot(a, b) / denom)
|
| 342 |
-
qv = np.array(embedder.embed([question])[0], dtype="float32")
|
| 343 |
-
mats = embedder.embed([s.strip() for s in rest17])
|
| 344 |
-
sims = [(_cosine(qv, np.array(v, dtype="float32")), s) for v, s in zip(mats, rest17)]
|
| 345 |
-
sims.sort(key=lambda x: x[0], reverse=True)
|
| 346 |
-
top = [s for (sc, s) in sims[:3] if sc > 0.15]
|
| 347 |
-
semantic_related = "\n\n".join(top) if top else ""
|
| 348 |
|
| 349 |
logger.info(f"[CHAT] Starting enhanced vector search with relevant_files={relevant_files}")
|
| 350 |
|
|
|
|
| 8 |
from helpers.models import ChatMessageResponse, ChatHistoryResponse, MessageResponse, ChatAnswerResponse, StatusUpdateResponse
|
| 9 |
from utils.service.common import trim_text
|
| 10 |
from .search import build_web_context
|
| 11 |
+
# Removed: enhance_question_with_memory - now handled by conversation manager
|
| 12 |
from utils.api.router import select_model, generate_answer_with_model
|
| 13 |
|
| 14 |
|
|
|
|
| 237 |
if session_id:
|
| 238 |
update_chat_status(session_id, "receiving", "Receiving request...", 5)
|
| 239 |
|
| 240 |
+
# Step 1: Retrieve and enhance prompt with conversation history FIRST with conversation management
|
| 241 |
+
try:
|
| 242 |
+
recent_context, semantic_context, context_metadata = await memory.get_smart_context(
|
| 243 |
+
user_id, question, nvidia_rotator, project_id, "chat"
|
| 244 |
+
)
|
| 245 |
+
logger.info(f"[CHAT] Smart context retrieved: recent={len(recent_context)}, semantic={len(semantic_context)}")
|
| 246 |
+
|
| 247 |
+
# Check for context switch
|
| 248 |
+
context_switch_info = await memory.handle_context_switch(user_id, question, nvidia_rotator)
|
| 249 |
+
if context_switch_info.get("is_context_switch", False):
|
| 250 |
+
logger.info(f"[CHAT] Context switch detected (confidence: {context_switch_info.get('confidence', 0):.2f})")
|
| 251 |
+
except Exception as e:
|
| 252 |
+
logger.warning(f"[CHAT] Smart context failed, using fallback: {e}")
|
| 253 |
+
recent_context, semantic_context = "", ""
|
| 254 |
+
context_metadata = {}
|
| 255 |
+
|
| 256 |
+
# Use enhanced question from smart context if available
|
| 257 |
+
enhanced_question = context_metadata.get("enhanced_input", question)
|
| 258 |
+
memory_context = recent_context + "\n\n" + semantic_context if recent_context or semantic_context else ""
|
| 259 |
logger.info(f"[CHAT] Enhanced question with memory context: {len(memory_context)} chars")
|
| 260 |
|
| 261 |
mentioned = set([m.group(0).strip() for m in re.finditer(r"\b[^\s/\\]+?\.(?:pdf|docx|doc)\b", question, re.IGNORECASE)])
|
|
|
|
| 315 |
if extra:
|
| 316 |
logger.info(f"[CHAT] Forced-include mentioned files into relevance: {extra}")
|
| 317 |
|
| 318 |
+
# Use context from smart context management (already retrieved above)
|
| 319 |
+
recent_related = recent_context
|
| 320 |
+
semantic_related = semantic_context
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
logger.info(f"[CHAT] Starting enhanced vector search with relevant_files={relevant_files}")
|
| 323 |
|
routes/reports.py
CHANGED
|
@@ -6,7 +6,7 @@ from fastapi import Form, HTTPException
|
|
| 6 |
|
| 7 |
from helpers.setup import app, rag, logger, embedder, gemini_rotator, nvidia_rotator
|
| 8 |
from .search import build_web_context
|
| 9 |
-
|
| 10 |
from helpers.models import ReportResponse, StatusUpdateResponse
|
| 11 |
from utils.service.common import trim_text
|
| 12 |
from utils.api.router import select_model, generate_answer_with_model
|
|
@@ -46,17 +46,34 @@ async def generate_report(
|
|
| 46 |
if not session_id:
|
| 47 |
session_id = str(uuid.uuid4())
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
logger.info("[REPORT] User Q/report: %s", trim_text(instructions, 15).replace("\n", " "))
|
| 50 |
|
| 51 |
# Update status: Receiving request
|
| 52 |
update_report_status(session_id, "receiving", "Receiving request...", 5)
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
logger.info(f"[REPORT] Enhanced instructions with memory context: {len(memory_context)} chars")
|
| 61 |
|
| 62 |
files_list = rag.list_files(user_id=user_id, project_id=project_id)
|
|
|
|
| 6 |
|
| 7 |
from helpers.setup import app, rag, logger, embedder, gemini_rotator, nvidia_rotator
|
| 8 |
from .search import build_web_context
|
| 9 |
+
# Removed: enhance_instructions_with_memory - now handled by conversation manager
|
| 10 |
from helpers.models import ReportResponse, StatusUpdateResponse
|
| 11 |
from utils.service.common import trim_text
|
| 12 |
from utils.api.router import select_model, generate_answer_with_model
|
|
|
|
| 46 |
if not session_id:
|
| 47 |
session_id = str(uuid.uuid4())
|
| 48 |
|
| 49 |
+
# Initialize memory system
|
| 50 |
+
from memo.core import get_memory_system
|
| 51 |
+
memory = get_memory_system()
|
| 52 |
+
|
| 53 |
logger.info("[REPORT] User Q/report: %s", trim_text(instructions, 15).replace("\n", " "))
|
| 54 |
|
| 55 |
# Update status: Receiving request
|
| 56 |
update_report_status(session_id, "receiving", "Receiving request...", 5)
|
| 57 |
|
| 58 |
+
# Get smart context with conversation management
|
| 59 |
+
try:
|
| 60 |
+
recent_context, semantic_context, context_metadata = await memory.get_smart_context(
|
| 61 |
+
user_id, instructions, nvidia_rotator, project_id, "report"
|
| 62 |
+
)
|
| 63 |
+
logger.info(f"[REPORT] Smart context retrieved: recent={len(recent_context)}, semantic={len(semantic_context)}")
|
| 64 |
+
|
| 65 |
+
# Check for context switch
|
| 66 |
+
context_switch_info = await memory.handle_context_switch(user_id, instructions, nvidia_rotator)
|
| 67 |
+
if context_switch_info.get("is_context_switch", False):
|
| 68 |
+
logger.info(f"[REPORT] Context switch detected (confidence: {context_switch_info.get('confidence', 0):.2f})")
|
| 69 |
+
except Exception as e:
|
| 70 |
+
logger.warning(f"[REPORT] Smart context failed, using fallback: {e}")
|
| 71 |
+
recent_context, semantic_context = "", ""
|
| 72 |
+
context_metadata = {}
|
| 73 |
+
|
| 74 |
+
# Use enhanced instructions from smart context if available
|
| 75 |
+
enhanced_instructions = context_metadata.get("enhanced_input", instructions)
|
| 76 |
+
memory_context = recent_context + "\n\n" + semantic_context if recent_context or semantic_context else ""
|
| 77 |
logger.info(f"[REPORT] Enhanced instructions with memory context: {len(memory_context)} chars")
|
| 78 |
|
| 79 |
files_list = rag.list_files(user_id=user_id, project_id=project_id)
|